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Abstract 
Modern companies contain a huge number of processes. The larger and more complex the 

business that one person or company is engaged in, the more impossible it becomes to keep 

track of all the processes in manual mode. Each element is at risk of failure, and in order to 

prevent or quickly respond to various breakdowns, you need to be able to recognize errors 

automatically so that in case of critical situations, seek help from a specialist who can fix 

everything. For modern systems, which can be important every second and which constantly 

process huge flows of information, a method is needed that will allow you to quickly 

recognize changes in state, for example, a deterioration in the patient's condition or server 

failure. To solve these and similar problems, a new method based on the use of Fisher's linear 

discriminant and Petunin statistics is proposed. To simulate the process, after turning on the 

sensors to capture data and a continuous flow of information, a multidimensional time series 

will be generated, after which the method will recognize changepoints that indicate that the 

object has changed state or something has happened to it. A clear probabilistic interpretation 

of the method underlying this classification greatly expands its capabilities within the 

framework of risk-informed systems. 
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1. Introduction

The use of automatic systems and artificial intelligence to recognize changepoints in 

multidimensional time series provides great opportunities for risk-informed systems. For example, in 

the fields of medicine, engineering, economics, cybersecurity, which may be narrowly focused or 

if the region lacks qualified employees. This will help to optimize the use of human resources, 

which can be directed to the management or solving critical issues, for example, those related to 

people's lives.  

Nuclear power plants provide another important example of the responsible use of risk-

informed systems. In the design, use, economics, and licensing of such energy sources, safety plays a 

key role. Since such facilities have been used for several decades, it is necessary to ensure the 

integrity and operability of vital elements of nuclear power plants in order to prevent, and 

otherwise reduce or mitigate the consequences of accidents that have occurred. Historically, 

plant designers have redesigned nuclear power plant systems to provide reliability in the form 

of redundant and varied safety features and to ensure that even in the event of abnormal and 

unplanned situations, the health and safety of workers and the public can be protected with a high 

degree of confidence.  

For a method to be useful, it must have the following properties, namely: 

1. High accuracy to minimize the possibility of false positive and false negative results

2. Stability so that single outliers or anomalies cannot severely corrupt the data series and create a

false changepoint. 
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3. Independence from the main distributions, so that the method is as versatile as possible and can 
be applied in different areas and for different situations, processes, objects. 

4. Low cost of computing to be able to work online without using a lot of computing power and 
without overloading the server. 

5. Balanced sensitivity, that is, not too high so as not to react if the patient simply turned over on 
the other side, but not too low so as not to miss the explosion of a reactor at a nuclear power plant. 

This article will talk about a new non-parametric method for detecting changepoints in multivariate 

time series based on the metric developed in (Klyushin and Petunin, 2003) and demonstrated 

advantages over Kolmogorov-Smirnov and Wilcoxon statistics (Klyushin and Urazovskyi, 2021), and 

to show its medicinal benefits.  

In section 2.1, we describe the state of the art in the field of detection of changepoints in 

multivariate time series. In section 2.2 we will consider the algorithm for calculating the Petunin 

statistic and its properties. In section 2.3 we will consider the algorithm for constructing the Fisher 

linear discriminant. In section 3.1 we present the results of numerous numerical experiments with a 

wide range of distributions. Section 3.2 considers possible applications of the proposed algorithm. For 

example, we can investigate the presence of various diseases in a virtual patient by measuring its 

parameters, such as heart rate, blood oxygen saturation and body temperature, which need to be 

monitored. 

2. Theoretical part
2.1. Literature review

When considering a task of searching and recognizing change points of random 

multidimensional time series there are many ideas for applying the results obtained. A change point of 

time series is a point that separates two pieces of a series into ones that have different distributions. 

The developed methods for solving the problem of finding a point of change in multidimensional time 

series are usually separated into algorithms for streaming (for data coming one by one) and already 

fully known (when the whole series is already given completely) data. Streaming data goes constantly 

in time, and already known ones are given in their entirety. A detailed review of the change point 

detection method in the already given time series was done in (Truong, Oudre and Vayatis, 2020). 

Since we want to consider an independent of initial distributions method for streaming data, we will 

consider the streaming algorithms discussed in articles over the past few years. 

A common and complex problem that arises when considering our problem is the increase in 

dimension, which can add, for example, problems with the speed of calculations. In (Alippi et al, 

2016), the problem of determining the point of change in the time series was discussed using 

Kullback–Leibler divergence and the log-likelihood function with different distributions. The authors 

showed that the more the data dimension grows, the worse we can notice changes in the set value. 

In the article (Wang and Zwetsloot, 2021), attention is paid to the problems associated with increasing 

the data dimension. The authors described a method for detecting a change point using control charts. 

Their algorithm makes it possible to detect sparse shifts of the mean vector.  

Detection of a change point can be considered with different variations: simply look for the presence 

of a change point anywhere in the time series or localization of exactly the coordinates of the desired 

point. In (Jaehyeok, Ramdas, and Rinaldo, 2022), attention is paid to the presence of a change point 

somewhere, but the determination of the coordinate of the desired point does not have sufficient 

accuracy and localization. A Bayesian method proposed in (Sorba and Geissler, 2021) has lineax 

computational complexity with respect to the number of points, but puts the researcher in a tradeoff of 

speed and accuracy. 

The method discussed in (Navarro, Allen, and Weylandt, 2021) showed excellent performance of 

the convex network clustering method, which unfortunately requires large computational costs. One 

of the main methods for finding change points, discussed in (Tickle, Eckley, and Fearnhead, 2021), 

like many of today's change point detection methods (used in this article for terrorist research), has the 

assumption that the data flow is independent of time. Although this criterion may be resistant to the 

violation of this condition, however power may decrease. 



The proposed method is needed to process a continuous stream of data, can track outliers and 

does not rely on any specific assumptions and known facts about the distribution of data. Below we 

consider articles whose authors approached the problem from the same angle. In (Wendelberger et al., 

2021) the extended Bayesian Online Changepoint Detection was developed. A method proposed in 

(Adams and MacKay, 2007) is dedicated to the exploration of geographical data. In (Cooney and 

White, 2021) the authors  considered algorithms proposed exclusively for exponential models. To 

increase the accuracy of functioning, in (Castillo-Matteo, 2021) the authors made assumptions on data 

distribution. In (Hallgren, Heard, and Turcotte, 2021), data on the type of distribution helped to 

optimize the computational complexity of the. The paper (Fotoohinasab, Hocking, and Afghah, 2021) 

has the same drawback. It is required to make a priori assumptions about the data in order to find the 

changepoints in the model. To determine the points of change in a multivariate time series  more 

precisely, it is often necessary to pre-process the data (Fearnhead and  Rigaill , 2018). In (Harle et al., 

2014), the authors reviewed the Bayesian method for segmenting multivariate time series using the 

MCMC method and Gibbs sampling. The authors have demonstrated that change points are stably 

detected and their coordinates localized by implicitly examining the dependency structure. Similar 

ideas were proposed in the article (Renz et al., 2021) for gesture recognition.  Сhange point estimation 

using the Yule-Walker moment estimator (Gallagher et al., 2021) is unstable due to the large shifts in 

the means. 

In (Wang et al, 2019), the authors consider an algorithm that is used to stream data using a huge 

matrix dependent on the dimension of the source data space. Similar methods discussed in (Romano 

et al., 2021) where the authors proposed a method called Functional Online CuSUM (FOCuS). The 

idea is rolling the window and running the previously developed methods in parallel for all window 

sizes. The efficiency and applicability of the algorithm was shown by detecting anomalies in the 

computer server data. 

Analysis of papers on this topic shows that the most desirable qualities by searching for points of 

change in our problem are 1) stability, 2) high accuracy of calculations, 3) speed of work and 4) 

independence from basic distributions. Below, we describe such an algorithm based on so-called 

Petuninʼs statistics. 

2.2. Petunin’s statistics 

The Petunin’s statistic (𝑝-statistic) is a measure of proximity between samples proposed by the 

Ukrainian mathematician Yuriy Petunin. It is used to test the hypothesis that the distribution functions 

of two samples are equal. 

Let us consider two general populations 𝐺 and 𝐺′ and corresponding distribution functions 𝐹𝐺 and

𝐹𝐺′.

Let there be two samples 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛) ∈ 𝐺 and 𝑥′ = (𝑥1′, 𝑥2′, … 𝑥𝑚′) ∈ 𝐺′, and 𝑥(1), ≤ 
𝑥(2) ≤ 𝑥(3) … ≤ 𝑥(𝑛) and 𝑥(

′
1) ≤ 𝑥(

′
2) ≤ 𝑥(

′
3) … ≤ 𝑥(

′
𝑚) - corresponding ordinal statistics and it is

necessary to determine whether they belong to the same distributions. Suppose that 𝐹𝐺(𝑢) = 𝐹𝐺′ (𝑢), 
then 

𝑃 (𝐴𝑖𝑗
(𝑘)

) = 𝑃 (𝑥𝑘
′ ∈ (𝑥(𝑖), 𝑥(𝑗))) = 𝑝𝑖𝑗

(𝑛)
= 

𝑗 −  𝑖

𝑛 + 1
(1.1) 

If we have a sample 𝑥′ ∈ (𝑥(1)
′ , 𝑥(2)

′ , 𝑥(3)
′ , … , 𝑥(𝑚)

′ ), we can find the frequency ℎ𝑖𝑗 random event

𝐴𝑖𝑗 and confidence intervals (Δ𝑖𝑗
(1)

, Δ𝑖𝑗
(2)

) for probability 𝑝𝑖𝑗 at a given level of significance 𝛽, i.e

𝐵 = {𝑝𝑖𝑗 ∈ (Δ𝑖𝑗
(1)

, Δ𝑖𝑗
(2)

)} , 𝑝(𝐵) = 1 − 𝛽 (1.2)

According to (Van der Waerden, 1969) 
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4
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(1.3)
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Where 𝑔 satisfies the condition 𝜙(𝑔) = 1 −
𝛽

2
 (𝜙(𝑔) – the density of the normal distribution). 

Value 𝑔 determines the level of significance of the confidence interval 𝐼𝑖𝑗
(𝑛,𝑚)

= (Δ𝑖𝑗
(1)

, Δ𝑖𝑗
(2)

);

According to rule 3𝜎 (Petunin, Klyushin, Ganina, Borodai and Andrushkiv, 2001) at 𝑔 = 3 the level 

of significance of this interval does not exceed 0.05. Let's denote by 𝑁 number of all the confidence 

intervals 𝐼𝑖𝑗 = (Δij
(1)

, Δij
(2)

). It is clear that 𝑁 =
𝑛(𝑛−1)

2
. Denote by 𝐿 – the number of those intervals 𝐼𝑖𝑗,

which contain probability 𝑝𝑖𝑗
(𝑛)

. Statistics ℎ(𝑛) =
𝐿

𝑁
 we will call 𝑝-statistics and it will be a measure of

closeness 𝜌(𝑥, 𝑥′) between samples 𝑥 and 𝑥′. Let's substitute the obtained value ℎ in the formula for 

calculating confidence intervals, we will get a confidence interval 𝐼 = (Δ(1), Δ(2)) to test the 
hypothesis 𝐻 with a level of significance approximately equal to 0.05 (Klyushin and Petunin, 2003) 

2.3. Fisher’s linear discriminant 

The terms Fisher's linear discriminant and LDA are often used interchangeably, although Fisher's 

original article (Fisher, 1936) actually describes a slightly different discriminant, which does not 

make some of the assumptions of LDA such as normally distributed classes or equal class 

covariances. 

Suppose two classes of observations have means �⃗⃗�⃗⃗0 , �⃗⃗�⃗⃗1  and covariances Σ0, Σ1. Then the linear 
combination of features �⃗⃗� ⋅ 𝑥  will have means �⃗⃗� ⋅ �⃗⃗�⃗𝑖  and variances �⃗⃗� 𝑇Σ𝑖 ⃗�⃗�   for 𝑖 = 0,1. Fisher 
defined the separation between these two distributions to be the ratio of the variance between the 

classes to the variance within the classes: 

𝑆 =
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 =

(�⃗⃗� ⋅ 𝜇𝑖⃗⃗  ⃗ − �⃗⃗� ⋅ 𝜇0⃗⃗⃗⃗ )2

�⃗⃗� 𝑇Σ1�⃗⃗� + �⃗⃗� 𝑇Σ0�⃗⃗� 
=

(�⃗⃗� ⋅ (𝜇𝑖⃗⃗  ⃗ − 𝜇0⃗⃗⃗⃗ ))
2

�⃗⃗� 𝑇(Σ0 + Σ1)�⃗⃗� 
This measure is, in some sense, a measure of the signal-to-noise ratio for the class labelling. It can 

be shown that the maximum separation occurs when 

�⃗⃗� ∝ (Σ0 + Σ1)
−1(𝜇𝑖⃗⃗  ⃗ − 𝜇0⃗⃗⃗⃗ )

When the assumptions of LDA are satisfied, the above equation is equivalent to LDA. 

Be sure to note that the vector �⃗⃗�  is the normal to the discriminant hyperplane. As an example, in a 

two dimensional problem, the line that best divides the two groups is perpendicular to �⃗⃗� . 
Generally, the data points to be discriminated are projected onto �⃗⃗� ; then the threshold that best 

separates the data is chosen from analysis of the one-dimensional distribution. There is no general rule 

for the threshold. However, if projections of points from both classes exhibit approximately the same 

distributions, a good choice would be the hyperplane between projections of the two means, �⃗⃗� ⋅ 𝜇0⃗⃗⃗⃗ 
and �⃗⃗� ⋅ 𝜇1⃗⃗⃗⃗ . In this case the parameter 𝑐 in threshold condition �⃗⃗� ⋅ 𝑥 > 𝑐 can be found explicitly:

𝑐 = �⃗⃗� ⋅
1

2
(𝜇0⃗⃗⃗⃗ + 𝜇1⃗⃗⃗⃗ ) =

1

2
𝜇1⃗⃗⃗⃗ 

𝑇
Σ1

−1𝜇1⃗⃗⃗⃗ −
1

2
𝜇0⃗⃗⃗⃗ 

𝑇
Σ0

−1𝜇0⃗⃗⃗⃗ 

3. Practice part
3.1. Numerical experiments

The purpose of our experiments is to demonstrate the accuracy of the following algorithm for a 

stationary time series, which should find the first changepoint and test the homogeneity hypothesis. 

At the beginning we take 𝑤𝑖𝑑𝑡ℎ and designate the elements 𝑥1, … , 𝑥𝑤𝑖𝑑𝑡ℎ - starting ones, with which 
we will continue to work using the sliding window method. When we have a sample 

(𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑤𝑖𝑑𝑡ℎ), we do the following with it:
 Building a linear Fisher discriminant for samples (𝑥1, 𝑥2, … , 𝑥𝑤𝑖𝑑𝑡ℎ) and

(𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑤𝑖𝑑𝑡ℎ) and find the projections on the line.



 Rotate the resulting straight line so that only one coordinate remains, and make the rest the

same. Getting projections (𝑝1, 𝑝2, … , 𝑝𝑤𝑖𝑑𝑡ℎ) and (𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑖+𝑤𝑖𝑑𝑡ℎ)
 Calculate the Petunin’s statistics 𝑝𝑠𝑡𝑎𝑡 for the resulting sets of projections

 If 𝑝𝑠𝑡𝑎𝑡 ≥ 0.95, then we say that the new sample has the same distribution as the original one,

otherwise we say that the other.

 Shifting the sample (𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑤𝑖𝑑𝑡ℎ) one position to the right and start the algorithm

from the beginning. We do this until all the data is gone.

If sample after element 𝑥𝑛 become inhomogeneous, then the point 𝑥𝑛+1 regarded as a changepoint.

To demonstrate how the algorithm works, we take a series of length 𝑁 = 400 and divide it into 4 

equal intervals with different distributions. Then we run our algorithm 100 times and average the 

values of Petunin's statistics (P statistics), after which we display the obtained values in two colors: 

blue is not less than 0.95, that is, for those samples that have the same distribution as the original and 

red less than 0.95 - having a different distribution. 

For each experiment, we calculated five measures of error: mean absolute error (MAE), mean 

squared error (MSE), mean squared deviation (MSD), root mean squared error (RMSE), root mean 

squared error (RMSE), and root mean squared error (RMSE), and normalized root mean squared error 

(NRMSE). To demonstrate the effectiveness of the described algorithm, we will rely on the latter 

value. As is well known, if NRSMR > 0.5 the results can be considered as random. If a NRMSE is 

close to 0, then the results are considered good. 

3.1.1. Almost non-overlapping uniform distributions with different means 

Let's consider a saltatory time series, which is composed of uniform distributions that practically 

do not overlap. On this time series, we will be able to test the shift hypothesis. 

Table 1 
Time intervals and uniform distributions with different means 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 U(65;75) U(96.5;97.5) U(36.4;36.7) 
100-199 U(100;110) U(97.0;99.0) U(38.0;39.0) 
200-299 U(65;75) U(96.5, 97.5) U(36.4;36.7) 
300-399 U(70,90) U(97.5;99.0) U(37.0;37.5) 

Figure 1: An example of time series consisting of samples from almost non-overlapped 
uniform distributions with different means and their change points 



Figure 2: Values of the 𝑃 statistics for practically non-overlapping uniform distributions with 
different means. Blue dots indicate times when the values are not less than 0.95, and red dots 
indicate the opposite, when they are less 
Table 2 
Error measures for almost non-overlapping uniform distributions with different means 

Error measure Value 

MAE 21.13 
MSE 583.21 
MSD 
RMSE 

NRMSE 

16.95 
21.13 
0.21 

As can be seen from Table 1 and Figure 1, the desired change point is 100. In Figure 2, we see that 

the p-statistic takes values greater than 0.95 only near intervals that have a distribution similar to the 

first one and the measures of error we can see in Table 2. 

3.1.2. Uniform distributions with different means, which are initially strongly 
overlap, then slightly overlap, and finally no overlap 

Let's consider a saltatory time series, which is composed of uniform distributions that are initially 

strongly overlap, then slightly overlap, and finally no overlap. On this time series, we will be able 

to test the shift hypothesis. 

Table 3 
Time intervals and uniform distributions with different means, which are initially strongly 
overlap, then slightly overlap, and finally no overlap 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 U(60;70) U(96.0;97.0) U(36.4;36.7) 
100-199 U(63;73) U(96.3;97.3) U(36.5;36.8) 
200-299 U(70;80) U(97.0, 98.0) U(36.7;37.0) 
300-399 U(85,95) U(99.0;99.9) U(37.5;37.8) 



Figure 3: Time series consisting of samples from uniform distributions with different means, which 
are initially strongly overlap, then slightly overlap, and finally no overlap 

Figure 4: Values of the 𝑃 statistics for samples from uniform distributions with different means, 
which are initially strongly overlap, then slightly overlap, and finally no overlap. Blue dots indicate 
times when the values are not less than 0.95, and red dots indicate the opposite, when they are less 
Table 4 
Error measures for uniform distributions with different means, which are initially strongly overlap, 
then slightly overlap, and finally no overlap 

Error measure Value 

MAE 23.21 
MSE 653.63 
MSD 
RMSE 

NRMSE 

18.01 
23.21 
0.23 

As can be seen from Table 3 and Figure 3, the desired change point is 100. In Figure 4, we see that 

the p-statistic takes values greater than 0.95 only in the first interval and the measures of error we can 

see in Table 4. 



3.1.3. Normal distributions with different means that almost do not overlap 

Let's consider a saltatory time series, which is composed of normal distributions with different 

means that almost do not overlap. On this time series, we will be able to test the shift hypothesis. 

Table 5 
Time intervals and normal distributions with different means that almost do not overlap 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 N(70;2) N(96.0;0.15) N(36.5;0.05) 
100-199 N(105;2) N(96.3;0.33) N(38.5;0.15) 
200-299 N(70;2) N(97.0, 0.15) N(36.5;0.05) 
300-399 N(80,4) N(99.0;0.25) N(37.3;0.98) 

Figure 5: Time series consisting of samples from normal distributions with different means that 
almost do not overlap 

Figure 6: Values of the 𝑃 statistics for samples from normal distributions with different means that 
almost do not overlap. Blue dots indicate times when the values are not less than 0.95, and red dots 
indicate the opposite, when they are less 



Table 6 
Error measures for Normal distributions with different means that almost do not overlap 

Error measure Value 

MAE 19.54 
MSE 509.52 
MSD 
RMSE 

NRMSE 

16.02 
19.54 
0.19 

As can be seen from Table 5 and Figure 5, the desired change point is 100. In Figure 6, we see that 

the p-statistic takes values greater than 0.95 only near intervals that have a distribution similar to the 

first one and the measures of error we can see in Table 6. 

3.1.4. Normal distributions with the same means, but with variances that 
gradually begin to differ 

Let's consider a saltatory time series, which is composed of normal distributions with the same 

means, but with variances that gradually begin to differ. On this time series, we will be able to test 

the scale hypothesis. 

Table 7 
Time intervals and normal distributions with the same means, but with variances that 
gradually begin to differ 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 N(70;1) N(97.0;0.10) N(36.55;0.05) 
100-199 N(70;2) N(97.0;0.15) N(36.55;0.10) 
200-299 N(70;3) N(97.0,0.20) N(36.55;0.15) 
300-399 N(70;5) N(97.0,0.30) N(36.55;0.20) 

Figure 7: Time series consisting of samples from normal distributions with the same means, but with 
variances that gradually begin to differ 
As can be seen from Table 7 and Figure 7, the desired change point is 100. In Figure 8, we see that 

the p-statistic takes values greater than 0.95 only in the first interval and the measures of error we can 

see in Table 8. 



Figure 8: Values of the 𝑃 statistics for samples from normal distributions with the same means, but 
with variances that gradually begin to differ. Blue dots indicate times when the values are not less 
than 0.95, and red dots indicate the opposite, when they are less 
Table 8 
Error measures for normal distributions with the same means, but with variances that gradually 
begin to differ 

Error measure Value 

MAE 21.74 
MSE 594.18 
MSD 
RMSE 

NRMSE 

12.76 
21.74 
0.21 

3.1.5. Normal distributions with the same means, but with variances that 
differ more strongly 

Let's consider a saltatory time series, which is composed of normal distributions with the same 

means, but with variances that differ more strongly. On this time series, we will be able to test 

the scale hypothesis. 

Table 9 
Time intervals and normal distributions with the same means, but with variances that differ 
more strongly 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 N(70;1) N(97.0;0.10) N(36.55;0.05) 
100-199 N(70;5) N(97.0;0.50) N(36.55;0.25) 
200-299 N(70;7) N(97.0,1.00) N(36.55;0.5) 
300-399 N(70;10) N(97.0,1.50) N(36.55;0.75) 

As can be seen from Table 9 and Figure 9, the desired change point is 100. In Figure 10, we see that 

the p-statistic takes values greater than 0.95 only in the first interval and the measures of error we can 

see in Table 10. 



Figure 9: Time series consisting of samples from normal distributions with the same means, but with 
variances that differ more strongly 

Figure 10: Values of the 𝑃 statistics for samples from normal distributions with the same means, but 
with variances that differ more strongly. Blue dots indicate times when the values are not less than 
0.95, and red dots indicate the opposite, when they are less 

Table 10 
Error measures for normal distributions with the same means, but with variances that differ more 
strongly 

Error measure Value 

MAE 20.03 
MSE 537.41 
MSD 
RMSE 

NRMSE 

13.53 
20.03 
0.20 



4. Conclusion

In this chapter, an algorithm for finding changepoints using Fisher's linear discriminant and Petunin's 

statistics was described. Experiments demonstrate fairly fast and accurate recognition when changing 

the distribution function for a wide range of distributions. This gives a clear presentation of the 

results, which means that this algorithm can be applied to risk-informed systems, in particular, to 

work in clinics, to monitor the condition of patients with coronavirus. 
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