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Abstract 
In video surveillance systems, the task of capturing an object and following it is relevant. An 

even more urgent task is the process of identification with subsequent authentication of the 

person. This makes it possible to organize the appropriate security of a private person or 

property, as well as the security of particularly important objects. A method of capturing the 

object has been developed. The use of the best among the considered methods in automated 

video surveillance systems will allow increasing the efficiency of intelligent video surveillance 

systems with a sufficient level of reliability. Footage from capturing the object is recorded in 

files. Implemented object capture using the MediaPipe Face Mesh library. In the future, it is 

planned to carry out the identification of a person using machine learning. 
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1. Introduction 

Tracking technology [1] is used in practice in 

automated video surveillance systems, traffic 

monitoring, motion-based recognition, such as 

gait-based identification, video indexing in large 

data catalogs, navigation of unmanned vehicles, 

Augmented Reality (AR), the film and advertising 

industry, for creating computer graphics and 

visual effects, in research in medicine and sports 

[2], medical imaging, human-computer 

interaction (gesture recognition, virtual keyboard, 

mouse, pupil tracking), crowd behavior analysis, 

video compression. 

The rapid introduction and deployment of 

ubiquitous video sensors have resulted in the 

collection of massive amounts of data. However, 

indexing and searching large video databases 

remains a very difficult task. Augmenting media 

clips [3] with metadata descriptions are very 

useful for engineering. In our previous work, we 

proposed the notion of a visible scene model 

obtained by combining location and direction 

sensor information with a video stream. Such geo-

referenced media streams are useful in many 
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applications and, most importantly, they can be 

searched efficiently. The result of a geo-

referenced video query will usually consist of the 

number of video segments that satisfy the query 

conditions but with more or less relevance. 

The widespread availability of digital video 

sensors has led to a variety of applications, 

ranging from casual video recording to 

professional multi-camera surveillance systems 

[4]. As a result, a large number of video clips are 

collected, which creates complex data processing 

problems [5–7]. 

Many institutions deploy video surveillance 

systems with the primary function of protecting 

property rather than monitoring public traffic. 

Nowadays, there is cloud-based video 

surveillance that, in addition to security issues, 

solves the role of property protection. In addition, 

the main advantage of a cloud-based video 

surveillance system is that it is located outside the 

object of observation and has a flexible storage 

capacity. 

A visual surveillance system [8] consists of 

two main parts: 

• Target representation object. 

https://orcid.org/0000-0002-6528-9867
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• Localization object. 

• Filtering. 

• Data Association. 

Target object representation and localization is 

mostly a bottom-up process, it is sequential and its 

subsequent steps do not affect the previous ones. 

The typical computational complexity of these 

algorithms is quite low. 

Standard algorithms for finding and localizing 

[9] a target object include: 

• Blob tracking: segmentation of the 

object’s interior, including blob detection, 

block-based correlation, and optical flow. 

• Kernel-based tracking (mean-shift 

tracking): an iterative localization procedure 

based on maximizing the similarity criterion. 

• Contour tracking: search for the boundary 

of an object Feature matching: image 

registration. 

• Point feature tracking: given a sequence 

of images of a certain scene captured by a 

moving or stationary camera. You need to get 

a set of the most accurate sequences of 

projection coordinates of some points in the 

scene in each frame. 

Capturing and encoding digital images should 

lead to the creation and rapid dissemination of a 

huge amount of visual information. Therefore, 

efficient tools for searching and retrieving visual 

information are essential. Although effective 

search engines for text documents exist today, 

there are no satisfactory systems for retrieving 

visual information. 

Due to the growth of visual data both online 

and offline and the phenomenal success of web 

search, expectations for image and video search 

technologies are increasing.  

Hidden Markov Models (HMM) [10]. The 

method is based on a statistical comparison of an 

object with a database of templates. Hidden 

Markov models use the statistical properties of 

signals and take into account their spatial 

characteristics. Model elements: the initial 

probability of states, set of observed states, set of 

hidden states, transition probability matrix. 

During human recognition, all generated Markov 

models are checked and the highest probability 

that the sequence of observations for an object is 

generated by the corresponding model is searched. 

To end our set of experiments, we should try 

PRNU SCI over video streams. 270 Basically, 

PRNU is equally valid for all frames that are 

captured in a video. Normally, a 271 video is 

made of 25 or 30 frames per second. Cameras 

usually reduce individual frames to 272 resolution 

when capturing a video: 720×576 is called 

standard definition, 1280×720 is 273 called 

enhanced definition, and 1920×1080 for high 

definition (or sometimes Full HD). 274 Nowadays 

there exist higher definitions like 3840×2160 (4K) 

or even 7680×4320 (8K). See 275 that even 4K is 

less than 8 Mpixels per frame. 

The disadvantages include low processing 

speed and low resolution. 

The system can only optimize the data 

processing time and response time of its model, 

but cannot minimize the time of searching other 

models. 

Principal component analysis [11]. One of the 

most well-known and developed methods is the 

principal component analysis (PCA) based on the 

Karunen Loewe transformation [12]. Initially, the 

principal component method was used in statistics 

to reduce the feature space without significant loss 

of information. In face recognition, it is used 

mainly to represent a face image with a low-

dimensional vector, which is then compared with 

reference vectors stored in a database. 

The main goal of the principal component 

method is to significantly reduce the 

dimensionality of the feature space so that it 

describes “typical” images belonging to a large 

number of faces as well as possible. Using this 

method, it is possible to detect various variations 

in the training set of face images and describe this 

variability based on several orthogonal vectors. 

The set of eigenvectors obtained once on the 

training set of face images [12] is used to encode 

all other face images, which are represented in a 

weighted combination of eigenvectors. 

Using a limited number of eigenvectors, a 

compressed approximation of the input face 

image [13] can be obtained, which can then be 

stored in the database as a vector of coefficients, 

which is also a search key in the face database. 

Also, the purpose of the PCA method is to 

reduce the feature space without significant loss 

of information so that it best describes the 

“typical” images belonging to a set of faces. In 

face recognition, it is used mainly to represent a 

face as a low-dimensional vector, which is then 

compared with reference vectors from the 

database. 

PCA has proven itself in many applications. 

However, when there are significant changes in 

facial expressions or lighting in the face image, 

the effectiveness of the method drops 

significantly. This is because the principal 

component method selects a subspace to 
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maximize the approximation of the input data set, 

rather than to discriminate between classes of 

faces. 

The Support Vector Machine (SVM) [14] 

method is a set of similar learning algorithms used 

for classification and regression analysis tasks. 

The essence of the support vector method is to 

find a hyperplane in the feature space that 

separates a class of face images from other images 

(the class of “no faces” images). In this case, out 

of all possible hyperplanes that divide into two 

classes, it is necessary to choose a hyperplane 

whose distance from each class is maximal. 

The advantages of this method are high 

resistance to overtraining; high speed compared to 

neural networks; the ability to reduce sensitivity 

to noise by reducing accuracy. 

The disadvantages include the fact that the 

accuracy of the method is inferior to many other 

methods. 

Neural network methods [15]. Quite common 

methods include about a dozen different 

algorithms. The main feature of such networks is 

their ability to learn from a set of ready-made 

examples entered into the database in advance. 

During the training of neural networks, the 

network automatically extracts key features and 

builds relationships between them. After that, the 

trained neural network applies the experience 

gained to recognize a previously unknown object. 

Neural network methods show some of the best 

results in the field of recognition but are 

considered the most difficult to implement. 

There are about a dozen different Neural 

Networks (NNs) [16]. One of the most widely 

used and popular instances is a network built on a 

multilayer perceptron, which allows you to 

classify an image or signal given as input 

according to the preliminary settings and training 

experience of the neural network. 

Neural networks are trained on a set of training 

examples. The essence of training is to adjust the 

weights of inter-neuronal connections in the 

process of solving an optimization problem using 

the gradient descent method. During the training 

process, the neural network automatically extracts 

key features, determines their importance, and 

builds relationships between them. 

It is assumed that the trained network will be 

able to apply the experience gained during 

training to unknown images using generalizing 

abilities. 

2. Mathematical Model of the Object 
Tracking Algorithm 

Let I(x,t) be the brightness of the image frame 

with time t at point x, where x is a vector. The 

movement of the image far from the limits of 

visibility is described using an equation of the 

form: I(x,t)=I(delta(x), t + t1) (*), where delta(x) is 

the movement of point x when moving from the 

frame (t) to (t + 1). The movement of features 

from frame to frame is described by balancing for 

all points x from the surrounding features W [17]. 

In this case, the lighting of the points of the 

scene corresponding to the features remains 

constant. 

With small changes in the image from frame to 

frame, you can read that the feature window is 

simply contained, and the delta(x) movement 

takes the form delta(x) = x + d. However, when the 

duration of tracking increases, the scene point 

image is distorted. This image can be 

approximately described by an affine 

transformation, therefore the movement of points 

is described by an affine transformation delta(x) = 

Ax + d, where A is a matrix of dimension 2×2. 

The task of the tracker is to track the delta(x) 

movement values for all points of the feature 

window W. Since (*) is never performed in real 

conditions, the search is for such a movement that 

minimizes the difference between the windows at 

the current and next position on the frame, i.e. is 

the delta(x) at which the minimum is reached 

𝑒 = 𝑚𝑖𝑛∑𝑑𝑒𝑙𝑡𝑎(𝑥), 𝑡 + 𝑡1 − 𝐼(𝑥, 𝑡)

𝑊

 (1) 

or it is the norm of the image difference L2. 

3. Detect Video Objects in Real-Time 

Recurrent neural networks are based on 

sequential data and are well-suited for video 

object detection. A collaboration between the 

Georgia Institute of Technology (GIT) and 

Google Research proposed an RNN-based video 

object detection method [18] that achieved 

recognition rates of up to 15 frames per second, 

even running on a mobile processor. 

One approach to detecting video objects is to 

split the video into its component frames and 

apply an image recognition algorithm to each 

frame. This rejects all the potential benefits of 

extracting temporal information from the video. 

Consider, for example, the problem of occlusion 
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and recapture: if a video object recognition system 

identifies a person who is then briefly covered by 

a passing pedestrian, it will take time for the 

system to realize that it has “lost” the object. An 

object can be lost not only due to occlusion, but 

also due to motion blur, in cases where camera 

movement or object movement (or both) causes 

enough disruption to the frame that elements 

become streaky or out of focus, and this is 

impossible for the recognition structure to 

identify. 

If the system analyzes frames, this 

understanding is not possible because each frame 

is treated as a complete and closed episode. The 

computational cost of a video object detection 

system is less for object identification and 

tracking than re-registering the same object on a 

frame-by-frame basis. 

Optical flow estimation generates a two-

dimensional vector field that represents the pixel 

displacement between one frame and the 

neighboring frame (previous or next). 

The optical flow can show the progress of 

groupings of individual pixels along the entire 

length of the video footage, providing guidance on 

which to perform useful operations. It has been 

used for a long time in traditional data-intensive 

video environments, such as video editing suites, 

to provide motion vectors along which filters can 

be applied, and for animation purposes. From the 

perspective of video object recognition, optical 

flow enables the computation of discontinuous 

object trajectories because it can compute mean 

trajectories in a way that is not possible with older 

methods such as the Lucas-Canade approach. This 

approach only considers the constant flow 

between grouped frames and cannot form a 

comprehensive relationship between multiple 

groups of actions, even though these groups may 

represent the same event interrupted by factors 

such as occlusion and motion blur. 

4. Research of Software Products for 
Object Recognition 

4.1. Google Video Intelligence 

As a leading FAANG (Facebook, Amazon, 

Apple, Netflix, and Google) investor in computer 

vision research, Google's Video Intelligence 

system offers out-of-the-box features including 

object recognition in video, real-time OCR 

(optical character recognition) capabilities, logo 

detection, and face detection. Cloud Video 

Intelligence comes with a huge offering of pre-

trained models, although customized training is 

available [19]. 

4.2. Hand Detection 

The ability to perceive the shape and 

movement of hands can be a vital component in 

enhancing the user experience across a variety of 

technology domains and platforms. For example, 

it can form the basis for understanding sign 

language and controlling hand gestures, and it can 

enable the overlay of digital content and 

information on top of the physical world in 

augmented reality. Although it is natural for 

humans, reliable real-time hand perception is an 

extremely challenging task for computer vision 

because hands often cover themselves or each 

other (e.g., finger/palm occlusions and hand 

tremors) and lack high-contrast patterns. 

MediaPipe Hands is a highly accurate hand and 

finger tracking solution. It uses Machine Learning 

(ML) to identify 21 3D hand landmarks from just 

one frame. Whereas current state-of-the-art 

approaches rely primarily on powerful desktop 

environments. 

4.3. Palm Detection Model 

To detect the initial location of the hand, there 

is a detector model optimized for real-time mobile 

use, similar to the face detection model in 

MediaPipe Face Mesh. Hand detection is an 

extremely challenging task: The simplified model 

and the full model have to work with different 

hand sizes with a large scale range (~20×) relative 

to the image frame and be able to detect closed 

and self-closed hands. While faces have high-

contrast patterns, such as in the eye and mouth 

area, the lack of such features on hands makes it 

difficult to detect them reliably based on visual 

characteristics alone. Instead, providing 

additional contexts, such as hand, body, or facial 

features, helps to accurately localize the hand. 

The method solves the above problems using 

different strategies. First, we train a palm detector 

instead of a hand detector because estimating the 

bounding boxes of solid objects such as palms and 

fists is much easier than detecting hands with 

articulated fingers. Furthermore, since palms are 

smaller objects, the non-maximal suppression 

algorithm works well even in cases of two-handed 

self-occlusion, such as handshakes. Furthermore, 

palms can be modeled using square bounding 



241 

rectangles (anchors in ML terminology), ignoring 

other aspect ratios, and thus reducing the number 

of anchors by a factor of 3–5. Secondly, an 

encoder-decoder feature extractor is used to 

increase the awareness of the scene context even 

for small objects. Finally, we minimize the focal 

loss during training to support a large number of 

anchors resulting from the high-scale dispersion. 

With the above methods, an average accuracy 

of 95.7% in palm detection can be achieved. 

Using the conventional cross-entropy loss without 

a decoder gives a baseline of only 86.22%.  

4.4. Hand Reference Model 

After detecting the palm in the entire image, 

the subsequent reference hand model accurately 

localizes the key points of the 21 3D hand and 

finger coordinates within the detected hand region 

using regression, i.e. direct coordinate prediction. 

The model learns a consistent internal 

representation of the hand pose and is robust even 

to partially visible hands. 

To obtain the data, the MediaPipe authors 

manually selected 21 coordinates (Figs. 1 and 2). 

 
Figure 1: Palm skeleton search results 

 
Figure 2: Implementation of palm capture in the 
video track 

4.5. BlazePose Detector 

BlazeFace provides two additional virtual key 

points that clearly describe the center of the 

human body, rotation, and scale as a circle. Using 

Leonardo’s Vitruvian Man, the authors predicted 

the middle of the person’s thighs, the radius of the 

circle surrounding the person, and the angle of the 

line connecting the middle of the shoulders and 

hips. 

The landmark model in MediaPipe Pose 

provides the location of 33 pose landmarks (see 

Figs. 3 and 4) [20]. 

 
Figure 3: Creating a skeleton with MediaPipe 

 
Figure 4: Implementation of capture in the 
skeleton video track using MediaPipe 

4.6. Objectron 

MediaPipe Objectron is a mobile solution for 

real-time 3D object detection. It detects objects in 

2D images and estimates their position using an 

ML model trained on the Objectron dataset. 

Object detection is a widely studied problem in 

computer vision, but most research has focused on 

2D object prediction. While 2D prediction only 

provides 2D bounding boxes, extending the 

prediction to 3D can capture the size, position, and 

orientation of an object in the world, leading to a 

variety of applications in robotics, unmanned 

vehicles, image retrieval, and augmented reality. 

Although 2D object detection is relatively mature 

and widely used in industry, 3D object detection 

from 2D images is a challenging problem due to 

the lack of data and the variety of object 

appearances and shapes within a category. 

When the model is applied to each frame 

captured by a mobile device, it may suffer from 

jitter due to the ambiguity of the 3D bounding box 

estimated at each frame [21]. To mitigate this, the 

same detection+tracking strategy is used in the 2D 
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object detection and tracking pipeline in 

MediaPipe Box Tracking. This reduces the need 

to run the mesh on each frame, allowing for 

heavier and therefore more accurate models while 

keeping the pipeline real-time on mobile devices. 

It also preserves subject identity in frames and 

ensures that predictions are consistent over time, 

reducing jitter. 

The Objectron 3D object detection and 

tracking pipeline are implemented as a MediaPipe 

graph that internally uses a detection subgraph and 

a tracking subgraph [22]. The detection subgraph 

performs logical inference only once every few 

frames to reduce the computational burden and 

decodes the output tensor into a FrameAnnotation 

that contains nine key points: the center of the 3D 

bounding box and its eight vertices. The tracking 

subgraph runs each frame using the window 

tracking tool in MediaPipe Box Tracking to track 

a 2D box that tightly spans the projection of the 

3D bounding box and upscales the tracked 2D key 

points to 3D using EPnP. When a new detection 

becomes available from the detection subgraph, 

the tracking subgraph is also responsible for 

consolidation between detection and tracking 

results based on the overlap region [23, 24]. 

5. Experimental Results 

MediaPipe Selfie Segmentation can work in 

real-time on both smartphones and laptops. 

Capturing an object in a video stream starts 

with the initialization of the ObjectTracker class, 

which is found in the cv2 library. Turn on the 

video camera. We perform scaling and set the 

interpolation characteristics. We create a window 

for the frame. We can enter a video recording and 

capture the track. We write the tracking window 

selection function. Set the size of the window. We 

capture the object. The algorithm analyzes the 

location of the object. Fig. 5 shows a fragment of 

the object tracking program. 

 
Figure 5: Capturing a 3-D object 

 

import cv2 

    # Method to start tracking the object 

    def start_tracking(self): 

        # Iterate until the user presses the Esc key 

        while True: 

            # Capture the frame from webcam 

            _, self.frame = self.cap.read() 

            #self.frame = cv2.rotate(self.frame,cv2.ROTATE_0) 

            # Resize the input frame 

            self.frame = cv2.resize(self.frame, None, 

                    fx=self.scaling_factor, fy=self.scaling_factor, 

                    interpolation=cv2.INTER_AREA) 

            # Create a copy of the frame 

            vis = self.frame.copy() 

            # Convert the frame to HSV colorspace 

            hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) 

            # Create the mask based on predefined thresholds 

            mask = cv2.inRange(hsv, np.array((0., 60., 32.)), 

                        np.array((180., 255., 255.))) 

            # Check if the user has selected the region 

            if self.selection: 

                # Extract the coordinates of the selected rectangle 

                x0, y0, x1, y1 = self.selection 

                # Extract the tracking window 

                self.track_window = (x0, y0, x1-x0, y1-y0) 

                # Extract the regions of interest 

                hsv_roi = hsv[y0:y1, x0:x1] 

                mask_roi = mask[y0:y1, x0:x1] 

                # Compute the histogram of the region of 

                # interest in the HSV image using the mask 
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                hist = cv2.calcHist( [hsv_roi], [0], mask_roi, 

                        [16], [0, 180] ) 

                # Normalize and reshape the histogram 

                cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX); 

                self.hist = hist.reshape(-1) 

                # Extract the region of interest from the frame 

                vis_roi = vis[y0:y1, x0:x1] 

                # Compute the image negative (for display only) 

                cv2.bitwise_not(vis_roi, vis_roi) 

                vis[mask == 0] = 0 

            # Check if the system in the "tracking" mode 

            if self.tracking_state == 1: 

                # Reset the selection variable 

                self.selection = None 

                # Compute the histogram back projection 

                hsv_backproj = cv2.calcBackProject([hsv], [0], 

                        self.hist, [0, 180], 1) 

                # Compute bitwise AND between histogram 

                # backprojection and the mask 

                hsv_backproj &= mask 

                # Define termination criteria for the tracker 

                term_crit = (cv2.TERM_CRITERIA_EPS | 

cv2.TERM_CRITERIA_COUNT, 

                        10, 1) 

                # Apply CAMShift on 'hsv_backproj' 

                track_box, self.track_window = cv2.CamShift(hsv_backproj, 

                        self.track_window, term_crit) 

                # Draw an ellipse around the object 

                cv2.ellipse(vis, track_box, (0, 255, 0), 2) 

            # Show the output live video 

            cv2.imshow('Object Tracker', vis) 

            # Stop if the user hits the 'Esc' key 

            c = cv2.waitKey(5) 

            if c == 27: 

                break 

        # Close all the windows 

        cv2.destroyAllWindows() 

 if __name__ == '__main__': 

   # Start the tracker 

    ObjectTracker().start_tracking() 

 

During the implementation of this experiment, 

the issue of object recognition in the video stream 

was considered. The main libraries of the Python 

language that can be used for the recognition and 

classification of objects from videos are covered. 

MediaPipe methods for achieving a particular 

result in recognition are clearly described. 

Since this experiment requires a significant 

number of images of objects from different 

viewing angles, a sample obtained using computer 

graphics and face generation by the MediaPipe 

program was used for its implementation. Face 

recognition testing was performed by matching 

the Viola-Jones method, an SVM classifier 

combined with histogram computation of oriented 

gradients and convolutional networks trained on 

the ImageNet sample. The trained models were 

provided by the Caffe libraries with OpenCV. 

6. Conclusions 

The result of the study was the study of the 

recognition algorithm. Experiments on capturing 

objects were conducted. Capture frames of objects 

were recorded in files. In the future, it is planned 

to identify these frames according to whether the 

face belongs to the given person or not. The 

MediaPipe library performed best. 

A neural network for object recognition in a 

video stream was created and trained. An 

experiment was conducted in which the efficiency 

of the developed system was compared with the 

indicators of alternative known recognition 

methods. Recognition accuracy increases when 

using the proposed method. The developed 

recognition system is more resistant to local noise: 
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for images subject to blurring and occlusion, the 

recognition accuracy of the developed system 

drops. The research results are of practical interest 

in the design of management and information 

processing systems in the field of computer vision 

and image recognition, for those tasks where there 

is a need to determine the spatial parameters of the 

depicted objects. To use the system for real-time 

monitoring, it is necessary to analyze and design 

a system based on distributed computing for 

parallel analysis of frames because the results of 

local experiments show difficulties with many 

frames per second, activation of detectors of many 

levels requires significant computing resources. 
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