
237

Methods of Capturing and Tracking Objects in Video Sequences
with Subsequent Identification by Artificial Intelligence

Mariia Nazarkevych1,2, Vitaly Lutsyshyn1, Vasyl Lytvyn2, Maryna Kostiak2, and Yaroslav Kis2

1Lviv Ivan Franko National University, 1 Universytetska str., Lviv, 79000, Ukraine
 Lviv Polytechnic National University, 12 Stepan Bandera str., Lviv, 79013, Ukraine

Abstract
In video surveillance systems, the task of capturing an object and following it is relevant. An

even more urgent task is the process of identification with subsequent authentication of the

person. This makes it possible to organize the appropriate security of a private person or

property, as well as the security of particularly important objects. A method of capturing the

object has been developed. The use of the best among the considered methods in automated

video surveillance systems will allow increasing the efficiency of intelligent video surveillance

systems with a sufficient level of reliability. Footage from capturing the object is recorded in

files. Implemented object capture using the MediaPipe Face Mesh library. In the future, it is

planned to carry out the identification of a person using machine learning.

Keywords 1
Tracking objects, identification, artificial intelligence

1. Introduction

Tracking technology [1] is used in practice in

automated video surveillance systems, traffic

monitoring, motion-based recognition, such as

gait-based identification, video indexing in large

data catalogs, navigation of unmanned vehicles,

Augmented Reality (AR), the film and advertising

industry, for creating computer graphics and

visual effects, in research in medicine and sports

[2], medical imaging, human-computer

interaction (gesture recognition, virtual keyboard,

mouse, pupil tracking), crowd behavior analysis,

video compression.

The rapid introduction and deployment of

ubiquitous video sensors have resulted in the

collection of massive amounts of data. However,

indexing and searching large video databases

remains a very difficult task. Augmenting media

clips [3] with metadata descriptions are very

useful for engineering. In our previous work, we

proposed the notion of a visible scene model

obtained by combining location and direction

sensor information with a video stream. Such geo-

referenced media streams are useful in many

CPITS 2023: Workshop on Cybersecurity Providing in Information and Telecommunication Systems, February 28, 2023, Kyiv, Ukraine

EMAIL: mariia.a.nazarkevych@lpnu.ua (M. Nazarkevych); vitalylutsyshyn@gmail.com (V. Lutsyshyn); vasyl.v.lytvyn@lpnu.ua

(V. Lytvyn); kostiak.maryna@lpnu.ua (M. Kostiak); yaroslav.p.kis@lpnu.ua (Y. Kis)

ORCID: 0000-0002-6528-9867 (M. Nazarkevych); 0009-0008-1229-6706 (V. Lutsyshyn); 0000-0002-9676-0180 (V. Lytvyn); 0000-0002-

6667-7693 (M. Kostiak); 0000-0001-6552-7303 (Y. Kis)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

applications and, most importantly, they can be

searched efficiently. The result of a geo-

referenced video query will usually consist of the

number of video segments that satisfy the query

conditions but with more or less relevance.

The widespread availability of digital video

sensors has led to a variety of applications,

ranging from casual video recording to

professional multi-camera surveillance systems

[4]. As a result, a large number of video clips are

collected, which creates complex data processing

problems [5–7].

Many institutions deploy video surveillance

systems with the primary function of protecting

property rather than monitoring public traffic.

Nowadays, there is cloud-based video

surveillance that, in addition to security issues,

solves the role of property protection. In addition,

the main advantage of a cloud-based video

surveillance system is that it is located outside the

object of observation and has a flexible storage

capacity.

A visual surveillance system [8] consists of

two main parts:

• Target representation object.

https://orcid.org/0000-0002-6528-9867
https://orcid.org/0000-0002-6667-7693
https://orcid.org/0000-0002-6667-7693

238

• Localization object.

• Filtering.

• Data Association.

Target object representation and localization is

mostly a bottom-up process, it is sequential and its

subsequent steps do not affect the previous ones.

The typical computational complexity of these

algorithms is quite low.

Standard algorithms for finding and localizing

[9] a target object include:

• Blob tracking: segmentation of the

object’s interior, including blob detection,

block-based correlation, and optical flow.

• Kernel-based tracking (mean-shift

tracking): an iterative localization procedure

based on maximizing the similarity criterion.

• Contour tracking: search for the boundary

of an object Feature matching: image

registration.

• Point feature tracking: given a sequence

of images of a certain scene captured by a

moving or stationary camera. You need to get

a set of the most accurate sequences of

projection coordinates of some points in the

scene in each frame.

Capturing and encoding digital images should

lead to the creation and rapid dissemination of a

huge amount of visual information. Therefore,

efficient tools for searching and retrieving visual

information are essential. Although effective

search engines for text documents exist today,

there are no satisfactory systems for retrieving

visual information.

Due to the growth of visual data both online

and offline and the phenomenal success of web

search, expectations for image and video search

technologies are increasing.

Hidden Markov Models (HMM) [10]. The

method is based on a statistical comparison of an

object with a database of templates. Hidden

Markov models use the statistical properties of

signals and take into account their spatial

characteristics. Model elements: the initial

probability of states, set of observed states, set of

hidden states, transition probability matrix.

During human recognition, all generated Markov

models are checked and the highest probability

that the sequence of observations for an object is

generated by the corresponding model is searched.

To end our set of experiments, we should try

PRNU SCI over video streams. 270 Basically,

PRNU is equally valid for all frames that are

captured in a video. Normally, a 271 video is

made of 25 or 30 frames per second. Cameras

usually reduce individual frames to 272 resolution

when capturing a video: 720×576 is called

standard definition, 1280×720 is 273 called

enhanced definition, and 1920×1080 for high

definition (or sometimes Full HD). 274 Nowadays

there exist higher definitions like 3840×2160 (4K)

or even 7680×4320 (8K). See 275 that even 4K is

less than 8 Mpixels per frame.

The disadvantages include low processing

speed and low resolution.

The system can only optimize the data

processing time and response time of its model,

but cannot minimize the time of searching other

models.

Principal component analysis [11]. One of the

most well-known and developed methods is the

principal component analysis (PCA) based on the

Karunen Loewe transformation [12]. Initially, the

principal component method was used in statistics

to reduce the feature space without significant loss

of information. In face recognition, it is used

mainly to represent a face image with a low-

dimensional vector, which is then compared with

reference vectors stored in a database.

The main goal of the principal component

method is to significantly reduce the

dimensionality of the feature space so that it

describes “typical” images belonging to a large

number of faces as well as possible. Using this

method, it is possible to detect various variations

in the training set of face images and describe this

variability based on several orthogonal vectors.

The set of eigenvectors obtained once on the

training set of face images [12] is used to encode

all other face images, which are represented in a

weighted combination of eigenvectors.

Using a limited number of eigenvectors, a

compressed approximation of the input face

image [13] can be obtained, which can then be

stored in the database as a vector of coefficients,

which is also a search key in the face database.

Also, the purpose of the PCA method is to

reduce the feature space without significant loss

of information so that it best describes the

“typical” images belonging to a set of faces. In

face recognition, it is used mainly to represent a

face as a low-dimensional vector, which is then

compared with reference vectors from the

database.

PCA has proven itself in many applications.

However, when there are significant changes in

facial expressions or lighting in the face image,

the effectiveness of the method drops

significantly. This is because the principal

component method selects a subspace to

239

maximize the approximation of the input data set,

rather than to discriminate between classes of

faces.

The Support Vector Machine (SVM) [14]

method is a set of similar learning algorithms used

for classification and regression analysis tasks.

The essence of the support vector method is to

find a hyperplane in the feature space that

separates a class of face images from other images

(the class of “no faces” images). In this case, out

of all possible hyperplanes that divide into two

classes, it is necessary to choose a hyperplane

whose distance from each class is maximal.

The advantages of this method are high

resistance to overtraining; high speed compared to

neural networks; the ability to reduce sensitivity

to noise by reducing accuracy.

The disadvantages include the fact that the

accuracy of the method is inferior to many other

methods.

Neural network methods [15]. Quite common

methods include about a dozen different

algorithms. The main feature of such networks is

their ability to learn from a set of ready-made

examples entered into the database in advance.

During the training of neural networks, the

network automatically extracts key features and

builds relationships between them. After that, the

trained neural network applies the experience

gained to recognize a previously unknown object.

Neural network methods show some of the best

results in the field of recognition but are

considered the most difficult to implement.

There are about a dozen different Neural

Networks (NNs) [16]. One of the most widely

used and popular instances is a network built on a

multilayer perceptron, which allows you to

classify an image or signal given as input

according to the preliminary settings and training

experience of the neural network.

Neural networks are trained on a set of training

examples. The essence of training is to adjust the

weights of inter-neuronal connections in the

process of solving an optimization problem using

the gradient descent method. During the training

process, the neural network automatically extracts

key features, determines their importance, and

builds relationships between them.

It is assumed that the trained network will be

able to apply the experience gained during

training to unknown images using generalizing

abilities.

2. Mathematical Model of the Object
Tracking Algorithm

Let I(x,t) be the brightness of the image frame

with time t at point x, where x is a vector. The

movement of the image far from the limits of

visibility is described using an equation of the

form: I(x,t)=I(delta(x), t + t1) (*), where delta(x) is

the movement of point x when moving from the

frame (t) to (t + 1). The movement of features

from frame to frame is described by balancing for

all points x from the surrounding features W [17].

In this case, the lighting of the points of the

scene corresponding to the features remains

constant.

With small changes in the image from frame to

frame, you can read that the feature window is

simply contained, and the delta(x) movement

takes the form delta(x) = x + d. However, when the

duration of tracking increases, the scene point

image is distorted. This image can be

approximately described by an affine

transformation, therefore the movement of points

is described by an affine transformation delta(x) =

Ax + d, where A is a matrix of dimension 2×2.

The task of the tracker is to track the delta(x)

movement values for all points of the feature

window W. Since (*) is never performed in real

conditions, the search is for such a movement that

minimizes the difference between the windows at

the current and next position on the frame, i.e. is

the delta(x) at which the minimum is reached

𝑒 = 𝑚𝑖𝑛∑𝑑𝑒𝑙𝑡𝑎(𝑥), 𝑡 + 𝑡1 − 𝐼(𝑥, 𝑡)

𝑊

 (1)

or it is the norm of the image difference L2.

3. Detect Video Objects in Real-Time

Recurrent neural networks are based on

sequential data and are well-suited for video

object detection. A collaboration between the

Georgia Institute of Technology (GIT) and

Google Research proposed an RNN-based video

object detection method [18] that achieved

recognition rates of up to 15 frames per second,

even running on a mobile processor.

One approach to detecting video objects is to

split the video into its component frames and

apply an image recognition algorithm to each

frame. This rejects all the potential benefits of

extracting temporal information from the video.

Consider, for example, the problem of occlusion

240

and recapture: if a video object recognition system

identifies a person who is then briefly covered by

a passing pedestrian, it will take time for the

system to realize that it has “lost” the object. An

object can be lost not only due to occlusion, but

also due to motion blur, in cases where camera

movement or object movement (or both) causes

enough disruption to the frame that elements

become streaky or out of focus, and this is

impossible for the recognition structure to

identify.

If the system analyzes frames, this

understanding is not possible because each frame

is treated as a complete and closed episode. The

computational cost of a video object detection

system is less for object identification and

tracking than re-registering the same object on a

frame-by-frame basis.

Optical flow estimation generates a two-

dimensional vector field that represents the pixel

displacement between one frame and the

neighboring frame (previous or next).

The optical flow can show the progress of

groupings of individual pixels along the entire

length of the video footage, providing guidance on

which to perform useful operations. It has been

used for a long time in traditional data-intensive

video environments, such as video editing suites,

to provide motion vectors along which filters can

be applied, and for animation purposes. From the

perspective of video object recognition, optical

flow enables the computation of discontinuous

object trajectories because it can compute mean

trajectories in a way that is not possible with older

methods such as the Lucas-Canade approach. This

approach only considers the constant flow

between grouped frames and cannot form a

comprehensive relationship between multiple

groups of actions, even though these groups may

represent the same event interrupted by factors

such as occlusion and motion blur.

4. Research of Software Products for
Object Recognition

4.1. Google Video Intelligence

As a leading FAANG (Facebook, Amazon,

Apple, Netflix, and Google) investor in computer

vision research, Google's Video Intelligence

system offers out-of-the-box features including

object recognition in video, real-time OCR

(optical character recognition) capabilities, logo

detection, and face detection. Cloud Video

Intelligence comes with a huge offering of pre-

trained models, although customized training is

available [19].

4.2. Hand Detection

The ability to perceive the shape and

movement of hands can be a vital component in

enhancing the user experience across a variety of

technology domains and platforms. For example,

it can form the basis for understanding sign

language and controlling hand gestures, and it can

enable the overlay of digital content and

information on top of the physical world in

augmented reality. Although it is natural for

humans, reliable real-time hand perception is an

extremely challenging task for computer vision

because hands often cover themselves or each

other (e.g., finger/palm occlusions and hand

tremors) and lack high-contrast patterns.

MediaPipe Hands is a highly accurate hand and

finger tracking solution. It uses Machine Learning

(ML) to identify 21 3D hand landmarks from just

one frame. Whereas current state-of-the-art

approaches rely primarily on powerful desktop

environments.

4.3. Palm Detection Model

To detect the initial location of the hand, there

is a detector model optimized for real-time mobile

use, similar to the face detection model in

MediaPipe Face Mesh. Hand detection is an

extremely challenging task: The simplified model

and the full model have to work with different

hand sizes with a large scale range (~20×) relative

to the image frame and be able to detect closed

and self-closed hands. While faces have high-

contrast patterns, such as in the eye and mouth

area, the lack of such features on hands makes it

difficult to detect them reliably based on visual

characteristics alone. Instead, providing

additional contexts, such as hand, body, or facial

features, helps to accurately localize the hand.

The method solves the above problems using

different strategies. First, we train a palm detector

instead of a hand detector because estimating the

bounding boxes of solid objects such as palms and

fists is much easier than detecting hands with

articulated fingers. Furthermore, since palms are

smaller objects, the non-maximal suppression

algorithm works well even in cases of two-handed

self-occlusion, such as handshakes. Furthermore,

palms can be modeled using square bounding

241

rectangles (anchors in ML terminology), ignoring

other aspect ratios, and thus reducing the number

of anchors by a factor of 3–5. Secondly, an

encoder-decoder feature extractor is used to

increase the awareness of the scene context even

for small objects. Finally, we minimize the focal

loss during training to support a large number of

anchors resulting from the high-scale dispersion.

With the above methods, an average accuracy

of 95.7% in palm detection can be achieved.

Using the conventional cross-entropy loss without

a decoder gives a baseline of only 86.22%.

4.4. Hand Reference Model

After detecting the palm in the entire image,

the subsequent reference hand model accurately

localizes the key points of the 21 3D hand and

finger coordinates within the detected hand region

using regression, i.e. direct coordinate prediction.

The model learns a consistent internal

representation of the hand pose and is robust even

to partially visible hands.

To obtain the data, the MediaPipe authors

manually selected 21 coordinates (Figs. 1 and 2).

Figure 1: Palm skeleton search results

Figure 2: Implementation of palm capture in the
video track

4.5. BlazePose Detector

BlazeFace provides two additional virtual key

points that clearly describe the center of the

human body, rotation, and scale as a circle. Using

Leonardo’s Vitruvian Man, the authors predicted

the middle of the person’s thighs, the radius of the

circle surrounding the person, and the angle of the

line connecting the middle of the shoulders and

hips.

The landmark model in MediaPipe Pose

provides the location of 33 pose landmarks (see

Figs. 3 and 4) [20].

Figure 3: Creating a skeleton with MediaPipe

Figure 4: Implementation of capture in the
skeleton video track using MediaPipe

4.6. Objectron

MediaPipe Objectron is a mobile solution for

real-time 3D object detection. It detects objects in

2D images and estimates their position using an

ML model trained on the Objectron dataset.

Object detection is a widely studied problem in

computer vision, but most research has focused on

2D object prediction. While 2D prediction only

provides 2D bounding boxes, extending the

prediction to 3D can capture the size, position, and

orientation of an object in the world, leading to a

variety of applications in robotics, unmanned

vehicles, image retrieval, and augmented reality.

Although 2D object detection is relatively mature

and widely used in industry, 3D object detection

from 2D images is a challenging problem due to

the lack of data and the variety of object

appearances and shapes within a category.

When the model is applied to each frame

captured by a mobile device, it may suffer from

jitter due to the ambiguity of the 3D bounding box

estimated at each frame [21]. To mitigate this, the

same detection+tracking strategy is used in the 2D

242

object detection and tracking pipeline in

MediaPipe Box Tracking. This reduces the need

to run the mesh on each frame, allowing for

heavier and therefore more accurate models while

keeping the pipeline real-time on mobile devices.

It also preserves subject identity in frames and

ensures that predictions are consistent over time,

reducing jitter.

The Objectron 3D object detection and

tracking pipeline are implemented as a MediaPipe

graph that internally uses a detection subgraph and

a tracking subgraph [22]. The detection subgraph

performs logical inference only once every few

frames to reduce the computational burden and

decodes the output tensor into a FrameAnnotation

that contains nine key points: the center of the 3D

bounding box and its eight vertices. The tracking

subgraph runs each frame using the window

tracking tool in MediaPipe Box Tracking to track

a 2D box that tightly spans the projection of the

3D bounding box and upscales the tracked 2D key

points to 3D using EPnP. When a new detection

becomes available from the detection subgraph,

the tracking subgraph is also responsible for

consolidation between detection and tracking

results based on the overlap region [23, 24].

5. Experimental Results

MediaPipe Selfie Segmentation can work in

real-time on both smartphones and laptops.

Capturing an object in a video stream starts

with the initialization of the ObjectTracker class,

which is found in the cv2 library. Turn on the

video camera. We perform scaling and set the

interpolation characteristics. We create a window

for the frame. We can enter a video recording and

capture the track. We write the tracking window

selection function. Set the size of the window. We

capture the object. The algorithm analyzes the

location of the object. Fig. 5 shows a fragment of

the object tracking program.

Figure 5: Capturing a 3-D object

import cv2

 # Method to start tracking the object

 def start_tracking(self):

 # Iterate until the user presses the Esc key

 while True:

 # Capture the frame from webcam

 _, self.frame = self.cap.read()

 #self.frame = cv2.rotate(self.frame,cv2.ROTATE_0)

 # Resize the input frame

 self.frame = cv2.resize(self.frame, None,

 fx=self.scaling_factor, fy=self.scaling_factor,

 interpolation=cv2.INTER_AREA)

 # Create a copy of the frame

 vis = self.frame.copy()

 # Convert the frame to HSV colorspace

 hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)

 # Create the mask based on predefined thresholds

 mask = cv2.inRange(hsv, np.array((0., 60., 32.)),

 np.array((180., 255., 255.)))

 # Check if the user has selected the region

 if self.selection:

 # Extract the coordinates of the selected rectangle

 x0, y0, x1, y1 = self.selection

 # Extract the tracking window

 self.track_window = (x0, y0, x1-x0, y1-y0)

 # Extract the regions of interest

 hsv_roi = hsv[y0:y1, x0:x1]

 mask_roi = mask[y0:y1, x0:x1]

 # Compute the histogram of the region of

 # interest in the HSV image using the mask

243

 hist = cv2.calcHist([hsv_roi], [0], mask_roi,

 [16], [0, 180])

 # Normalize and reshape the histogram

 cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);

 self.hist = hist.reshape(-1)

 # Extract the region of interest from the frame

 vis_roi = vis[y0:y1, x0:x1]

 # Compute the image negative (for display only)

 cv2.bitwise_not(vis_roi, vis_roi)

 vis[mask == 0] = 0

 # Check if the system in the "tracking" mode

 if self.tracking_state == 1:

 # Reset the selection variable

 self.selection = None

 # Compute the histogram back projection

 hsv_backproj = cv2.calcBackProject([hsv], [0],

 self.hist, [0, 180], 1)

 # Compute bitwise AND between histogram

 # backprojection and the mask

 hsv_backproj &= mask

 # Define termination criteria for the tracker

 term_crit = (cv2.TERM_CRITERIA_EPS |

cv2.TERM_CRITERIA_COUNT,

 10, 1)

 # Apply CAMShift on 'hsv_backproj'

 track_box, self.track_window = cv2.CamShift(hsv_backproj,

 self.track_window, term_crit)

 # Draw an ellipse around the object

 cv2.ellipse(vis, track_box, (0, 255, 0), 2)

 # Show the output live video

 cv2.imshow('Object Tracker', vis)

 # Stop if the user hits the 'Esc' key

 c = cv2.waitKey(5)

 if c == 27:

 break

 # Close all the windows

 cv2.destroyAllWindows()

 if __name__ == '__main__':

 # Start the tracker

 ObjectTracker().start_tracking()

During the implementation of this experiment,

the issue of object recognition in the video stream

was considered. The main libraries of the Python

language that can be used for the recognition and

classification of objects from videos are covered.

MediaPipe methods for achieving a particular

result in recognition are clearly described.

Since this experiment requires a significant

number of images of objects from different

viewing angles, a sample obtained using computer

graphics and face generation by the MediaPipe

program was used for its implementation. Face

recognition testing was performed by matching

the Viola-Jones method, an SVM classifier

combined with histogram computation of oriented

gradients and convolutional networks trained on

the ImageNet sample. The trained models were

provided by the Caffe libraries with OpenCV.

6. Conclusions

The result of the study was the study of the

recognition algorithm. Experiments on capturing

objects were conducted. Capture frames of objects

were recorded in files. In the future, it is planned

to identify these frames according to whether the

face belongs to the given person or not. The

MediaPipe library performed best.

A neural network for object recognition in a

video stream was created and trained. An

experiment was conducted in which the efficiency

of the developed system was compared with the

indicators of alternative known recognition

methods. Recognition accuracy increases when

using the proposed method. The developed

recognition system is more resistant to local noise:

244

for images subject to blurring and occlusion, the

recognition accuracy of the developed system

drops. The research results are of practical interest

in the design of management and information

processing systems in the field of computer vision

and image recognition, for those tasks where there

is a need to determine the spatial parameters of the

depicted objects. To use the system for real-time

monitoring, it is necessary to analyze and design

a system based on distributed computing for

parallel analysis of frames because the results of

local experiments show difficulties with many

frames per second, activation of detectors of many

levels requires significant computing resources.

[1] P. Moriggl, et. al., Touching Space:

Distributed Ledger Technology for

Tracking and Tracing Certificates, 56th

Hawaii International Conference on

System Sciences, January, 2023.

[2] M. Mashxura, I. Siddiqov, Effects of the

Flipped Classroom in Teaching Computer

Graphics, Eurasian Research Bulletin, 16

(2023) 119-123.

[3] A. Najmi, W. Alhalafawy, M. Zaki,

Developing a Sustainable Environment

Based on Augmented Reality to Educate

Adolescents about the Dangers of

Electronic Gaming Addiction,

Sustainability, 15(4) (2023) 3185.

[4] R. Hyodo, et. al., Video Surveillance

System Incorporating Expert Decision-

making Process: A Case Study on

Detecting Calving Signs in Cattle, arXiv,

2023, preprint.

[5] O. Iosifova, et al., Analysis of Automatic

Speech Recognition Methods, in:

Workshop on Cybersecurity Providing in

Information and Telecommunication

Systems, vol. 2923 (2021) 252–257.

[6] K. Khorolska, et al., Application of a

Convolutional Neural Network with a

Module of Elementary Graphic Primitive

Classifiers in the Problems of Recognition

of Drawing Documentation and

Transformation of 2D to 3D Models,

Journal of Theoretical and Applied

Information Technology 100(24) (2022)

7426–7437.

[7] V. Sokolov, P. Skladannyi, A. Platonenko,

Video Channel Suppression Method of

Unmanned Aerial Vehicles, in: IEEE 41st

International Conference on Electronics

and Nanotech-nology (2022) 473–477. doi:

10.1109/ELNANO54667.2022.9927105

[8] W. Lu, et. al., Blind Surveillance Image

Quality Assessment via Deep Neural

Network Combined with the Visual

Saliency, Artificial Intelligence: Second

CAAI International Conference, CICAI

2022, Beijing, China, August 2022, 136-

146.

[9] S. Yu, J. Zhu, C. Lv, A Quantum

Annealing Bat Algorithm for Node

Localization in Wireless Sensor Networks,

Sensors, 23(2) (2023) 782.

[10] R. Glennie, et al., Hidden Markov Models:

Pitfalls and Opportunities in Ecology,

Method. Ecol. Evol. 14(1) (2023) 43–56.

[11] A. Maćkiewicz, W. Ratajczak, Principal

Components Analysis (PCA), Comput.

Geosci. 19(3) (1993) 303–342. doi:10.

1016/0098-3004(93)90090-R.

[12] S. Adlersberg, V. Cuperman, Transform

Domain Vector Quantization for Speech

Signals, ICASSP'87. IEEE International

Conference on Acoustics, Speech, and

Signal Processing, 12 (1987) 1938–1941.

[13] A. Boyd, et. al., CYBORG: Blending

Human Saliency Into the Loss Improves

Deep Learning-Based Synthetic Face

Detection, IEEE/CVF Winter Conference

on Applications of Computer Vision, 2023,

6108–6117.

[14] A. Kurani, et. al., Comprehensive

Comparative Study of Artificial Neural

Network (ANN) and Support Vector

Machines (SVM) on Stock Forecasting,

Annals. of Data Sci. 10(1) (2023) 183–208.

[15] T. Tanantong, P. Yongwattana, A

Convolutional Neural Network Framework

for Classifying Inappropriate Online Video

Contents, IAES Int. J. Artificial Intell.

12(1) (2023) 124.

[16] P. Wen, et. al., Fusing Models for

Prognostics and Health Management of

Lithium-Ion Batteries Based on Physics-

Informed Neural Networks, arXiv, 2023,

preprint.

[17] J. Zhang, D. Li, Research on Path Tracking

Algorithm of Green Agricultural

Machinery for Sustainable Development,

Sustainable Energy Technologies and

Assessments, 55 (2023) 102917.

[18] F. Azimi, et. al., Rethinking RNN-Based

Video Object Segmentation, Computer

Vision, Imaging and Computer Graphics

Theory and Applications, CCIS, 1691

(2021) 348–365. doi:10.1007/978-3-031-

25477-2_16

245

[19] D. Teece, Big Tech and Strategic

Management: How Management Scholars

Can Inform Competition Policy, Academy

of Management Perspectives, 37(1) (2023)

1–15. doi:10.5465/amp.2022.0013

[20] S. Shaikh, et. al., Kinematic Pose Tracking

for Workout App Using Computer Vision,

Int. Res. J. of Modernization in Eng.

Technol. Sci. doi:10.56726/irjmets33856

[21] M. Medykovskyy, et. al., (2015,

September). Methods of Protection

Document Formed from Latent Element

Located by Fractals, 2015 Xth International

Scientific and Technical Conference

“Computer Sciences and Information

Technologies” (CSIT), 2015, 70–72.

doi:10.1109/STC-CSIT.2015.7325434

[22] M. Logoyda, et. al., Identification of

Biometric Images using Latent Elements,

CEUR Workshop Proceedings, 2019.

[23] M. Nazarkevych, et. al., The Ateb-Gabor

Filter for Fingerprinting, Conference on

Computer Science and Information

Technologies, 2019, 247–255.

[24] V. Hrytsyk, A. Grondzal, A. Bilenkyj,

Augmented Reality for People with

Disabilities, 2015 Xth International

Scientific and Technical Conference

“Computer Sciences and Information

Technologies (CSIT), 2015 188–191.

https://doi.org/10.56726/irjmets33856
https://doi.org/10.1109/STC-CSIT.2015.7325434

