
67

Secured Remote Update Protocol in IoT Data Exchange System

Bohdan Zhurakovskyi1, Oleksandr Pliushch2, Mikhail Polishchuk1, Nataliia Korshun3,

and Sergiy Obushnyi3

1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 37 Peremogy ave., Kyiv,

03056, Ukraine
2Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv, 01601, Ukraine
3Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska str., Kyiv, 04053, Ukraine

Abstract
The article researches and develops a system for secure data exchange in IoT. The

architecture of the secure remote update protocol and the types of messages supported by

this protocol have been developed, and look at how the protocol can be used with the

MQTT publish/subscribe architecture. Issues related to identity management for IoT

devices are discussed, as well as an automated system identity management scheme to be

used with the protocol. An experimental evaluation of the protocol and system and further

analysis of the obtained data was carried out. All basic elements of the protocol are ready-

made components. It was built on top of the very widely used MQTT protocol. It uses

TLS to encrypt messages and uses RSA and SHA-256 to sign messages in the reference

implementation. This use of well-known components lends some credibility to the

protocol and makes it easier for users to understand.

Keywords 1
System for secure data exchange, secure remote update protocol, command and control

system, message encryption, software library.

1. Introduction

IoT security is a technology segment focused

on protecting connected devices and networks in

the Internet of Things (IoT). IoT involves the

addition of Internet connectivity to a system of

interconnected computing devices, mechanical

and digital machines, objects, animals, and/or

people [1]. Each “thing” is given a unique

identifier and the ability to automatically transfer

data over the network. Allowing devices to

connect to the Internet exposes them to many

serious vulnerabilities if not properly secured [2].

Several high-profile incidents where a

common IoT device was used to infiltrate and

attack a larger network have drawn attention to the

need for IoT security [3–5]. It is important to

ensure the security of networks with IoT devices

connected to them [6]. IoT security includes a

wide range of techniques, strategies, protocols,

CPITS 2023: Workshop on Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2023, Kyiv, Ukraine
EMAIL: zhurakovskiybyu@tk.kpi.ua (B. Zhurakovskyi); opliusch@yahoo.com (O. Pliushch); borchiv@ukr.net (M. Polishchuck);

n.korshun@kubg.edu.ua (N. Korshun); s.obushnyi@kubg.edu.ua (S. Obushnyi)

ORCID: 0000-0003-3990-5205 (B. Zhurakovskyi); 0000-0001-5310-0660 (O. Pliushch); 0000-0003-0824-7895 (M. Polishchuck); 0000-
0003-2908-970X (N. Korshun); 0000-0001-6936-955X (S. Obushnyi)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

and actions aimed at mitigating the increasing

vulnerability of today’s business in the IoT [7].

A command and control system (C2), although

traditionally considered in a military context,

simply means the process by which a

hierarchically superior entity sets tasks for

(command) or gives direct instructions (control)

to a subordinate entity [8].

In the context of this study, C2 can be seen as

a reference to any communication that occurs in a

hierarchical structure where information is

exchanged between a controlling entity [9] and a

subordinate entity to ensure the management of

the subordinate entity’s activities by a higher

controlling body.

There are two main types of architectures: a

purely hierarchical approach, typically used in the

context of military or civilian law enforcement

personnel, and a peer-to-peer approach.

68

In the strictly hierarchical C2 communication

model, all communication between nodes must go

through a (common) senior commander.

In contrast to this approach, a purely peer-to-

peer communication model allows direct

communication between any nodes. An

architecture that adopts this scheme will have a

completely flat hierarchy where all nodes are

equal and any communications flow directly

between endpoints. More typically, in nominally

peer-to-peer communications (such as a telephone

system, for example), messages are routed or

relayed through a server, exchange, or other

intermediaries at one or more levels of

hierarchical abstraction from the user [8]. This is

still the case for most End-to-End Encryption

(E2EE) messaging services such as Signal 3.

This paper primarily considers a use case

scenario commonly encountered in IoT—where a

certain class (or family of classes) of devices is

deployed and C2 functionality provided by a

centralized service [10] is used. This service can

support one or more users, each of whom will

have access to one or more devices.

It is also compatible with the new trend of

using IoT devices and integrating with existing

cloud services such as those provided by Google

or Amazon. This approach enables easy

integration with home automation hub devices

such as AmazonEcho (and Alexa voice assistant)

and GoogleHome [11].

Given the requirements for IoT and IoT

systems in a military context, there is a clear

requirement for a C2 system to integrate them into

existing military decision-making processes and

structures.

The infrastructure requirements underlying the

network connectivity for deploying IoT devices

can be met by deployed military systems or local

theater systems (or a combination of both).

However, depending on the scale of any such

deployment of IoT devices, the infrastructure may

not be sufficient to meet the connectivity

requirements to support a real-time system [12].

The use of mesh networks consisting of device-to-

device communication and more sophisticated

network management can solve some of these

problems.

Finally, it should be noted that the technical

challenges of messaging in C2 systems differ from

the organizational challenges of decision-making,

information management, and situational

awareness that future IoT systems will also face.

2. Statement of the Research Problem
2.1 . System Development

As an example, consider the case where there

is a deployed IoT system consisting of a fixed

number of sensor devices, and if the devices

belong to a C2 (Command and Control) control

system, they all work as part of a smart city. In the

event of an emergency, these devices can be

supplemented by pairing them with a second set

of mobile devices operated by local fire and

rescue services. The protocol supports the

dynamic addition of devices to the C2 network, as

well as commands that require devices to transfer

their registration to another C2 server if the

corresponding systems work on the same network

[13].

For this paper, we consider the use of a

network of fixed sensors installed to measure air

quality and provide real-time alerts to citizens if

air quality deteriorates below a certain threshold.

In the event of a major fire or other disasters, it

may be desirable to supplement this system with

several additional mobile sensors, such as those

that can be deployed by the local fire department.

As part of the development, this could easily be

achieved if the fire brigade sensors are

commanded to join the city’s C2 network. This

combined system C2 is shown in Fig. 1.

Figure 1: Combined system C2

More generally, for this to be possible if all of

the following three conditions are true:

1. Systems must use (or be compatible and

able to use) the same protocol universe.

2. The owner of the sensors to be connected

to the existing C2 system agrees to

(temporarily) transfer ownership of the sensors

to the operator of the fixed system.

3. The owner of the fixed system accepts the

new sensors and assumes temporary

responsibility for them.

69

Conditions 2 and 3 are particularly important.

Since the devices in question will become full

members of the new C2 network, both parties

must be prepared to join the systems, which

involves a certain degree of trust. For example, the

party hosting the C2 network must be confident

that the devices that join are not compromised by

malware, and the party providing the devices must

be confident that the other party will make every

effort to ensure that they are not and that they will

be returned to their control after the operation is

completed [14].

However, there are scenarios where such

unification cannot be achieved because one or

more of the preconditions are not met and cannot

be satisfied (for example, when one party does not

wish to assign its devices to the control of the C2

network operator—or if the devices in question

necessarily use different server systems).

However, a combination of C2 systems is not

always necessary. Depending on the specific

requirements, it is also possible to simply provide

third-party access to the existing C2 system or

provide a simple data export (in the form of static

data or the form of a live API).

2.2. Web System C2

As part of this study, an implementation of the

C2 web system was created. This was

implemented in Python because the protocol

library [15] could be used. The C2 system creates

a Server class with ruSRUP. In this example, the

Flask5 library was used to provide a framework

for web development, although any other

framework can be substituted very easily [16].

Flask was adopted because it provides a very

lightweight web development framework,

supporting Jinja6 templates for generating

dynamic pages. Any real-life C2 system is

inherently application-specific, so this example

implementation is only included as reference

material for developers implementing their

custom systems. Architectural scheme Fig. 2.

Setting up a C2 server requires some additional

steps compared to setting up a device, not least

when it comes to setting up the C2 server’s

security credentials. Unlike devices (which can

request registration and generate credentials

simply by visiting a key exchange URL), the

registration process for servers requires the

creation of a server token file. This, along with the

server ID, must be specified in the manually

generated configuration file. The C2 server

reference implementation also supports human-

and machine-driven joins. It allows you to use

color or monochrome icons, word lists, and

hexadecimal notation. It also includes a simple

example of visualizing data from a device by

plotting a graph, although in a real (production)

system it would be highly desirable to use

scalable, off-the-shelf time series data storage and

visualization tools such as InfluxDb and Grafana.

Figure 2: Architectural scheme

It should be noted that the implemented C2

system does not use any type of client-side user

authentication. However, implementing user

authentication for web applications is a solved

problem, and there are several ready-made OSS

solutions compatible with Python

implementations (such as Flask-Login7) that can

be easily added for any real-world use.

2.2.1. Backend Services

A reference implementation was also created

for the systems server services. It consists of two

main parts: a key exchange server; and supporting

infrastructure for hosting and brokering MQTT

messages.

The key exchange server was implemented as

a relatively simple Python program. It implements

a REST API endpoint for all steps of the device

registration process and again uses the Flask

library to provide a web services framework [17].

All data (such as device IDs and keys) is stored

locally using an SQLite database, however for a

larger full production system, this can easily be

replaced with any other SQL database system (eg

PostgreSQL) [18].

Table 1 shows the implemented REST

endpoints.

70

Although the key exchange server is relatively

simple (especially when running locally), the

configuration required to host it securely on a

remote web server [19] (including providing a

TLS certificate for the hosting domain) and the

configuration required by the MQTT broker

represents additional steps. Using Docker and the

Docker-compose orchestration framework, it is

easy (and reproducible) to specify a persistent

configuration for these components.

Table 1
REST endpoints

End-Point Type Service

../register/
status

GET Returns the status of the
KeyEx server

../register/
register

POST Performs device ID
registration

../register/
validate

POST Performs mutual
verification of
exchanged keys

../register/
access

POST Process the device’s CSR
and return the MQTT
access key and
certificate for the device

../register/
get_key

GET Returns the public key
for the given device ID

../register/
get_type

GET Returns the device type
for the device ID

../register/
C_check

GET The C2 server is
registered with the
KeyEx service

../register/
C

POST Registers the C2 server
in the system

The basic orchestration configuration is

specified using the YAML (YAML Ain’t Markup

Language) format and is contained in the docker-

compose.yml file [20, 21]. This defines four

microservices, each implemented as a docker

container. They are described in Table 2.

Of these, only the KeyEx service is an

individual container. The other three all use

existing container images and augment them with

custom configuration settings specified in the

docker build file. They are presented in containers

through the file system using Docker Volumes.

The Dockerfile that defines the build process

for a KeyEx image simply takes the latest Python

3 container image and installs the Python library

dependencies for KeyEx. These include Flask, a

Cryptography 8 library, and Green Unicorn9,

which implements Python.

Web Server Gateway Interface (WSGI). The

last step is to define a startup script for the KeyEx

service [21].

Table 2
Docker containers

Service
Name

Container
Image

Service description

web nginx: latest Implements nginx as
a reverse proxy web
server

keyex Bespoke Implements the key
service

broker eclipse-
mosquitto:
latest

Implements Eclipse
Mosquitto MQTT
broker

certbot certbot/c
ertbot

Implements the Let’s
Encrypt certification
robot to generate a
TLS certificate

Thus, the entire backend can be distributed as

a series of small source code files that can be

assembled using Docker and Docker-Compose to

deploy the complete SRUP universe on any server

with minimal developer intervention. Although

Docker-Compose was adopted as a reference

implementation, alternative orchestration layers

such as Kubernetes can be substituted, especially

for running large-scale deployments under high or

variable loads [21].

An architectural diagram showing how all the

components fit together is shown in Fig. 3.

Figure 3: Architectural diagram of components

2.2.2. Confirmation of Identity

Using dynamic device identification requires

solving the problem of mapping a particular

physical device to whatever logical device

identification it has at any point in time. In

particular, this is required when this device is

connected to the network of the C2 system. If a

device’s identity can be established at the time it

joins, it can be maintained throughout its

participation in the C2 system network.

The simplest form of connection operation is a

simple or unmoderated connection. It does not

71

attempt to verify the ID of the connecting device

and only accepts the request based on the

credentials provided (such as the device type)

during the initial device registration.

This type of association is only suitable for

situations where either there is no risk of a

malicious device being added (for example, on a

closed network within a secure perimeter) or

where the overall system is not adversely affected

by erroneous or malicious data being sent from the

device. Given the MQTT addressing model [22]

and the use of topic access control, there is not

much danger that a malicious device will be able

to intercept or corrupt messages to and from other

devices (assuming that the MQTT broker

implementation is error-free and resistant to

attempts to apply such methods such as buffer

overflow [23].

2.3. Development of a Secure Remote
Update Protocol
2.3.1. Protocol Library Architecture

To combine the best elements of a binary

implementation with the ease of use of a scripting

language, a hybrid approach was taken to

implement the SRUP software library. For this

study, the binary code was written in C++, and

Python was selected as the scripting language.

The design concept was to create a basic

implementation to generate and process a stream

of bytes to be used as the payload of an MQTT

message [23]. This code was implemented using

C++ and a binary library (libSRUP_Lib) was

formed [24–26]. Using this approach ensured the

efficient inclusion of existing OSS binaries for

cryptographic functions (such as RSA signatures)

by including these libraries (eg libcrypto—part of

OpenSSL2) in the build process.

A Python wrapper (ruSRUPLib) [27] was

implemented to allow direct use of the Python

binary library implementation of the protocol and

was then wrapped in a pure Python library

(ruSRUP) consisting of classes designed to be

called directly from user application code. This

Python wrapper was designed to implement as

much of SRUP’s common functionality as

possible (such as providing valid sequence IDs),

and thus significantly reduced the implementation

for building a program using it.

An architectural diagram illustrating this

approach can be seen in Fig. 4.

Figure 4: System architecture

In particular, the following elements were

implemented as part of this work:

1. C++ library (libSRUP_Lib).

2. Python binary library (ruSRUPLib).

3. Pure Python shell class (ruSRUP).

4. Key exchange server.

5. C2 web system.

6. Container backend.

7. Initial key generation tool.

2.3.2. Bootstrapping the Protocol and
Key Generation Tool

The final piece needed to ensure the protocol

is created from scratch is a means to generate the

set of required certificates and keys. A total of

eight of the following files are required for a

system running on a network connected to the

Internet:

• CA certificate of the broker.

• A pair of public and private keys of the C2

server (used to identify the C2 server).

• C2 server token file.

• Pair of public and private keys of the key

exchange server (used to authenticate the

KeyEx server).

• C2 broker access key and certificate (used

for C2 server access to the MQTT broker).

A system running on a private network (or a

network not connected to the Internet) also

requires two additional files: the private root key

of web CA; the private web CA root certificate.

The process of generating these files,

especially CA root files, is quite complex. So a

key generation tool (also written in Python) was

created to be shared with other backend elements.

72

This tool is designed to generate the initial

bootstrap configuration for a new base system

installation and to generate the necessary

credentials (including a server token file) for any

C2 servers to be used on that system.

Fig. 5 shows the system at work and the

relationships between the various files created.

Using Docker, the container approach creates

the backend as a component that the user can

easily deploy without having to implement the

complexities of securing the broker and managing

the key exchange itself [28].

Thus, this approach allows the deployment of

the SRUP universe to be considered as a

commodity service to individuals or organizations

that have a particular requirement for the privacy

or security of their IoT systems [29], they can

provide the necessary server systems for their IoT

devices within their own controlled network

infrastructure or hosting environments, and thus

be able to provide guarantees about the

availability and availability of TLS keys used to

encrypt MQTT traffic [22].

Figure 5: System operation scheme

3. Experimental Assessment of
System Performance

Experiments are performed and described in

this section to compare the relative processing

time, message size, and power consumption of a

system using the protocol with an identical device

that uses an insecure approach and uses regular

MQTT messages directly.

3.1. Execution Time Analysis

An initial evaluation of the protocol’s

performance was performed by determining the

execution time of the cryptographic functions

used to support the protocol. A test case was

evaluated by measuring the time required to sign

and verify a representative update initiation

message. This process was run five times on a

73

Raspberry Pi 3 B with the average time calculated.

According to the standard implementation [30],

the signature functions used SHA-256 to generate

a hash of the message, and then an RSA signature

was calculated for this hash value. This signing

process took an average of 56.68 ms, and the

average signature verification time was only

9.910 ms.

3.2. Hardware

The experimental system consisted of five IoT

devices, each built on a Raspberry Pi 3B+ single-

board computer equipped with a special board

with two LED status indicators and a button for

user interaction.

The devices were connected via Ethernet to a

Raspberry Pi 3B+, which acted as the C2 server.

The C2 server ran custom software that randomly

selected one of five devices, sent a message to that

device asking it to change its LED state, and then

waited for a random interval before returning. The

program continued until each device received 250

messages. This workflow is shown in Fig. 6. Two

separate implementations of the C2 system

software were written. One uses protocol action

messages over a TLS-encrypted MQTT

connection, and the other uses a plain text MQTT

message.

The previous assumption was that a significant

proportion of any additional delay would be due

to the time spent processing the cryptographic

algorithms used to sign the messages. To assess

the extent to which the performance of the

protocol depends on hardware speed, an

additional device was created using a faster

Raspberry Pi 4 single-board computer, allowing

performance to be compared with other devices.

The Pi 4 was identical to the devices described

above except for the CPU and RAM configuration

changes between the Pi 3 and Pi 4.

3.3. Experimental Measurement

When using the protocol in the system, an

increase in the time needed to process messages

was expected, as well as an increase in the power

consumption of system devices (due to additional

processing requirements for running message

signature algorithms). The total size of the data

sent had to be increased as well (due to the

additional fields used by SRUP to ensure message

security).

Figure 6: Block diagram of the program

When testing the system, the following

measurements were made:

1. Time. The actual performance

measurement was evaluated by analyzing the

log files generated by the devices and the

server for each experimental run.

2. Power. The average power consumption

of one of the devices during MQTT and SRUP

conditions was evaluated. The measurement

was made using a USB power meter.

3. Message size. Network traffic was

captured using Wireshark and examined to

determine the size of raw MQTT messages and

the MQTT implementation of the system

protocol.

3.4. Analysis of System Testing
Results

All log file analysis was done using Python and

Jupyter. The panda’s library was used to map and

analyze the data.

This analysis included:

1. Mapping the device ID to the logical

device number.

2. Download log files from the C2 server for

each experiment.

3. Removing unused columns from the

resulting data frame.

4. Downloading all log files from each

device for each experiment and concatenating

74

them into a single Python object (a list of data

frame dictionaries).

5. Create a new data frame for each line in

log frame C2, recording the device number,

operation type (enabled or disabled), and the

timestamp when the command was sent.

6. For each row in the data frame created in

step 5, extract the timestamp when that

command was received by the device.

7. Calculation of the delay time between

sending and receiving, in milliseconds.

Each experiment produced a graph that was

used to verify the data acquisition process (Figs. 7

and 8). As expected, experiments using a delay

distribution had a significantly larger standard

deviation. A similar analysis process was also

performed for experimental runs using MQTT.

Figure 7: A graph showing the distribution of
latency associated with SRUP message
propagation and processing time

Figure 8: A plot showing the distribution of
latency associated with SRUP message
propagation and processing time for an
experiment.

A graph showing the average latency for each

experiment is shown in Fig. 9, and a graph

showing the combined averages for each device

for a given experiment (for both the protocol and

MQTT cases) is shown in Fig. 10. General the

average processing overhead for the protocol

compared to MQTT across all network conditions

showed an additional 51.60 ms. This compares to

a worst case of 56.13 ms excluding the effects of

network latency. Although the added latency is

much smaller (58.44 ms vs. 2.31 ms) in Ethernet

LAN compared to a fully unprotected system,

compared to a more representative scenario for a

deployed IoT system (average 4G capacity): the

overhead is only 53.55% of the delay MQTT

(147.7 ms vs 96.17 ms = 51.53 ms).

Figure 9: Graph showing the average message
network and processing latency by device for
each of the experiments

Figure 10: A graph showing the overall average
network and processing latency for MQTT
messages

Even in the worst case, the processing

overhead means that only if the message

frequency exceeds 17.82 Hz will the additional

processing time be greater than the natural period

of the message (equation 1).

Since a typical real-world IoT device can be

expected to have an average message-to-message

time of minutes, the additional processing

overhead on the order of tens of milliseconds is a

very small additional price for the very significant

security benefits provided by the protocol.

However, this result shows that the protocol in its

current form may not be suitable for very time-

critical applications when running on lower-spec

hardware. The analysis also shows that the

system’s protocol is robust even under extremely

poor network conditions. Even in the worst case,

all messages were correctly received within 4026

ms (Fig. 11) due to the robust nature of the

underlying MQTT protocol.

75

Figure 11: A graph showing the distribution of
latency associated with message propagation
and processing time

4. Conclusions

In this work, a system for secure data exchange

in IoT has been researched and developed. The

architecture of the secure remote update protocol

and the types of messages supported by this

protocol have been developed, and looked at as to

how the protocol can be used with the MQTT

publish/subscribe architecture. Issues related to

identity management for IoT devices are

discussed, as well as an automated system identity

management scheme to be used with the protocol.

An experimental evaluation of the protocol and

system and further analysis of the obtained data

was carried out. The protocol (compared to a

plain, insecure MQTT implementation) was

shown to have an overall message processing

latency of 51.60 ms to 42.92 ms when running on

Raspberry Pi hardware, and an increased power

consumption of 727.6 mW during message

processing.

The Secure Remote Update Protocol provides

an efficient design and implementation of secure

C2 messaging for IoT applications. All basic

elements of the protocol are ready-made

components. It was built on top of the very widely

used MQTT protocol (which itself runs over

TCP). It uses TLS (including AES) to encrypt

messages and (in the reference implementation)

uses RSA and SHA-256 to sign messages. This

use of well-known components lends some

credibility to the protocol and makes it easier for

users to understand.

Experimental evaluation of the system and

protocol has shown that the system performs

successfully even under extremely poor network

conditions (far beyond those typically seen in the

vast majority of real-world deployments).

Experiments have shown that despite the

performance overhead associated with using the

protocol, it is a relatively small factor for most

realistic use cases.

5. References

[1] Cybersecurity: Selected Cyberattacks,

2012–2021. Washington: Congressional

Research Service, 2021.

URL: https://crsreports.congress.gov/prod

uct/pdf/R/R46974

[2] B. Zhurakovskyi, et al., Coding for

Information Systems Security and

Viability, CEUR Workshop Proceedings,

2859 (2021) 71–84.

[3] A. Carlsson, et al., Sustainability Research

of the Secure Wireless Communication

System with Channel Reservation, in: 2020

IEEE 15th International Conference on

Advanced Trends in Radioelectronics,

Telecommunications and Computer

Engineering (2020).

doi:10.1109/tcset49122.2020.235583

[4] I. Kuzminykh, et al., Investigation of the

IoT device lifetime with secure data

transmission, Internet of Things, Smart

Spaces, and Next Generation Networks and

Systems (2019) 16–27. doi: 10.1007/978-3-

030-30859-9_2

[5] F. Kipchuk, et al., Investigation of

Availability of Wireless Access Points

based on Embedded Systems, in: 2019

IEEE International Scientific-Practical

Conference Problems of

Infocommunications, Science and

Technology (2019). doi:

10.1109/picst47496.2019.9061551

[6] What is a Cyber Attack? URL:

https://www.ibm.com/topics/cyber-attack

[7] M. Moshenchenko, et al. Optimization

Algorithms of Smart City Wireless Sensor

Network Control, CEUR Workshop

Proceedings, Cybersecur. Providing in Inf.

and Telecommunication Systems II, 3188

(2021) 32–42.

[8] Internet of Things for Command and

Control. URL:https://www.wonderbit.com

/en/our-work/ncia-iot-for-c2

[9] IoT protocols and connectivity.URL:

https://azure.microsoft.com/en-

us/solutions/iot/iot-technology-protocols

[10] Constrained Application Protocol.

URL:https://en.wikipedia.org/wiki/Constra

ined_Application_Protocol

https://crsreports.congress.gov/product/pdf/R/R46974
https://crsreports.congress.gov/product/pdf/R/R46974
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://www.ibm.com/topics/cyber-attack
https://www.wonderbit.com/en/our-work/ncia-iot-for-c2
https://www.wonderbit.com/en/our-work/ncia-iot-for-c2
https://azure.microsoft.com/en-us/solutions/iot/iot-technology-protocols
https://azure.microsoft.com/en-us/solutions/iot/iot-technology-protocols
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://en.wikipedia.org/wiki/Constrained_Application_Protocol

76

[11] What is IPsec?, How IPsec VPNs work.

URL: https://www.cloudflare.com/learnin

g/network-layer/what-is-ipsec

[12] V. Druzhynin, et al., Features of Processing

Signals from Stationary Radiation Sources

in Multi-Position Radio Monitoring

Systems, CEUR Workshop Proceedings,

2746 (2020) 46–65.

[13] B. Zhurakovskyi, et al., Calculation of

Quality Indicators of the Future

Multiservice Network, Future Intent-Based

Networking, 831 (2022) 197–209.

doi:10.1007/978-3-030-92435-5_11

[14] S. Obushnyi, et al., Autonomy of Economic

Agents in Peer-to-Peer Systems, CEUR

Workshop Proceedings, 3288 (2022) 125–

133.

[15] What Is an X.509 Certificate? URL:

https://www.ssl.com/faqs/what-is-an-x-

509-certificate.

[16] Welcome to Flask—Flask Documentation.

URL: https://flask.palletsprojects.com/en

[17] M. Straten, The Google Cloud powers your

Philips Hue Lightbulbs, GDG DevFest

Ukraine, 2018.

[18] O. Shevchenko, et. al, Methods of the

Objects Identification and Recognition

Research in the Networks with the IoT

Concept Support, Workshop on

Cybersecurity Providing in Inf.

Telecommun. Systs. 2923 (2021) 277–282.

[19] B. Zhurakovskyi, et al., Modifications of

the Correlation Method of Face Detection

in Biometric Identification Systems, CEUR

Workshop Proceedings, 3288 (2022) 55–

63.

[20] YAML Syntax—Ansible Documentation.

URL:https://docs.ansible.com/ansible/lates

t/reference_appendices/YAMLSyntax

[21] Docker Overview. URL:

https://docs.docker.com/get-

started/overview/

[22] MQTT: The Standard for IoT Messaging.

URL: https://mqtt.org

[23] What Is Zigbee Protocol Wireless Mesh

Networking? URL: https://www.digi.com/

solutions/by-technology/zigbee-wireless-

standard

[24] Radio-frequency Identification: URL:

https://en.wikipedia.org/wiki/Radio-

frequency_identification

[25] B. Zhurakovskyi, et al., Modifications of

the Correlation Method of Face Detection

in Biometric Identification Systems, CEUR

Workshop Proceedings, 3288 (2022) 55–

63.

[26] C++High-level Programming Language

URL :https://uk.wikipedia.org/wiki/C%2B

%2B

[27] Python (programming language). URL:

https://en.wikipedia.org/wiki/Python_(pro

gramming_language)

[28] Y Hardware Attached on Top. URL:

https://www.raspberrypi.com/news/introdu

cing-raspberry-pi-hats

[29] N. Fedorova, et al., Software System for

Processing and Visualization of Big Data

Arrays, ICCSEEA 2022: Advances in

Computer Science for Engineering and

Education, 134 (2022) 324–336.

doi:10.1007/978-3-031-04812-8_28

[30] B. Zhurakovskyi, et al., Modifications of

the Correlation Method of Face Detection

in Biometric Identification Systems, CEUR

Workshop Proceedings, 3288 (2022) 55–

63.

https://www.cloudflare.com/learning/network-layer/what-is-ipsec
https://www.cloudflare.com/learning/network-layer/what-is-ipsec
https://doi.org/10.1007/978-3-030-92435-5_11
https://ceur-ws.org/Vol-3288/short10.pdf
https://ceur-ws.org/Vol-3288/short10.pdf
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://www.ssl.com/faqs/what-is-an-x-509-certificate
https://www.ssl.com/faqs/what-is-an-x-509-certificate
https://flask.palletsprojects.com/en
http://ceur-ws.org/Vol-2923/paper30.pdf
http://ceur-ws.org/Vol-2923/paper30.pdf
http://ceur-ws.org/Vol-2923/paper30.pdf
http://ceur-ws.org/Vol-2923/paper30.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://mqtt.org/
https://www.digi.com/solutions/by-technology/zigbee-wireless-standard
https://www.digi.com/solutions/by-technology/zigbee-wireless-standard
https://www.digi.com/solutions/by-technology/zigbee-wireless-standard
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://ceur-ws.org/Vol-3288/short1.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://uk.wikipedia.org/wiki/C%2B%2B
https://uk.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.raspberrypi.com/news/introducing-raspberry-pi-hats
https://www.raspberrypi.com/news/introducing-raspberry-pi-hats
https://link.springer.com/chapter/10.1007/978-3-031-04812-8_28#auth-Fedorova-Nataliia
https://link.springer.com/book/10.1007/978-3-031-04812-8
https://link.springer.com/book/10.1007/978-3-031-04812-8
https://link.springer.com/book/10.1007/978-3-031-04812-8
https://ceur-ws.org/Vol-3288/short1.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://ceur-ws.org/Vol-3288/short1.pdf
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled
https://www.scopus.com/authid/detail.uri?authorId=57211289386#disabled

