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Abstract 
In banks and other credit organizations, the task of credit scoring often arises when making decisions 
on granting loans. The last one consists of making a reasoned decision based on information about the 
applicant, whether she should be granted a loan, and, if so, on what terms. This paper proposes the 
application of parallel calculations of the Random forest algorithm when solving the credit scoring task. 
This approach made it possible to reduce the time of model training and dataset processing significantly. 
Expectedly, when applying less data, the resulting acceleration and efficiency worsen. Using only 2500 
entries, the execution time of the sequential algorithm is less than the parallel algorithm. The developed 
software was tested on three different processors: 4-core, 8-core, and 12-core, to evaluate the 
parallelization quality of data pre-processing. The classification algorithm is computationally complex 
and time-consuming, so we obtained practically the same acceleration for processing 5000 and 10000 
records. With this amount of data, the 12-core processor gave the biggest gain in time when working 
with 12 threads. As a result, it is possible to have an acceleration of more than 6. This efficiency indicator 
of the proposed parallel algorithm can be significantly improved by varying the number of threads and 
considering the current trends in developing the multi-core architecture of computing systems. Also, 
using data without pre-processing, the following evaluation metrics were obtained: AUC=0.9 and 
Precision=0.845, and using data after pre-processing, these metrics were: AUC=0.86, Precision=0.89. 
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1. Introduction 
To date, a significant problem for many banking institutions is the non-repayment of loans at 60-
65% of borrowers [1, 2]. As a result, the number of credit risks also increases risks to income and 
capital due to the inability of the party who has assumed obligations to fulfill the terms of any 
financial agreement with the bank or otherwise fulfill the obligations assumed. There are many 
methods for credit risk assessment: credit assessment methods, decision tree methods, rating 
methods, Monte Carlo method, scoring, taxonomic analysis, stress testing, etc. [3, 4]. The last is 
widely used in Ukraine. 

In this work, we will look at the credit scoring method. In turn, we understand credit scoring 
as a classifier problem that determines whether a loan should be granted to a borrower based on 
the machine learning method [5]. Banking systems already use their own scoring systems, and 
they analyze the risks for their credit portfolio based on them. Many experts use neural networks 
and support vector machines to create such a system. The solution proposed in this work is based 
on the Random forest algorithm. This method is based on the construction of a large number 
(ensemble) of decision trees, each of which is built on a sample obtained from the original training 
sample using bootstrap (sampling with return) [1, 6]. Objects are classified by "voting." Each tree 
assigns a classified object to one of the classes and the class for which the most trees voted wins. 
Each decision tree does not give very high classification accuracy, but the result is true due to large 
number of trees. 

A common problem of classification algorithms, including the Random forest algorithm, is 
wasting time due to processing large volumes of data. The solution proposed in this work is the 
use of parallel computing. This solution will be used for data pre-processing and training the model 
itself. Parallel computing makes programs run faster as more processes or threads are used [7]. 
Various studies have already demonstrated the implementation of parallel calculations for the 
Random Forest algorithm [8]. 

The purpose of this work is the parallelization of the Random Forest algorithm for the analysis 
of risks in lending and the evaluation of the obtained efficiency coefficients. 

With the development of technology, the problem of qualitative and effective classification 
arises since data volume grows yearly. Current datasets can contain millions, if not billions, of 
records. Moreover, these data have a lot of noise, and some attributes do not carry any useful 
information about the object at all. 

So, for high-quality training of models, the data should first be processed so that they carry 
more content specifically for our task and then highlight their main features. A Random forest was 
presented as a classifier in [9]. The authors outlines an approach to improving credit score 
modeling using Random forests and compares Random forests with logistic regression. However, 
they did not analyze the problems of using this classifier to analyze large volumes of data. 

Paper [10] proposes a credit scoring method that uses information from decision trees to 
improve the performance of logistic regression. However, this classifier gained the most popularity 
primarily due to its application in tracking [11]. 

In our work, we use this classifier for recognition/classification tasks. The advantages of 
randomized trees are that they are much faster to train and test than traditional classifiers (such as 
SVM), they reduce the variance, and they increase the accuracy of the model by averaging the 
previously retrained data compared to conventional decision trees. 

Paper [12] develops a decision tree ensemble model using the differential sampling rate, 
Synthetic Minority Oversampling Technique, and AdaBoost which is a prediction framework 
integrating supply chain information to predict enterprise credit risk. The advantage of the 



classification approach considered in this work over the method in [12] is that the model's 
performance primarily depends on the model itself and the amount of data. Since we are working 
with a limited dataset, we will use a Random forest instead of a fully connected network to 
maximize the performance and training speed of the model. However, the most crucial advantage 
of the approach proposed in the work is that the data can be pre-processed with the help of the 
VGG-16 neural network. It makes it possible to significantly speed up the training and resistance 
to overfitting the classifier. So, in the final result, we will get a classifier with a high learning 
speed, which can be used, for example, on modern tensor cores of the Nvidia video card for 
processing large datasets (more than 1010 records) and a relatively high resistance to outliers and 
retraining. 

2. Proposed methodology 

2.1. Statement of the task and description of the dataset 

As input, the pre-trained model should classify credit risks with a value from a binary set. The 
dataset [13] consists of 600 records with 10 features about customers of a German bank (see 
Figure 1). There are 2 types of data: object, int64. Attributes: Age, Job, Credit Amount, Duration 
– int64; Sex, Housing, Savings, Checking accounts, Purpose, Risk – object. 

 
Figure 1: Initial dataset before pre-processing 

2.2. Data pre-processing 

In order to improve the quality of predictions, the data can be processed in a certain way so that 
the necessary features are highlighted. Let us start by considering the features of this dataset and 
the quantitative distribution of good and bad borrowers (see Figure 2). 



 
Figure 2: Quantitative ratio of good/bad bank customers 

Figure 3 shows how the age distribution of borrowers affects credit repayment/non-repayment. A 
descriptive statistic of age distribution is a measure of central tendency; the distribution deviates 
from normal in these cases. 

 
Figure 3: Distribution of borrowers by age 

If we check the normality of this distribution on the QQ-Plot, we get Figure 4. We can also see 
deviations in the 2nd and 4th quartiles. 



 
Figure 4: Deviation of the distribution of borrowers by age from normal 

We will visualize the credit amount distribution based on the housing availability at the bank's 
client. The visualization of distributions in Figure 5 shows that borrowers borrow more significant 
amounts if they do not have their own homes. 

 
Figure 5: Distribution of loan amounts based on the availability of housing for an honest/dishonest client 

The next process that the data goes through before classification is the selection of features of 
objects when passing through the convolutional, activation, and pooling layers of the pre-trained 
VGG-16 neural network. These features are transferred to the input of the classifier. Let us clarify 



that the characteristics of the object and the corresponding label – class – "risky loan", and "risk-
free loan" are submitted to the input of the Random forest classifier. 

2.3. Consistent and proposed parallel algorithm with 
computational complexity analysis 

Consistent algorithm Random forest [14]. 
Background: training set 𝑆𝑆 ≔ (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛), attributes 𝐹𝐹 and the number of trees in the 

forest 𝐵𝐵 
function RandomForest (𝑆𝑆,𝐹𝐹) 
1      𝐻𝐻 ← ∅ 
2      for 𝑖𝑖 ∈ 1, … ,𝐵𝐵 do  
3             𝑆𝑆(𝑖𝑖) ← 𝐴𝐴  subset of attribute objects from 𝑆𝑆 
4             ℎ𝑖𝑖  ← RandomizedTreeLearn (𝑆𝑆(𝑖𝑖),𝐹𝐹) 
5             𝐻𝐻 ← 𝐻𝐻 ∪ {ℎ𝑖𝑖}  
6      end for  
7      return H 
8 end function  
 
function RandomizedTreeLearn (𝑆𝑆,𝐹𝐹) 
1     for each tree node:  
2         𝑓𝑓 ← a very small subset of the attributes of 𝐹𝐹 
3         Division by the best function in 𝑓𝑓 (gini,entropy) 
4         returning the learned tree 
5     end for 
6 end function 
 
Parallel algorithm Random forest  
omp_set_num_threads(NUM_THREADS); 
1 function  RandomForest (𝑆𝑆,𝐹𝐹)  
2         𝐻𝐻 ← ∅ 
3        #pragma omp parallel private (𝑖𝑖, 𝑠𝑠𝑖𝑖 , ℎ𝑖𝑖) shared(𝐻𝐻) 
4        { 
5               #pragma omp for 
6             for 𝑖𝑖 ∈ 1, … ,𝐵𝐵 do  
7                     𝑆𝑆(𝑖𝑖) ← 𝐴𝐴 subset of objects from 𝑆𝑆  
8                      ℎ𝑖𝑖 ← RandomizedTreeLearn (𝑆𝑆(𝑖𝑖), 𝐹𝐹) 
9                      𝐻𝐻 ← 𝐻𝐻 ∪ {ℎ𝑖𝑖} 
10            end for  
11      } 
12      return 𝐻𝐻 
13 end function  
 



For classification tasks, it is advisable to establish  𝑓𝑓 =  √𝑑𝑑. We usually take 𝑑𝑑 – to be the 
number of functions for regression problems. It is recommended to build each tree until all its 
leaves will contain only n_min=1 examples of classifying and n_min=5 examples for regression. 

 
Analysis of the complexity of sequential and parallel algorithms: 
Sequential: Complexity_sequential = O(T ∗ 𝑛𝑛2 ∗ �𝑝𝑝) 

Parallel: Complexity_parallel = O �T∗𝑛𝑛
2∗√𝑝𝑝

𝑁𝑁𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
�, where: 

1) T is the number of trees to be built; 
2) �𝑝𝑝 isthe number of features that are taken into account at each node of the tree; 
3) 𝑛𝑛2 is the number of tree nodes*the number of partitions of the value of the variable; 
4) 𝑁𝑁𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 isthe number of threads allocated for building trees. 

3. Research results 
These are the results of the implementation of the proposed parallel algorithm. These results were 
obtainedon 3 different processors: 4-core, 8-core, and 12-core. Python language and Joblib 
library [15] were chosen for algorithmimplementation. Joblib is optimized for the fast and reliable 
use of big data. By default, Joblib uses the 'loky' internal module [16] to run separate Python 
worker processes to execute tasks concurrently on different CPUs. it is possible to unlock the 
Python Global Interpreter Lock (GIL) for most of your computations. In that case, this technology 
allows the use of multithreading, which can significantly increase execution speed. Tables 1-3 
present the execution time of the proposed parallel algorithm on a 4, 8, and 12-core processor. 

Table 1 
Execution time of the parallel algorithm on a 4-core processor, ms 

Number 
of 

records, 
n 

The number of threads 

1 2 4 8 

2500 663.35 424.5 301.0 308.2 
5000 1326.7 849.1 602.0 616.3 

10000 2669.4 1714.1 1220.0 1248.6 

Table 2 
Execution time of the parallel algorithm on an 8-core processor, ms 

Number 
of 

records, 
n 

The number of threads 

1 2 4 8 

2500 572.6 350.8 241.7 190.1 
5000 1123.2 679.5 461.4 358.2 

10000 2230.4 1343.0 906.8 700.3 

 



Table 3 
Execution time of the parallel algorithm on a 12-core processor, ms 

Number 
of 

records, 
n 

The number of threads 

1 3 6 12 

2500 591.5 217.7 127.3 92.6 
5000 1180.2 432.4 251.7 182.1 

10000 2365.9 869.1 508.0 369.7 

It can be seen from Tables 1-3 that the best result can be obtained by the parallel algorithm in the 
case when the number of threads is equal to the number of cores of the multiprocessor computer 
system, which indicates the reliability of the obtained results. Furthermore, even with12 threads 
on a 12-core processor, it was possible to reduce the calculation time by more than 6 times (see 
Table 4). 

Table 4 
Indicators of acceleration and efficiency of the software implementation of the parallel algorithm 
on a 12-core processor 

Number 
of 

records, 
n 

3 threads 6 threads 12 threads 

Acceleration Efficiency Acceleration Efficiency Acceleration Efficiency 

2500 2.71 0.53 4.64 0.77 6.38 0.90 
5000 2.73 0.54 4.68 0.78 6.48 0.91 

10000 2.72 0.53 4.65 0.77 6.39 0.90 

There are various ways to improve efficiency [17]. As seen from Table 4, with an increase in the 
number of threads, the efficiency approaches unity, which also indicates the optimization of the 
algorithm by taking into account such properties as multithreading and multi-core of modern 
personal computers. 

Next, in Figures 6-7, we will present data classification results using the trained Random Forest 
model. 



 
Figure 6: Error matrix for data without pre-processing 

 
Figure 7: Error matrix for data after pre-processing 

To see more clearly (see Figure 8) how the parallel classifier works, let us have an example: A 24-
year-old skilled worker with his own home and an average checking account, who wants to buy a 
radio/TV, the probability of his good faith is Pr(𝑌𝑌 = 1|𝑋𝑋;𝑊𝑊) = 0.824. Another example is a 42-
year-old skilled worker without housing with a small checking account who wants to buy a car, 
the likelihood of a credit Pr(𝑌𝑌 = 1|𝑋𝑋;𝑊𝑊) = 0.45. 



 
Figure 8: Test examples of the classifier program 

Let us introduce a few more indicators that will allow us to evaluate our model better (see Figure 
9). 

Precision is the ratio precision =  tp / (tp +  fp),  where tp is the number of true positive 
elements, and fp is the number of false positives. Precision is intuitively the ability of a classifier 
not to flag a sample as positive if it is negative. 

The recall is the ratio recall = tp / (tp +  fn),  where tp is the number of true positives and fn 
is the number of false negatives. The recall is intuitively the ability of the classifier to find all 
positive samples. 

The F-beta score can be interpreted as the weighted harmonic value of precision and recall 
when the F-beta score reaches its best value at 1 and worst at 0. The F-beta score considers recall 
more than precision, the beta coefficient. beta = 1.0 means that recall and precision are equally 
important. 

Support is the number of cases of each class in y_test. 

 
Figure 9: Performance indicators of the model 

The time of parallel training on data after pre-processing on a 4-core processor is presented in 
Figure 10. Table 5 shows the acceleration of the model training result using a parallel algorithm 
on a 4-core processor. 



 
Figure 10: Parallel training on data after pre-processing, sec 

Table 5 
Acceleration of parallel training on data after pre-processing on a 4-core processor 

Number 
of 

records, 
n 

2 threads 4 threads 8 threads 16 threads 

2500 0.76 0.81 0.76 0.68 
5000 1.39 1.58 1.48 1.39 

10000 1.57 1.89 1.68 1.57 

So, parallelization of Random forest algorithm training on a 4-core processor showed good results 
for a large sample of data. We obtained high acceleration with 2 and 4 threads, and predictably the 
acceleration was degraded with 8 and 16 threads. 

4. Conclusion 
The work demonstrated the use of parallel computing in typical machine learning algorithms, such 
as Random forest. This approach made it possible to reduce the time of model training and dataset 
processing significantly. From the numerical results, it can be seen that the increase in productivity 
strongly depends on the architecture of the specific computer on which the code is executed. 
However, this research is very relevant based on current trends in developing the multi-core 
architecture of computer systems. It is possible to get an acceleration of more than 6 times.  

The effectiveness of the Random forest classification algorithm in the credit scoring problem 
was also demonstrated. The numerical values of the area under the AUC - ROC curve for data 
before pre-processing was 0.80, and for data after pre-processing was 0.9. 
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The algorithm for classifying features of objects proposed in the work made it possible to 
significantly improve the accuracy of calculations compared to the work [9]. 

Using the data without pre-processing, we obtained the following indicators: 

• 𝑇𝑇𝑁𝑁 = 0.80;
• 𝑇𝑇𝑇𝑇 = 0.89;
• 𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9;
• 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛 = 0.845.

Using data after pre-processing, these indicators were:

• 𝑇𝑇𝑇𝑇 = 0.94;
• 𝑇𝑇𝑁𝑁 = 0.84;
• 𝐴𝐴𝐴𝐴𝐴𝐴 = 0.86;
• 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛 = 0.89.

Therefore, it can be concluded that the proposed algorithms have successfully coped with the task. 
The work also demonstrates how one of the essential programming languages in machine learning, 
Python, can be combined with parallel computing in the Joblib library for significant optimization 
of sequential algorithms. 
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