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Abstract  
Effective operation of telecommunications and radio-electronic systems depends on several 

factors that must be taken into account at all stages of the equipment lifecycle. While using the 

equipment for its intended purpose, the function of efficiency maintaining is the main task of 

the operating system. To perform successfully this task, the operating system uses intelligent 

technologies of statistical data processing. The structure of the data processing is complex and 

includes procedures of model building, detection, evaluation, prediction, and others. The 

prediction procedures are very important, as it allows for determining the state of the equipment 

in the future, in particular, the possibility of failure. The failure risk assessment is usually based 

on the result of the equipment’s defining parameters processing. This paper considers the 

synthesis of the prediction procedure based on the detection and estimation of changepoint 

parameters in the observed data trends. This procedure gives the possibility to assess the risk of 

failure using priori information about the characteristics of the maintenance process. 

Implementation of the proposed procedure will increase the reliability of telecommunications 

and radio-electronic systems. 
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1. Introduction 

To provide the efficiency of 

telecommunication and radio-electronic systems 

(TRSs) functioning, operating systems (OSs) are 

usually used, which have a sophisticated structure 

of components [1]. These components can change 

their states over time. Changes can be controlled 

or uncontrolled [2]. In the general case, these 

changes are a source of possible risks that can 

negatively affect both the effectiveness of 

equipment and the technical and economic 

characteristics of enterprises [3]. 

The OS forms corrective actions regarding the 

state of all components to prevent the occurrence 

of possible risks [4, 5]. The process of action 

formation and implementation is based on the 

results of statistical data processing [6]. 

The OS can apply various data processing 

algorithms for diagnostics and technical condition 

monitoring, estimating the level of reliability, 
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predicting failures, resource consumption, 

operational conditions deterioration, and others 

[7, 8]. It is advisable to use extrapolation 

procedures to predict risks. 

The creation of a prediction algorithm includes 

synthesis and analysis [9, 10]. During the 

synthesis, the methods of maximum likelihood, 

moments, ordinary least squares, spline 

approximation, and others can be used. During the 

analysis, we can carry out analytical calculations 

based on the probabilities theory and 

mathematical statistics, as well as statistical 

simulation [11–13]. 

Traditional approaches in the field of 

prediction are based on the assumption of the 

stationarity of the analyzed data model trend for 

the future period [14, 15]. However, the practice 

of operation shows that the real trend models of 

the defining parameters and reliable indicators of 

the TRS can change at a random moment [16]. 

Therefore, the stationarity disturbance in the flow 
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of processes is observed. The algorithms for 

prediction should have a complex structure and 

include procedures for detecting the fact of 

changepoint and estimating its parameters 

(occurrence time and changepoint intensity). 

2. Statement of the Problem 

Consider the statement of the problem in the 

general operator form. Operators will display an 

approach to the formation of events that will be 

associated with risks during the TRSs operation. 

The main organizational element is the 

operation systems, which functioning is described 

by the OS(·) operator. We assume that a specific 

OS contains u elements, i.e. OS⃗⃗ ⃗⃗  
𝑢(∙). Each element 

over time T can be in certain states in the space of 

phase states that belong to the considered element, 

therefore St⃗⃗  ⃗𝑝𝑗(𝑇/𝑗 = 1, 𝑢). The number of states 

pj is different for each jth element of OS. Suppose 

that its group of factors Φ⃗⃗⃗  determines the state of 

each element of OS. Then the OS elements can be 

represented in the following form 

OS⃗⃗ ⃗⃗  
𝑢 (St⃗⃗  ⃗𝑝𝑗

(𝑇/𝑗 = 1, 𝑢)/Φ⃗⃗⃗ ). 

Based on the OS elements states, it is possible 

to construct the trajectories of their movement Tr⃗⃗⃗⃗ . 
Thus, it is possible to define functions for each 

element of the OS 

Tr⃗⃗⃗⃗ (OS⃗⃗ ⃗⃗  
𝑢 (St⃗⃗  ⃗𝑝𝑗

(𝑇/𝑗 = 1, 𝑢)/Φ⃗⃗⃗ )). 

The trajectories of individual elements in the 

corresponding phase spaces are associated with 

the occurrence of possible risks 𝑅⃗ 𝑝,𝑢
(0)

. Then 

𝑅⃗ 𝑝,𝑢
(0)

(Tr⃗⃗⃗⃗ (OS⃗⃗ ⃗⃗  
𝑢 (St⃗⃗  ⃗𝑝𝑗

(𝑇/𝑗 = 1, 𝑢)/Φ⃗⃗⃗ ))). 

We believe that all the states of individual 

elements of OS are associated with risks, because, 

resources of various kinds are consumed during 

the operation process. At the same time, serious 

events (TRS failures, power supply absence, 

physical destruction of structures, and others) are 

more significant. It should be noted that control 

and preventive actions are formed about certain 

elements of OS. Data processing algorithms are 

used to form these actions. Processing and 

decision-making are performed for each element 

of OS and the corresponding trajectory in the 

space of phase states. The relationship between 

control actions C⃗  and processing algorithms P⃗⃗  can 

be represented as 

C⃗ (Tr⃗⃗⃗⃗ (OS⃗⃗ ⃗⃗  
𝑢 (St⃗⃗  ⃗𝑝𝑗

(𝑇/𝑗 = 1, 𝑢)/Φ⃗⃗⃗ )) /P⃗⃗ ). 

Because of the control actions implementation, 

potential risks 𝑅⃗ 𝑝,𝑢
(0)

 become real 𝑅⃗ 𝑝,𝑢
(real)

, then 

𝑅⃗ 𝑝,𝑢
(real)

= 𝑅⃗ 𝑝,𝑢
(0)

(C⃗ (Tr⃗⃗⃗⃗ (OS⃗⃗ ⃗⃗  
𝑢(St⃗⃗  ⃗𝑝/Φ⃗⃗⃗ )) /P⃗⃗ )). 

Risks are usually possibilities. Therefore, real 

cost functions are formed in a separate way using 

the operator Ψ(∙), then 

Cost(𝑇) = Ψ(𝑅⃗ 𝑝,𝑢
(real)

/P⃗⃗ 𝑝,𝑢). 

According to all statements, the problem is to 

develop such a set of data processing algorithms 

for each element of the OS so that the OS costs 

during the observation time 𝑇obs will be minimal 

or will not exceed a certain value, then 

min(Cost(𝑇obs)) = Ψ(𝑅⃗ 𝑝,𝑢
(real)

/𝑃⃗ 𝑝,𝑢
(opt)

), 

where 𝑃⃗ 𝑝,𝑢
(opt)

 is an optimal design solution in 

terms of data processing algorithms for each 

trajectory of a certain element of the OS. 

3. Materials and Methods 

This section presents the synthesis of two 

procedures for the prediction of possible failure of 

TRS. To solve this task, we assumed the following 

limitations: 

1. The Defining Parameter (DP) is available 

for observation. The measurements give the 

possibility to create a dataset with discrete values 

and constant sampling time Δ. The information 

about operating thresholds (upper and lower) VO up 

and VO low for this DP is known priori. 

2. The changepoint occurs randomly. The 

probability density function of time moment of 

changepoint 𝑓(𝑡ch) can be arbitrary and unknown. 

3. The DP trend contains informational and 

stochastic components. The first component 

corresponds to DP model. The second component 

is random Gaussian noise with zero means and 

known standard deviation σ. According to this 

limitation, the DP can be presented as follows 

𝐷𝑃𝑖 = 𝐴0 + ξ(𝑖∆ − 𝑡ch)φ(𝑖∆ − 𝑡ch) + 𝑛𝑖, 
where 𝐴0 is a DP value for normal operation 

conditions, ξ is the changepoint intensity, φ(𝑡) is 

a step function, 𝑛𝑖 is the noise. The presented 

equation corresponds to the most commonly used 

case of degradation according to a linear model. 

The changepoint intensity for this case is equal to 

the tangent of the trend inclination angle after the 

changepoint occurrence. 

4. The probability density function of 

changepoint intensity 𝑓(ξ) is arbitrary and 

unknown. 
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5. To prevent the failure of TRS, the 

corrective maintenance is carried out. The time for 

maintenance implementation 𝑇M is random, but 

with a known probability density function. 

The prediction procedure aims to determine 

the optimal time moment of maintenance in case 

of gradual failure prevention. The gradual failure 

usually occurs in case of one of the inequalities 

fulfillment 

𝐷𝑃𝑖 > 𝑉O up or 𝐷𝑃𝑖 < 𝑉O low. 

The operating time to failure, in this case, will 

be following 

𝑡F = arg(𝐷𝑃𝑖/(𝐷𝑃𝑖 = 𝑉O up ∪ 𝐷𝑃𝑖 = 𝑉O low)). 

If a changepoint is detected, the prediction 

procedure will estimate the time of failure and 

form a decision to carry out the maintenance. The 

corresponding decision is made at the time 𝑡D.  

According to mentioned assumptions, the risk 

of failure R can be considered as the probability 

that time for maintenance implementation is 

greater than the remaining time to failure, i.e. 

𝑅 = Pr (𝑡F − 𝑡D < 𝑡M). 

The prediction procedure is implemented 

based on data processing in a sliding window with 

a size of n samples. The processing consists of 

four steps. 

The first step. Observed data approximation 

using one of two techniques.  

The first approach is associated with Simple 

Linear Regression (SLR) usage for data in sliding 

windows. For kth iteration of sliding the estimates 

of DP are determined according to the equation 

𝐷𝑃𝑖,𝑘̂ = 𝑐0,𝑘 + 𝑐1,𝑘𝑖, 
where 𝑐0,𝑘 and 𝑐1,𝑘 are coefficients of linear 

regression, 𝑖 ∈ [0; 𝑛 − 1] is current number of 

sample in sliding window. Using the ordinary 

least squares method we can easily get 

(
𝑐0,𝑘

𝑐1,𝑘
) = (

𝑛 ∑ 𝑖𝑛−1
𝑖=0

∑ 𝑖𝑛−1
𝑖=0 ∑ 𝑖2𝑛−1

𝑖=0

)

−1

(
∑ 𝐷𝑃𝑖+𝑘

𝑛−1
𝑖=0

∑ 𝑖𝑛−1
𝑖=0 𝐷𝑃𝑖+𝑘

). 

The second approach is associated with Linear 

Two-Segmented Regression (LTSR) usage for 

data in sliding windows. The point of segment 

connection is the middle of the sliding window. 

For kth iteration of sliding the estimates of DP are 

determined according to the equation 

𝐷𝑃𝑖,𝑘̂ = 𝑐0,𝑘 + 𝑐1,𝑘𝑖 + 𝑐2,𝑘 (𝑖 −
𝑛

2
)φ (𝑖 −

𝑛

2
). 

Using the ordinary least squares method we 

can easily get 

(

𝑐0,𝑘

𝑐1,𝑘
𝑐2,𝑘

) = ℋ−1℘, 

ℋ = (

n ∑ 𝑖𝑛−1
𝑖=0 ∑ 𝜔𝑖

𝑛−1
𝑖=0

∑ 𝑖𝑛−1
𝑖=0 ∑ 𝑖2𝑛−1

𝑖=0 ∑ 𝑖𝜔𝑖
𝑛−1
𝑖=0

∑ 𝜔𝑖
𝑛−1
𝑖=0 ∑ 𝑖𝜔𝑖

𝑛−1
𝑖=0 ∑ 𝜔𝑖

2𝑛−1
𝑖=0

) ,℘ ==

(

∑ 𝐷𝑃𝑖+𝑘
𝑛−1
𝑖=0

∑ 𝑖𝐷𝑃𝑖+𝑘
𝑛−1
𝑖=0

∑ 𝜔𝑖𝐷𝑃𝑖+𝑘
𝑛−1
𝑖=0

) ,𝜔𝑖 = (𝑖 −
𝑛

2
)φ(𝑖 −

𝑛

2
). 

To increase the veracity of prediction for the 

LTSR approach, the optimization technique 

discussed in [17] can be applied. 

The second step. Decision-making about 

changepoint.  

The classical methods of the changepoint study 

assume complicated calculations associated with 

the implementation of the statistical procedure of 

detection. For our research, we tried to use the 

simple approach; therefore we choose the Fisher 

test to check the significance of regression 

coefficients. In case of changepoint absence, the 

regression coefficients will be insignificant. 

To use the Fisher test, it is necessary to 

calculate the determination coefficient 

𝑑 = 1 −
∑ (𝐷𝑃𝑖+𝑘 − 𝐷𝑃𝑖,𝑘̂)

2𝑛−1
𝑖=0

∑ (𝐷𝑃𝑖+𝑘 − 𝐷𝑃𝑘
̅̅ ̅̅ ̅)2𝑛−1

𝑖=0

 , 

where 𝐷𝑃𝑘
̅̅ ̅̅ ̅ is the mathematical expectation of DP 

for kth iteration of sliding 

𝐷𝑃𝑘
̅̅ ̅̅ ̅ =

1

𝑛
∑ 𝐷𝑃𝑖+𝑘

𝑛−1

𝑖=0

. 

The determination coefficient is recalculated 

into the value of a decisive statistic using the 

following equation 

𝐹 =
𝑑(𝑛 − 𝑠 − 1)

(1 − 𝑑)𝑠
 , 

where s is the quantity of DP. In our case, we 

observe only one DP, so 𝑠 = 1. 

To decide on changepoint presence, the 

obtained parameter F should be compared with 

threshold Ft. In the general case, the threshold 

depends on sample size, DP quantity, and the 

probability of false alarm α. It should be noted that 

the prediction procedure finishes only in case of 

decision-making on changepoint presence. 

Therefore, one detection procedure contains a big 

number of decisions about the continuation of data 

processing and only one decision associated with 

the break-in case of the changepoint. Because of 

this, the probability of a false alarm should be 

close to zero. 

It 𝐹 < 𝐹t for kth iteration, we will go to the next 

iteration. Otherwise, the decision on the change 

point is made. 

Third step. Estimation of operating time to 

failure. 
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In the case of SLR usage, the estimate of 

operating time to failure can be determined as 

follows 

𝑡F = 𝑡D + (
𝑉 − 𝑐0,𝑁

𝑐1,𝑁
 − 𝑛 + 1)Δ, 

where N is the number of final iterations, V is the 

upper or lower operating threshold. 

In the case of LTSR usage, the estimate of 

operating time to failure can be determined as 

follows 

𝑡F = 𝑡D + (
𝑉 − 𝑐0,𝑁 + 0.5𝑛𝑐2,𝑁

𝑐1,𝑁 + 𝑐2,𝑁
 − 𝑛 + 1)Δ. 

Fourth step. Failure risk assessment. 

The assessment of the risk is possible based on 

the information about the probability density 

function of time for maintenance implementation. 

In the general case, the risk of failure will be 

𝑅 = ∫ 𝑓(𝑇M)𝑑𝑇M

∞

𝜏

 , 

where in the case of SLR 

τ = (
𝑉 − 𝑐0,𝑁

𝑐1,𝑁
 − 𝑛 + 1)Δ,  

and in case of LTSR 

τ = (
𝑉 − 𝑐0,𝑁 + 0.5𝑛𝑐2,𝑁

𝑐1,𝑁 + 𝑐2,𝑁
 − 𝑛 + 1)Δ . 

After the synthesis, it is necessary to analyze 

the efficiency of the proposed procedure of data 

processing. It will be discussed in the next section. 

4. Results and Discussion 

The analysis procedure was carried out based 

on statistical simulation. For the convenience of 

presenting the material, we will consider specific 

examples of the simulation implementation. 

The flowchart of data processing procedures 

for the implementation of the prediction algorithm 

during simulation is shown in Fig. 1. 

The initial parameters for analysis according to 

the introduced limitations are: 

1. The sampling time is 1 minute. 

2. The observation time is 𝑇obs = 1440 

minutes. 

3. The sliding window size is 𝑛 = 60 minutes. 

4. The DP value for normal operating 

conditions is 𝐴0 = 100 conventional units. 

5. The standard deviation of the noise is σ =
8 conditional units. 

6. The operating thresholds are 𝑉O up = 150 

and 𝑉O low = 50 conditional units. 

 

 
Figure 1: The flowchart of data processing 
procedures during the simulation 

7. The time moment of changepoint 

occurrence has uniform distribution inside 

the second half of observation. 

8. The changepoint intensity has uniform 

distribution in the range [0; 1]. 

9. The probability density function of time for 

maintenance implementation is normal. 

The mean value is 60 minutes; the standard 

deviation is 20 minutes. 

10. The number of simulation procedure 

repetitions is 𝐿 = 1000. 

To perform further calculations, we need to 

form discrete data arrays containing information 

about DP trends. For given numerical values of 

initial parameters, such an array will be two-

dimensional and have a size (𝑇obs/Δ) × 𝐿. Such 

an array will allow future calculations to 

determine the statistical characteristics of the risk 

of failure, up to the most complete 

characteristic—the probability density function. 

Fig. 2 shows examples of two possible trends 

of DP. 

 
Figure 2: The DP trend examples 

To describe the calculations, consider a 

specific numerical example. The DP trend in the 

initial dataset is characterized by the following 

Start

Data approximation in 

sliding window

Parameters and 

models according 

to limitations

Changepoint detection 

based on Fisher test

Prediction of operating 

time to failure

Risk calculation

Estimates of 

failure risk

Finish

15000

100

50

150

DPi

iΔ

Operating threshold

Operating threshold

1000500



264 

parameters: the time of changepoint occurrence is 

960-th minute, and the changepoint intensity is 

0.279. 

The approximation results using SLR and 

LTSR in the sliding window for iteration number 

930 (this iteration corresponds to the event when 

the real-time changepoint is located at the middle 

of the sliding window) can be presented as follows 

𝐷𝑃̂𝑖,𝑘 SLR = 95.677 + 0.192(𝑖 − 930), 

𝐷𝑃̂𝑖,𝑘 LTSR = 95.377 + 0.212(𝑖 − 930) − 

−0.042(𝑖 − 960)φ(𝑖 − 960). 
Fig. 3 presents the results of data 

approximation. 

 
Figure 3: The results of data approximation 

To perform calculations according to the 

Fisher test, the decisive statistics were computed. 

The corresponding data are shown in Fig. 4. The 

obtained dependencies for cases of SLR and 

LTSR almost coincide. The threshold of decision-

making is equal to 17.462. This value was 

obtained for the probability of false alarm equaled 

to 0.0001. In this particular example, both 

approximation techniques give the same estimate 

for the time of changepoint occurrence. This 

estimate is equal to 966-th minute. 

 
Figure 4: The decisive statistics: a) in the case of 
LTSR, b) in the case of LSR 

 

The next step is a calculation of the remaining 

time to failure. For this numerical example, the 

SLR method predicts 92 minutes to failure, and 

LTSR predicts 121 minutes to failure. According 

to the simulation, failure occurs 114 minutes after 

the changepoint. Therefore, for this example, the 

LTSR method has a more correct estimate but is 

slightly greater than the real value. 

The risk of failure is 5.35∙10–2 and 5.77∙10–4 for 

SLR and LTSR methods, respectively. 

The simulation repetition gives the possibility 

to build the histograms of risk estimates. The 

corresponding histograms are shown in Fig. 5. 

 
Figure 5: The histograms of risk estimate: a) in 
case of LTSR, b) in case of LSR 

The expected values of risk are equal to 0.148 

and 0.098 for SLR and LTSR methods, 

respectively. It should be noted that shown 

numerical result reflect only one case for 

introduced initial parameters. The computed value 

of risk can be used to improve the maintenance 

process for TRSs. 

5. Conclusions 

The obtained results are relevant for the theory 

and practice of design and improvement of TRS 

operation systems. The emphasis on statistical 

data processing algorithms for timely detection 

and prevention of failures and, accordingly, 

reducing the risks of possible losses in the TRS 

OS is justified. The proposed data processing 

methods make it possible to increase the level of 

TRS reliability by performing preventive 

maintenance. 

The future scope is associated with several 

directions. If we assume that the statistical 
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characteristics of the distributions for defining 

parameters are priori unknown, then it is advisable 

to develop adaptive algorithms of prediction. 

Another direction is connected with taking into 

account a large number of OS elements. Such 

accounting can allow a more complete assessment 

of both possible risks and the consequences of 

their occurrence. 
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