
67 

Secured Remote Update Protocol in IoT Data Exchange System 
 

Bohdan Zhurakovskyi1, Oleksandr Pliushch2, Mikhail Polishchuk1, Nataliia Korshun3, 

and Sergiy Obushnyi3 
 
1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” 37 Peremogy ave., Kyiv, 

03056, Ukraine 
2Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv, 01601, Ukraine 
3Borys Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska str., Kyiv, 04053, Ukraine 

 

Abstract 
The article researches and develops a system for secure data exchange in IoT. The 

architecture of the secure remote update protocol and the types of messages supported by 

this protocol have been developed, and look at how the protocol can be used with the 

MQTT publish/subscribe architecture. Issues related to identity management for IoT 

devices are discussed, as well as an automated system identity management scheme to be 

used with the protocol. An experimental evaluation of the protocol and system and further 

analysis of the obtained data was carried out. All basic elements of the protocol are ready-

made components. It was built on top of the very widely used MQTT protocol. It uses 

TLS to encrypt messages and uses RSA and SHA-256 to sign messages in the reference 

implementation. This use of well-known components lends some credibility to the 

protocol and makes it easier for users to understand. 
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1. Introduction 

IoT security is a technology segment focused 

on protecting connected devices and networks in 

the Internet of Things (IoT). IoT involves the 

addition of Internet connectivity to a system of 

interconnected computing devices, mechanical 

and digital machines, objects, animals, and/or 

people [1]. Each “thing” is given a unique 

identifier and the ability to automatically transfer 

data over the network. Allowing devices to 

connect to the Internet exposes them to many 

serious vulnerabilities if not properly secured [2]. 

Several high-profile incidents where a 

common IoT device was used to infiltrate and 

attack a larger network have drawn attention to the 

need for IoT security [3–5]. It is important to 

ensure the security of networks with IoT devices 

connected to them [6]. IoT security includes a 

wide range of techniques, strategies, protocols, 
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and actions aimed at mitigating the increasing 

vulnerability of today’s business in the IoT [7]. 

A command and control system (C2), although 

traditionally considered in a military context, 

simply means the process by which a 

hierarchically superior entity sets tasks for 

(command) or gives direct instructions (control) 

to a subordinate entity [8]. 

In the context of this study, C2 can be seen as 

a reference to any communication that occurs in a 

hierarchical structure where information is 

exchanged between a controlling entity [9] and a 

subordinate entity to ensure the management of 

the subordinate entity’s activities by a higher 

controlling body. 

There are two main types of architectures: a 

purely hierarchical approach, typically used in the 

context of military or civilian law enforcement 

personnel, and a peer-to-peer approach. 
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In the strictly hierarchical C2 communication 

model, all communication between nodes must go 

through a (common) senior commander. 

In contrast to this approach, a purely peer-to-

peer communication model allows direct 

communication between any nodes. An 

architecture that adopts this scheme will have a 

completely flat hierarchy where all nodes are 

equal and any communications flow directly 

between endpoints. More typically, in nominally 

peer-to-peer communications (such as a telephone 

system, for example), messages are routed or 

relayed through a server, exchange, or other 

intermediaries at one or more levels of 

hierarchical abstraction from the user [8]. This is 

still the case for most End-to-End Encryption 

(E2EE) messaging services such as Signal 3. 

This paper primarily considers a use case 

scenario commonly encountered in IoT—where a 

certain class (or family of classes) of devices is 

deployed and C2 functionality provided by a 

centralized service [10] is used. This service can 

support one or more users, each of whom will 

have access to one or more devices. 

It is also compatible with the new trend of 

using IoT devices and integrating with existing 

cloud services such as those provided by Google 

or Amazon. This approach enables easy 

integration with home automation hub devices 

such as AmazonEcho (and Alexa voice assistant) 

and GoogleHome [11]. 

Given the requirements for IoT and IoT 

systems in a military context, there is a clear 

requirement for a C2 system to integrate them into 

existing military decision-making processes and 

structures. 

The infrastructure requirements underlying the 

network connectivity for deploying IoT devices 

can be met by deployed military systems or local 

theater systems (or a combination of both). 

However, depending on the scale of any such 

deployment of IoT devices, the infrastructure may 

not be sufficient to meet the connectivity 

requirements to support a real-time system [12]. 

The use of mesh networks consisting of device-to-

device communication and more sophisticated 

network management can solve some of these 

problems. 

Finally, it should be noted that the technical 

challenges of messaging in C2 systems differ from 

the organizational challenges of decision-making, 

information management, and situational 

awareness that future IoT systems will also face. 

2. Statement of the Research Problem 
2.1 . System Development 

As an example, consider the case where there 

is a deployed IoT system consisting of a fixed 

number of sensor devices, and if the devices 

belong to a C2 (Command and Control) control 

system, they all work as part of a smart city. In the 

event of an emergency, these devices can be 

supplemented by pairing them with a second set 

of mobile devices operated by local fire and 

rescue services. The protocol supports the 

dynamic addition of devices to the C2 network, as 

well as commands that require devices to transfer 

their registration to another C2 server if the 

corresponding systems work on the same network 

[13]. 

For this paper, we consider the use of a 

network of fixed sensors installed to measure air 

quality and provide real-time alerts to citizens if 

air quality deteriorates below a certain threshold. 

In the event of a major fire or other disasters, it 

may be desirable to supplement this system with 

several additional mobile sensors, such as those 

that can be deployed by the local fire department. 

As part of the development, this could easily be 

achieved if the fire brigade sensors are 

commanded to join the city’s C2 network. This 

combined system C2 is shown in Fig. 1. 

 
Figure 1: Combined system C2 

More generally, for this to be possible if all of 

the following three conditions are true: 

1. Systems must use (or be compatible and 

able to use) the same protocol universe. 

2. The owner of the sensors to be connected 

to the existing C2 system agrees to 

(temporarily) transfer ownership of the sensors 

to the operator of the fixed system. 

3. The owner of the fixed system accepts the 

new sensors and assumes temporary 

responsibility for them. 
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Conditions 2 and 3 are particularly important. 

Since the devices in question will become full 

members of the new C2 network, both parties 

must be prepared to join the systems, which 

involves a certain degree of trust. For example, the 

party hosting the C2 network must be confident 

that the devices that join are not compromised by 

malware, and the party providing the devices must 

be confident that the other party will make every 

effort to ensure that they are not and that they will 

be returned to their control after the operation is 

completed [14]. 

However, there are scenarios where such 

unification cannot be achieved because one or 

more of the preconditions are not met and cannot 

be satisfied (for example, when one party does not 

wish to assign its devices to the control of the C2 

network operator—or if the devices in question 

necessarily use different server systems). 

However, a combination of C2 systems is not 

always necessary. Depending on the specific 

requirements, it is also possible to simply provide 

third-party access to the existing C2 system or 

provide a simple data export (in the form of static 

data or the form of a live API). 

2.2. Web System C2 

As part of this study, an implementation of the 

C2 web system was created. This was 

implemented in Python because the protocol 

library [15] could be used. The C2 system creates 

a Server class with ruSRUP. In this example, the 

Flask5 library was used to provide a framework 

for web development, although any other 

framework can be substituted very easily [16]. 

Flask was adopted because it provides a very 

lightweight web development framework, 

supporting Jinja6 templates for generating 

dynamic pages. Any real-life C2 system is 

inherently application-specific, so this example 

implementation is only included as reference 

material for developers implementing their 

custom systems. Architectural scheme Fig. 2. 

Setting up a C2 server requires some additional 

steps compared to setting up a device, not least 

when it comes to setting up the C2 server’s 

security credentials. Unlike devices (which can 

request registration and generate credentials 

simply by visiting a key exchange URL), the 

registration process for servers requires the 

creation of a server token file. This, along with the 

server ID, must be specified in the manually 

generated configuration file. The C2 server 

reference implementation also supports human- 

and machine-driven joins. It allows you to use 

color or monochrome icons, word lists, and 

hexadecimal notation. It also includes a simple 

example of visualizing data from a device by 

plotting a graph, although in a real (production) 

system it would be highly desirable to use 

scalable, off-the-shelf time series data storage and 

visualization tools such as InfluxDb and Grafana. 

 
Figure 2: Architectural scheme 

It should be noted that the implemented C2 

system does not use any type of client-side user 

authentication. However, implementing user 

authentication for web applications is a solved 

problem, and there are several ready-made OSS 

solutions compatible with Python 

implementations (such as Flask-Login7) that can 

be easily added for any real-world use. 

2.2.1. Backend Services 

A reference implementation was also created 

for the systems server services. It consists of two 

main parts: a key exchange server; and supporting 

infrastructure for hosting and brokering MQTT 

messages. 

The key exchange server was implemented as 

a relatively simple Python program. It implements 

a REST API endpoint for all steps of the device 

registration process and again uses the Flask 

library to provide a web services framework [17]. 

All data (such as device IDs and keys) is stored 

locally using an SQLite database, however for a 

larger full production system, this can easily be 

replaced with any other SQL database system (eg 

PostgreSQL) [18]. 

Table 1 shows the implemented REST 

endpoints. 
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Although the key exchange server is relatively 

simple (especially when running locally), the 

configuration required to host it securely on a 

remote web server [19] (including providing a 

TLS certificate for the hosting domain) and the 

configuration required by the MQTT broker 

represents additional steps. Using Docker and the 

Docker-compose orchestration framework, it is 

easy (and reproducible) to specify a persistent 

configuration for these components. 

Table 1 
REST endpoints 

End-Point Type Service 

../register/
status 

GET Returns the status of the 
KeyEx server 

../register/
register 

POST Performs device ID 
registration 

../register/
validate 

POST Performs mutual 
verification of 
exchanged keys 

../register/
access 

POST Process the device’s CSR 
and return the MQTT 
access key and 
certificate for the device 

../register/
get_key 

GET Returns the public key 
for the given device ID 

../register/
get_type 

GET Returns the device type 
for the device ID 

../register/
C_check 

GET The C2 server is 
registered with the 
KeyEx service 

../register/
C 

POST Registers the C2 server 
in the system 

The basic orchestration configuration is 

specified using the YAML (YAML Ain’t Markup 

Language) format and is contained in the docker-

compose.yml file [20, 21]. This defines four 

microservices, each implemented as a docker 

container. They are described in Table 2. 

Of these, only the KeyEx service is an 

individual container. The other three all use 

existing container images and augment them with 

custom configuration settings specified in the 

docker build file. They are presented in containers 

through the file system using Docker Volumes. 

The Dockerfile that defines the build process 

for a KeyEx image simply takes the latest Python 

3 container image and installs the Python library 

dependencies for KeyEx. These include Flask, a 

Cryptography 8 library, and Green Unicorn9, 

which implements Python. 

Web Server Gateway Interface (WSGI). The 

last step is to define a startup script for the KeyEx 

service [21].

Table 2 
Docker containers 

Service 
Name 

Container 
Image 

Service description 

web nginx: latest Implements nginx as 
a reverse proxy web 
server 

keyex Bespoke Implements the key 
service 

broker eclipse-
mosquitto: 
latest 

Implements Eclipse 
Mosquitto MQTT 
broker 

certbot certbot/c
ertbot 

Implements the Let’s 
Encrypt certification 
robot to generate a 
TLS certificate 

Thus, the entire backend can be distributed as 

a series of small source code files that can be 

assembled using Docker and Docker-Compose to 

deploy the complete SRUP universe on any server 

with minimal developer intervention. Although 

Docker-Compose was adopted as a reference 

implementation, alternative orchestration layers 

such as Kubernetes can be substituted, especially 

for running large-scale deployments under high or 

variable loads [21]. 

An architectural diagram showing how all the 

components fit together is shown in Fig. 3. 

 
Figure 3: Architectural diagram of components 

2.2.2. Confirmation of Identity 

Using dynamic device identification requires 

solving the problem of mapping a particular 

physical device to whatever logical device 

identification it has at any point in time. In 

particular, this is required when this device is 

connected to the network of the C2 system. If a 

device’s identity can be established at the time it 

joins, it can be maintained throughout its 

participation in the C2 system network. 

The simplest form of connection operation is a 

simple or unmoderated connection. It does not 
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attempt to verify the ID of the connecting device 

and only accepts the request based on the 

credentials provided (such as the device type) 

during the initial device registration. 

This type of association is only suitable for 

situations where either there is no risk of a 

malicious device being added (for example, on a 

closed network within a secure perimeter) or 

where the overall system is not adversely affected 

by erroneous or malicious data being sent from the 

device. Given the MQTT addressing model [22] 

and the use of topic access control, there is not 

much danger that a malicious device will be able 

to intercept or corrupt messages to and from other 

devices (assuming that the MQTT broker 

implementation is error-free and resistant to 

attempts to apply such methods such as buffer 

overflow [23]. 

2.3. Development of a Secure Remote 
Update Protocol 
2.3.1. Protocol Library Architecture 

To combine the best elements of a binary 

implementation with the ease of use of a scripting 

language, a hybrid approach was taken to 

implement the SRUP software library. For this 

study, the binary code was written in C++, and 

Python was selected as the scripting language. 

The design concept was to create a basic 

implementation to generate and process a stream 

of bytes to be used as the payload of an MQTT 

message [23]. This code was implemented using 

C++ and a binary library (libSRUP_Lib) was 

formed [24–26]. Using this approach ensured the 

efficient inclusion of existing OSS binaries for 

cryptographic functions (such as RSA signatures) 

by including these libraries (eg libcrypto—part of 

OpenSSL2) in the build process. 

A Python wrapper (ruSRUPLib) [27] was 

implemented to allow direct use of the Python 

binary library implementation of the protocol and 

was then wrapped in a pure Python library 

(ruSRUP) consisting of classes designed to be 

called directly from user application code. This 

Python wrapper was designed to implement as 

much of SRUP’s common functionality as 

possible (such as providing valid sequence IDs), 

and thus significantly reduced the implementation 

for building a program using it. 

An architectural diagram illustrating this 

approach can be seen in Fig. 4. 

 
Figure 4: System architecture 

In particular, the following elements were 

implemented as part of this work: 

1. C++ library (libSRUP_Lib). 

2. Python binary library (ruSRUPLib). 

3. Pure Python shell class (ruSRUP). 

4. Key exchange server. 

5. C2 web system. 

6. Container backend. 

7. Initial key generation tool. 

2.3.2. Bootstrapping the Protocol and 
Key Generation Tool 

The final piece needed to ensure the protocol 

is created from scratch is a means to generate the 

set of required certificates and keys. A total of 

eight of the following files are required for a 

system running on a network connected to the 

Internet: 

• CA certificate of the broker. 

• A pair of public and private keys of the C2 

server (used to identify the C2 server). 

• C2 server token file. 

• Pair of public and private keys of the key 

exchange server (used to authenticate the 

KeyEx server). 

• C2 broker access key and certificate (used 

for C2 server access to the MQTT broker). 

A system running on a private network (or a 

network not connected to the Internet) also 

requires two additional files: the private root key 

of web CA; the private web CA root certificate. 

The process of generating these files, 

especially CA root files, is quite complex. So a 

key generation tool (also written in Python) was 

created to be shared with other backend elements. 
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This tool is designed to generate the initial 

bootstrap configuration for a new base system 

installation and to generate the necessary 

credentials (including a server token file) for any 

C2 servers to be used on that system. 

Fig. 5 shows the system at work and the 

relationships between the various files created. 

Using Docker, the container approach creates 

the backend as a component that the user can 

easily deploy without having to implement the 

complexities of securing the broker and managing 

the key exchange itself [28]. 

Thus, this approach allows the deployment of 

the SRUP universe to be considered as a 

commodity service to individuals or organizations 

that have a particular requirement for the privacy 

or security of their IoT systems [29], they can 

provide the necessary server systems for their IoT 

devices within their own controlled network 

infrastructure or hosting environments, and thus 

be able to provide guarantees about the 

availability and availability of TLS keys used to 

encrypt MQTT traffic [22].

 
Figure 5: System operation scheme

3. Experimental Assessment of 
System Performance 

Experiments are performed and described in 

this section to compare the relative processing 

time, message size, and power consumption of a 

system using the protocol with an identical device 

that uses an insecure approach and uses regular 

MQTT messages directly. 

3.1. Execution Time Analysis 

An initial evaluation of the protocol’s 

performance was performed by determining the 

execution time of the cryptographic functions 

used to support the protocol. A test case was 

evaluated by measuring the time required to sign 

and verify a representative update initiation 

message. This process was run five times on a 
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Raspberry Pi 3 B with the average time calculated. 

According to the standard implementation [30], 

the signature functions used SHA-256 to generate 

a hash of the message, and then an RSA signature 

was calculated for this hash value. This signing 

process took an average of 56.68 ms, and the 

average signature verification time was only 

9.910 ms. 

3.2. Hardware 

The experimental system consisted of five IoT 

devices, each built on a Raspberry Pi 3B+ single-

board computer equipped with a special board 

with two LED status indicators and a button for 

user interaction. 

The devices were connected via Ethernet to a 

Raspberry Pi 3B+, which acted as the C2 server. 

The C2 server ran custom software that randomly 

selected one of five devices, sent a message to that 

device asking it to change its LED state, and then 

waited for a random interval before returning. The 

program continued until each device received 250 

messages. This workflow is shown in Fig. 6. Two 

separate implementations of the C2 system 

software were written. One uses protocol action 

messages over a TLS-encrypted MQTT 

connection, and the other uses a plain text MQTT 

message. 

The previous assumption was that a significant 

proportion of any additional delay would be due 

to the time spent processing the cryptographic 

algorithms used to sign the messages. To assess 

the extent to which the performance of the 

protocol depends on hardware speed, an 

additional device was created using a faster 

Raspberry Pi 4 single-board computer, allowing 

performance to be compared with other devices. 

The Pi 4 was identical to the devices described 

above except for the CPU and RAM configuration 

changes between the Pi 3 and Pi 4. 

3.3. Experimental Measurement 

When using the protocol in the system, an 

increase in the time needed to process messages 

was expected, as well as an increase in the power 

consumption of system devices (due to additional 

processing requirements for running message 

signature algorithms). The total size of the data 

sent had to be increased as well (due to the 

additional fields used by SRUP to ensure message 

security). 

 
Figure 6: Block diagram of the program 

When testing the system, the following 

measurements were made: 

1. Time. The actual performance 

measurement was evaluated by analyzing the 

log files generated by the devices and the 

server for each experimental run. 

2. Power. The average power consumption 

of one of the devices during MQTT and SRUP 

conditions was evaluated. The measurement 

was made using a USB power meter. 

3. Message size. Network traffic was 

captured using Wireshark and examined to 

determine the size of raw MQTT messages and 

the MQTT implementation of the system 

protocol. 

3.4. Analysis of System Testing 
Results 

All log file analysis was done using Python and 

Jupyter. The panda’s library was used to map and 

analyze the data. 

This analysis included: 

1. Mapping the device ID to the logical 

device number. 

2. Download log files from the C2 server for 

each experiment. 

3. Removing unused columns from the 

resulting data frame. 

4. Downloading all log files from each 

device for each experiment and concatenating 
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them into a single Python object (a list of data 

frame dictionaries). 

5. Create a new data frame for each line in 

log frame C2, recording the device number, 

operation type (enabled or disabled), and the 

timestamp when the command was sent. 

6. For each row in the data frame created in 

step 5, extract the timestamp when that 

command was received by the device. 

7. Calculation of the delay time between 

sending and receiving, in milliseconds. 

Each experiment produced a graph that was 

used to verify the data acquisition process (Figs. 7 

and 8). As expected, experiments using a delay 

distribution had a significantly larger standard 

deviation. A similar analysis process was also 

performed for experimental runs using MQTT. 

 
Figure 7: A graph showing the distribution of 
latency associated with SRUP message 
propagation and processing time 

 
Figure 8: A plot showing the distribution of 
latency associated with SRUP message 
propagation and processing time for an 
experiment. 

A graph showing the average latency for each 

experiment is shown in Fig. 9, and a graph 

showing the combined averages for each device 

for a given experiment (for both the protocol and 

MQTT cases) is shown in Fig. 10. General the 

average processing overhead for the protocol 

compared to MQTT across all network conditions 

showed an additional 51.60 ms. This compares to 

a worst case of 56.13 ms excluding the effects of 

network latency. Although the added latency is 

much smaller (58.44 ms vs. 2.31 ms) in Ethernet 

LAN compared to a fully unprotected system, 

compared to a more representative scenario for a 

deployed IoT system (average 4G capacity): the 

overhead is only 53.55% of the delay MQTT 

(147.7 ms vs 96.17 ms = 51.53 ms). 

 
Figure 9: Graph showing the average message 
network and processing latency by device for 
each of the experiments 

 
Figure 10: A graph showing the overall average 
network and processing latency for MQTT 
messages 

Even in the worst case, the processing 

overhead means that only if the message 

frequency exceeds 17.82 Hz will the additional 

processing time be greater than the natural period 

of the message (equation 1). 

 

Since a typical real-world IoT device can be 

expected to have an average message-to-message 

time of minutes, the additional processing 

overhead on the order of tens of milliseconds is a 

very small additional price for the very significant 

security benefits provided by the protocol. 

However, this result shows that the protocol in its 

current form may not be suitable for very time-

critical applications when running on lower-spec 

hardware. The analysis also shows that the 

system’s protocol is robust even under extremely 

poor network conditions. Even in the worst case, 

all messages were correctly received within 4026 

ms (Fig. 11) due to the robust nature of the 

underlying MQTT protocol. 
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Figure 11: A graph showing the distribution of 
latency associated with message propagation 
and processing time 

4. Conclusions 

In this work, a system for secure data exchange 

in IoT has been researched and developed. The 

architecture of the secure remote update protocol 

and the types of messages supported by this 

protocol have been developed, and looked at as to 

how the protocol can be used with the MQTT 

publish/subscribe architecture. Issues related to 

identity management for IoT devices are 

discussed, as well as an automated system identity 

management scheme to be used with the protocol. 

An experimental evaluation of the protocol and 

system and further analysis of the obtained data 

was carried out. The protocol (compared to a 

plain, insecure MQTT implementation) was 

shown to have an overall message processing 

latency of 51.60 ms to 42.92 ms when running on 

Raspberry Pi hardware, and an increased power 

consumption of 727.6 mW during message 

processing. 

The Secure Remote Update Protocol provides 

an efficient design and implementation of secure 

C2 messaging for IoT applications. All basic 

elements of the protocol are ready-made 

components. It was built on top of the very widely 

used MQTT protocol (which itself runs over 

TCP). It uses TLS (including AES) to encrypt 

messages and (in the reference implementation) 

uses RSA and SHA-256 to sign messages. This 

use of well-known components lends some 

credibility to the protocol and makes it easier for 

users to understand. 

Experimental evaluation of the system and 

protocol has shown that the system performs 

successfully even under extremely poor network 

conditions (far beyond those typically seen in the 

vast majority of real-world deployments). 

Experiments have shown that despite the 

performance overhead associated with using the 

protocol, it is a relatively small factor for most 

realistic use cases. 
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