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Abstract 

Every day new calls appear before physicians, such as appearance of new viruses and illnesses. Many 
researches are conducted for the invention of new and improvement of present methods of diagnostics, 
but one of basic questions is remained by early diagnostics of heart troubles. In fact with every year all 
more young patients call to the doctors, therefore loading on the system of health protection in earnest 
increases and not all get medicare in time. Many cases of more heavy flow of illnesses can be prevented 
if diagnostics was conducted quicker and more precisely. It was therefore decided to devote this 
research of method of prognostication such as Ramdom Forest. As by means of the software based on 
this method of prognostication, we will be able to do predictions about cardiac ailments more precisely 
and quicker, that can considerably help to shorten a death rate. Thus, this research will allow the 
creation of software that can predict heart disease based on information entered by the patient and 
allow self-diagnosis.  

Keywords  1 
Mean squared error, the result of the model prediction, residual sum of squares, decision tree, True 
positive, True negative, False positive, False-negative.  

1. Introduction

Healthcare has always been a major area of machine learning research. Our learning algorithms 
can help doctors make diagnoses, analyze X-rays. The cost of error is very high, therefore research 
in this area is always relevant and necessary [6, 17]. 

This paper will conduct a theoretical analysis of the method of random forest and all its 
components as well, namely the decision tree, bootstrapping and bagging. Here will also be a 
theoretical comparison with another ensemble method of the machine training - boosting trees. 

Random forest is an ensemble method, it unites many weak models to create the one powerful 
model. The random forest has shown itself well at work with tabular data, it is resistant to rewriting 
[1, 9]. 
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In the practical part of this work the analysis of a dataset from patients in the hospital, and the 
goal will be to predict based on the provided data or the patient has a cardiovascular disease. Such 
a model can be very useful in hospitals as an additional diagnosis check before appointment of 
treatment [3, 10]. 

2. Review of literature sources 

The FP-Growth algorithm represents the database in the form of a tree called a frequent pattern 
tree or FP tree. This tree structure will maintain the relationship between a set of elements. The 
database is fragmented with a recurring component. This fragmented part is called "pattern 
fragment". Sets of elements of these fragmentary patterns are analyzed. Thus, this method reduces 
the search for frequent item sets comparatively. 

In the book, Trevor Hastie, Robert Tibshirani, and Jerome Friedman "The Elements of 
Statistical Learning Data Mining, Inference, and Prediction" [1] said that "random forests are a 
significant modification of the bagging method, which creates a large number of trees and then 
averages them. In many tasks, random forests are very similar to the boosting method and are 
easier to train and configure. As a result, random forests are popular and implemented in various 
tasks" [12, 18] 

In Leo Braiman's book "Random forests" [2] said – "random forests are an effective tool in 
prediction. Thanks to the law of large numbers, they do not overflow. Entering the right type of 
randomness makes them accurate classifiers and regressors. In addition, the structure in terms of 
the strength of individual predictors and their correlation gives an idea of the ability of the random 
forest to predict" [7, 14] 

In the work of Leo Breiman and Adele Cutler, "Random forests" [3], the following features of 
the random forest algorithm are described: "the best in terms of accuracy among modern 
algorithms; works effectively on large databases; can handle thousands of input variables without 
deleting them; provides estimates of which variables are important for classifications; generates 
an internal unbiased estimate of the generalization error as the forest grows; has an efficient 
method for estimating missing data and maintains accuracy when large portions of data are 
missing; has methods for equalizing errors in unbalanced class datasets; prototypes are calculated 
that provide information about the relationship between variables and classification; calculates 
closeness between pairs of cases, which can be used in clustering, finding outliers, or (by scaling) 
provide interesting insights into the data; offers an experimental method for detecting variable 
interactions" [4, 13] 

In the book S. Revathi, A. Malathi, "Optimization of KDD Cup 99 Dataset for Intrusion 
Detection Using Hybrid Swarm Intelligence with Random Forest Classifier", the advantages of 
random forest are called the following: "overcoming the problem of overfitting; in training data, 
the algorithm is less sensitive to outliers; parameters can be easily set and therefore eliminated the 
need to prune trees of varying importance and accuracy is automatically generated" [5, 16]. 

So, in various sources, the random forest method is called entirely accurate, able to process a 
variety of extensive data with a lost part, such that it stands out among others. Due to these and 
other advantages, the field of application of random forests is wide [7]. 



3. Materials and Methods 

3.1. Decision trees 

Decision trees can be applied to regression and classification problems. The decision tree model 
is a combination of logic rules "if then else" in the Tree data structure. The inner tops of the tree 
are marked with thermonyms, and the ribs are marked with test scales. The weight of the test 
example is compared with these test weights while the prediction. Leaves in trees denote the values 
of the classes to be assumed [8, 12]. 

The advantage of the decision tree is the ability to visualize the results and interpretation of the 
obtained data while obtaining the prediction. 

There are two types of decision trees: 

● classification trees, when the predicted result is a class the data belongs to. 
● regression trees, when the predicted result can be considered as real number (for example, 

air temperature, house price). 

Algorithms for designing decision trees consist of stages "construction" or "tree building" and 
"tree pruning". The questions of a choice of criterion of splitting and a stop of training (if provided 
by the algorithm) are solved during the tree creation. The question of cutting off some of its 
branches is solved during the stage of tree reduction [11]. 

The process of creating a tree is from top to bottom, being descending. During the process, the 
algorithm must find a splitting criterion, sometimes also called a splitting criterion, to split the set 
into subsets that would be associated with this test node. Each test node must be marked with a 
specific attribute. There is a rule for selecting an attribute: it must split the input data set so that 
the objects of the subsets obtained as a result of this splitting, were members of the same class or 
were as close as possible to such a splitting [2, 14]. 

There are different criteria for splitting. The most famous are the measure of entropy and the 
Gini index. If a given set T, including examples of n classes, the Gini index is determined (Formula 
1): 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑇𝑇) = 1 − ∑𝑛𝑛
𝑗𝑗=1 𝑝𝑝𝑗𝑗2,  𝑝𝑝𝑗𝑗 = 𝑁𝑁𝑗𝑗

𝑁𝑁
 - part of class j at node T. (1) 

where T is the current node, 𝑝𝑝𝑝𝑝 is the probability of class j in the node T, n is the number of classes, 
N is the number of objects in the node [16]. 

The measure of entropy in the construction of decision trees is a measure of the diversity of 
classes in node. As a result of the spliting, nodes with a smaller variety of states of the original 
variable. Therefore, the entropy falls, and the quantity internal information in the node grows. 
Formally, the entropy of a certain node T of the decision tree is determined by (Formula 2): 

𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑇𝑇) =  −�
𝑛𝑛

𝑗𝑗=1

𝑝𝑝𝑗𝑗 ⋅ 𝑙𝑙𝑖𝑖𝑔𝑔(𝑝𝑝𝑗𝑗). 
(2) 

The entropy of the whole splitting is the sum of the entropies of all the nodes multiplied by the 
fraction records of each node in the total number of records: (Formula 3): 

𝐼𝐼𝑔𝑔𝑖𝑖𝑖𝑖(𝑆𝑆) = ∑𝑛𝑛
𝑗𝑗=1 . 𝑁𝑁𝑗𝑗

𝑁𝑁
⋅ 𝐼𝐼𝑔𝑔𝑖𝑖𝑖𝑖(𝑇𝑇𝑗𝑗). (3) 

To select a split attribute, use the criterion is called information gain or entropy decrease 
(Formula 4). 

𝐺𝐺𝐺𝐺𝑔𝑔𝑔𝑔(𝑆𝑆) =  𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖(𝑇𝑇) − 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑠𝑠(𝑇𝑇). (4) 



As the best attribute for use in the splitting S is selected the one that provides the largest increase 
in Gain (S) information [2, 15]. 

In the process of building the tree the special procedures that allow you to create optimal trees 
are used. So, the size of the tree does not become excessively large. 

Usually, in order to avoid overfitting, a so-called trimming is used (pruning), that is, they allow 
the tree to grow further, and then cut off the extra branches. Pruning a tree at some node is that 
subtree rooted at that node is removed from the tree, and a label is placed in the node with the 
same result as in the node this node more. Pruning branches or replacing some branches with a 
subtree should be carried out where this procedure does not increase the error. Process passes from 
bottom to top, that is, ascending. 

3.2. Ensemble methods  

Decision trees are a simple model, so it may not be enough to solve complex problems on large 
datasets. Therefore, in practice, ensemble methods based on decision trees, such as random forests 
and boosting systems, are more commonly used. 

For example, in a classification problem, an algorithm is considered weak if its error in the 
training sample is less than 50% but greater than 0%. In the case of binary classification (when 
there are only two classes), we can say that the classifier is weak if it is not much better than a 
simple "guess". If the classifier error in the training sample can be reduced to a value arbitrarily 
close to 0% in polynomial time, then the classifier is called strong [3, 17]. 

The general idea of ensemble methods is that with a few weak classifiers you can create a rule 
that can increase the accuracy of the prediction, and thus create one strong meta-classifier. 

For example, if there are 5 binary classifiers, each of which has a prediction accuracy of 60%, 
then combining them into an ensemble, where the decisive prediction of the object class will be 
decided by a majority vote of these five classifiers, you can increase the accuracy of the meta-
classifier to 68%, as shown (Formula 5): 

𝑟𝑟 = ∑𝑛𝑛
𝑗𝑗 𝐶𝐶𝑛𝑛

𝑗𝑗 ⋅ 𝑝𝑝𝑗𝑗 ⋅ 𝑞𝑞(𝑛𝑛−𝑗𝑗)  , where 𝑝𝑝 = 0.6, 𝑞𝑞 = 0.4,𝑔𝑔 = 5 

𝑟𝑟 = �
5

𝑗𝑗=3

𝐶𝐶5
𝑗𝑗 ⋅ 0.6𝑗𝑗 ⋅ 0.4(5−𝑗𝑗) = 0.68 

(5) 

Simple majority voting (for classifiers) and averaging the results of individual trees (for 
regression models) is not the only way to combine the predictions of the basic models in ensemble 
methods. The weighted voting method is also often used, where the results of the models are given 
more weight in the voting with greater accuracy [3, 18].  

3.3. Bootstrap  

Statistical bootstrap is a method of determining probability distribution statistics based on multiple 
generations of samples by the Monte Carlo method based on an existing sample [4, 5]]. 

The bootstrap method itself is as follows. Suppose there is a sample Z of size N - a set of 
independent equally distributed random variables. Evenly take from the sample N objects with 
return. This means that we will select an arbitrary sample object each time (it is assumed that each 



object has the same probability of being selected from the sample), and each time we select from 
all source objects. 

Because objects are taken from a return sample, objects can be repeated in the resulting sample. 
Repeating the procedure of creating new subsamples, M subsamples will be generated: 𝑍𝑍1 , 𝑍𝑍2 , 
..., 𝑍𝑍𝑚𝑚. These are multiplied subsamples are not independent, but as the size of the original sample 
increases, the effect of the dependence may weaken, and therefore the values of the statistics of 
these samples can be treated as independent random variables [1, 7]. 

Figure 1: Graphic illustration of a bootstrap on a small dataset 

Fig. 1 shows an example of using a bootstrap on a simple dataset Z, with three lines (n = 3). In 
order to create bootstrap samples, n observations are randomly selected from the original sample. 
These samples have replicates (subsample 𝑍𝑍1contains the third observation twice). Thus, B 
subsamples were created, each of which has statistics ɑ𝑖𝑖 [1, 6]. 

3.4. Bagging  

Decision trees usually have low bias but are very large dispersion (variance), that is, they suffer 
from sensitivity to small changes in training data. That is, if the training sample is divided into two 
parts and build decision trees on each of them, then the results of these trees on one test sample 
can be very different. 

Bootstrap proved to be very useful in forming an ensemble based on decision trees, as it helps 
to combat the problem of high variability of the model. When bagging, trees are not pruned, so 
each of them individually has a high variability, but averaging their results, the variability 
decreases. 

By averaging several observations, it is possible to reduce the estimation of the variance of the 
data, similarly having a large number of subsamples of the general population, training the model 
on each of these subsamples and averaging predictions, you can reduce the variability of the meta-
model [1, 9]. 

In practice, it is often not possible to create several full-fledged independent training samples, 
so bootstrap is used. Having generated M different training bootstrap samples, training the model 
on each of them, we get M models (Formula 6): 

 𝑖𝑖1�(𝑥𝑥),𝑖𝑖2�(𝑥𝑥), . . . ,𝑖𝑖𝑀𝑀� (𝑥𝑥). (6) 



Begging (bootstrap aggregation) - it is a procedure of taking average collective forecast from 
models based on bootstrap samples (Fortmula 7): 

𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏� (𝑥𝑥) = 1
𝑀𝑀
∑𝐵𝐵
𝑚𝑚=1 𝑖𝑖𝑚𝑚� (𝑥𝑥). (7) 

Bagging can be applied to a wide range of machine learning models, but it has proven to be 
particularly useful for decision trees. This is because bagging avoids the high correlation between 
decision trees that occurs when training them using the same data [5, 12]. 

To apply the bagging procedure to regression decision trees, M trees are trained using M 
bootstrap samples, and the prediction results of these trees are aggregated (usually averaged). 
There are several possible approaches to solving the problem of classification, but the simplest is 
majority voting. For this test observation, we can record the class predicted by each of the trees 
and take the majority of votes: the general forecast is the class that is most common among the 
forecasts [1, 18]. 

A feature of bagging is that it allows you to get a validation score models without using cross-
validation or a validation set. Because the bagging involves training models on bootstrap samples, 
then a particular model uses for training only a part of the unique values in the original dotoset. 
Thus, those data that did not fall into the bootstrap sample can be used to validate this model. This 
approach is called error estimation [6]. 

3.5. Random forest  

Random forest is a further improvement of decision tree bagging that is to eliminate the correlation 
between trees. As with bagging, we train M decision trees on bootstrap samples. But when building 
trees, each partition, a random subsample of all predictors is selected and the partition it is allowed 
to make only one of the changes from this subsample. In other words, when constructing a random 
forest, on each partition, the tree is not allowed touse most of the available predictors. 

Most often, in practice, the number of predictors that will be considered at each partition m is 
defined as the rounded up square root of the number of all predictors p (Formula 8): 

𝑚𝑚 ≈ �𝑝𝑝. (8) 
Choosing a small value of m when constructing a random forest will usually be useful in the 

presence of a large number of correlated predictors. Of course, if the random forest is built using 
m=p, then the whole procedure comes down to simple running [1, 9]. 

This decorrelation approach is based on the assumption that if a particular dataset has one very 
strong predictor, then most trees will use it in the first partition. In this case, most trees will look 
similar to each other, and therefore will be very highly correlated. Averaging the predictions of 
many correlated trees will not reduce the overall variability of the model, which means that 
bagging will not give a significant decrease in virulence compared to a simple deep decision tree. 

In the random forest method, due to the use of a predictor subsample, on average (p − m) / 
p partitions in trees will not be able to use a strong predictor, and therefore weaker predictors will 
be more likely to be used on the first partitions. 

The algorithm for building a random forest, which consists of N trees, is as follows: 
1. For each tree to generate a bootstrap sample Xn; 
2. Construct each tree Tn on the sample Xn: 
3. At each partition of the tree, according to a given criterion (measure of entropy, Gini 

index) is selected the best predictor, from the available random subsets of predictors. 



Continue to build a tree until its leaves are no more than specified the number of minimum 
objects or until the specified value is reached maximum depth of the tree. 

The result will be a model (Formula 9): 
 𝑖𝑖𝑟𝑟𝑏𝑏𝑛𝑛𝑟𝑟� (𝑥𝑥) = 1

𝑀𝑀
∑𝐵𝐵
𝑚𝑚=1 𝑖𝑖𝑚𝑚� (𝑥𝑥) . (9) 

That is, the result in the case of classification is chosen by voting, and in case of regression by 
averaging. 

3.6. Assessing the importance of predictors 

Random forest can greatly improve the accuracy of predictions compared to the decision tree, but 
the disadvantage of random forest is that the resulting model is more difficult to interpret [10, 13].  

In the case of the decision tree, it is very easy to interpret the results, because the tree can be 
visualized and see which predictors were used for breaking down faster, and thus understanding 
the importance of each predictor in a given problem. 

The average decrease in accuracy given by the predictor is determined during the out-of-bag 
error calculation phase. The more the accuracy of predictions decreases due to the exclusion (or 
permutation) of one variable, the more important this predictor is, and therefore, predictors with a 
large mean decrease in accuracy are more important for this task. The mean reduction in Gini 
uncertainty, or RSS (Residual Sum of Squares) error in regression problems, is a measure of how 
each predictor contributes to the homogeneity of nodes and leaves in the final random forest 
model. Each time a single variable is used to partition a node, the Gini uncertainty, or RSS, for the 
child nodes is calculated and compared with the output factor node [4, 12]. 

Changes in the value of the separation criterion are summed for each variable and normalized 
at the end of the calculation. The larger the number obtained, the a more important predictor for 
this task. 

3.7. Variation and displacement of the random forest 

With the help of bagging and decorrelation, the random forest helps to reduce the variation of the 
model, but randomization when creating a boost-sample and when choosing predictors for 
partitioning in the decision tree increases the bias of the model.  

Variation of a random forest is given by the Formulas 10-12:  
𝑉𝑉𝐺𝐺𝑟𝑟 𝑖𝑖 (𝑥𝑥) = 𝜌𝜌(𝑥𝑥) ⋅ 𝜎𝜎2(𝑥𝑥). (10) 

where 𝜌𝜌(𝑥𝑥) - correlation between any two trees (Formula 11). 
𝜌𝜌(𝑥𝑥) = 𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟[𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃(𝑥𝑥,𝑇𝑇1(𝑍𝑍1)),𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃(𝑥𝑥,𝑇𝑇2(𝑍𝑍2))]. (11) 

where 𝑇𝑇1(𝑍𝑍1),𝑇𝑇2(𝑍𝑍2) - random couple of trees trained on the bootstrap samples 𝑍𝑍1,𝑍𝑍2. 
𝜎𝜎2(𝑥𝑥) = 𝑉𝑉𝐺𝐺𝑟𝑟(𝑥𝑥,𝑇𝑇(𝑋𝑋))  −   𝑠𝑠𝑃𝑃𝑙𝑙𝑃𝑃𝑐𝑐𝑠𝑠𝑔𝑔𝑠𝑠𝑃𝑃 𝑠𝑠𝐺𝐺𝑟𝑟𝑔𝑔𝐺𝐺𝑔𝑔𝑐𝑐𝑃𝑃 𝑖𝑖𝑖𝑖 𝐺𝐺𝑔𝑔𝑎𝑎 𝑟𝑟𝐺𝐺𝑔𝑔𝑃𝑃𝑖𝑖𝑚𝑚 𝑠𝑠𝑟𝑟𝑃𝑃𝑃𝑃𝑠𝑠. (12) 

If we consider the variance of one tree 𝜎𝜎2(𝑥𝑥), it practically does not change from the sample 
of predictors for separation for each tree separately, but for the ensemble the sample of predictors 
plays a big role, because ρ(x) changes from this sample, and therefore the variance for the tree is 
much higher than for the ensemble [1, 13]. 

The displacement of a random forest is usually greater (in absolute terms) than the displacement 
of an unpruned tree, because bootstrap and predictor subsamples are randomized. Therefore, the 



improvement in the accuracy of predictions, obtained by random forest, is solely the result of 
reducing the variance.  

3.8. Comparative characteristics  

This section will provide a theoretical comparative characterization of the random forest with 
another ensemble method - boosting trees.  

Boosting (boosting) is a procedure of consistent construction compositions of machine learning 
algorithms, where each following algorithm seeks to compensate for the shortcomings of the 
composition of all previous algorithms. Boosting is a greedy algorithm for constructing algorithms 
[3]. 

The differences between boosting decision trees and random forest are given in 
Table 1. 

Table 1 
Comparative characteristics with boosting trees  

Random forest Boosting trees 

An ensemble of strong models (deep 
decision trees), each of which has high 
variation and low displacement.  

An ensemble of weak models (shallow decision 
trees), each of which has low variation and high 
displacement. 

Reduces prediction error by reducing 
variance of the models.  

Reduces prediction error by reducing bias of the 
models.  

Uses bootstrap sampling for training 
individual trees, randomly selects possible 
predictors to break the tree, which 
minimizes correlation between different 
trees. 

Each tree increases its weight classes that were 
harder to predict (where the bigger mistake) and 
on these weighted data trains the next tree, thus 
compensating for those errors made by the 
previous tree 

Training can take place in parallel, as 
separate trees independent of each other. 

Training should take place consistently since, a 
separate tree tries to compensate for mistakes 
previous. 

The result is selected majority voting / 
averaging 

The result is chosen weighted by voting / 
weighted amount. 

  



4. Experiments 

4.1. Analysis and preparation of the dataset Decision trees 

For the practical part of this work, it was decided to investigate the detset, which contains data on 
patients and whether they were found to have cardiovascular disease. That is, the problem of 
classification will be solved (Fig. 2).  

This dataset consists of 70,000 patient records, which include: age, height, weight, sex, blood 
pressure, cholesterol, and blood glucose, whether the patient smokes and drinks alcohol, and 
whether he is physically active. 

 

Figure 2: View of the first records in the dataset 

Let's look at the general information on columns in a dataset (Fig. 3.). You can see that the dataset 
consists of numeric data, but some of them correspond to categorical variables. You can also see 
that the dataset does not contain missing values. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Information about columns in the dataset 

After checking the dataset for the absence of duplicate lines. In Fig. 3 examples of duplicate 
rows in the dataset are displayed. Because complete duplicates do not contain useful information, 
these rows can be deleted. 

 
 



 
Figure 3: Example of duplicate data in a dataset 

We will check the relationships between the target variable and other variables. In Fig. 4 shows 
the number of patients in whom (yellow) and did not detect (green) vascular diseases relative to 
their age years). You can see that the attitude of patients to healthy patients increases with age. 

 

 
Figure 4: Dependence of sulfur-vascular diseases on age 

Let's check if there are linear dependencies between the variables. For this build a correlation 
matrix that will contain the correlation value for all pairs variables. If there is a high correlation 
between the variable and the target variable, you can will find a linear relationship between these 
variables. If non-target variables are have high correlation values, which means that they carry a 
very similar information, and therefore, one of these variables can be removed, and thus reduce 
model complexity. Fig. 5 shows the correlation matrix for our dataset. You can see that there is no 
direct linear relationship between variables. However, it can be noted that the largest correlation 
values relative to the target variable (cardio) have columns that correspond to blood pressure 
(ap_hi, ap_lo). 

 
 



 
Figure 5: Correlation matrix 

We will display statistical data about the columns in the dataset. Fig.6 shows the mean, standard 
deviation, minimum and maximum values and quantiles for each column of the dataset. From 
these data it can be seen that the columns ap_hi and ap_lo have extreme points, because the 
maximum value is very different, which led to the fact that the mean value and the median are also 
markedly different. 

 

Figure 6: Statistical measures of dataset columns 

Let's construct box diagrams for these columns to visually see the data distribution (Fig. 7). You 
can see that these columns have extreme data, which are indicated on the graph by points that 
extend beyond the quantile interval. Delete the lines that contain the extreme points. 

 
 



Figure 7: Box charts 

We encode categorical columns with one hot encoding. There are 2 such columns in the dataset: 
"cholesterol" and "gluc". Each of them has three unique values, so after unary coding, each of 
them will turn into three columns with Boolean values. 

After the stages of data analysis and purification, our dataset will look as follows (Fig. 8): 
 

 
Figure 8: Dataset after data cleaning 

4.2. Training a Random Forest Model  

Before training, the dataset should be divided into a training set and a test set. Let's do it with a 
ratio of 80% - training, 20% - test. 

A class was chosen to train the random forest model RandomForestClassifier from the scikit-
learn library. 

In order to improve the accuracy of the model, the search for optimal Grid Search 
hyperparameters was used. It sorts combinations from the given hyperparameters and chooses the 
best combination.  

Hyperparameters that were used in the search: 



• n_estimators - the number of trees used to build a random forests; 
• criterion - the criterion of partitioning a tree; 
• max_depth - the maximum depth that the tree can reach, after which construction stops. 

As a result, after searching for hyperparameters, the model will be returned, which showed the 
best predictions on a given metric. 

Since the problem of binary classification is solved, the most the objective metric will be roc-
auc (area under the error curve) because it is does not depend on the distribution of classes. 

Fig. 9 shows the parameters of the model that proved to be the best. You can see that the number 
of trees was chosen as large as possible, namely 1000, and the maximum depth of the tree is 10. 

 

Figure 9: Model parameters 

5. Results 

In this section, we derive model evaluation indicators. 
Fig. 10 show the error matrices for the training and test set, respectively. You can see that the 

relative distribution of errors is preserved from the training dataset to the test, and therefore the 
model is good generalized. Also, the model makes fewer False Negatives errors (when the correct 
prediction is 1 and the model gives 0), which is very important on medical datasets, because it is 
worse to predict that a person is not sick when in fact, he is sick. 
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Figure 10: a) Matrix of errors on the training set; b) Error matrix on the test set 



Fig. 11. show the error curves (ROC), and calculated the area under them (roc-auc) for the training 
and test sets, respectively. This metric shows the dependence of the completeness (recall) of 
predictions, that is, the fate of objects class 1 of all class 1 objects that were correctly excused, to 
the fate of the objects class 0 that were predicted incorrectly This metric has possible values [0; 
1]. As you can see, the metric values are close to the training and test datasets, so the model is well 
generalized. 

 

а) b) 
Figure 11: a) Roc-auc on the training dataset; b) Roc-auc on the test dataset 

6. Conclusions 

This paper provides a theoretical analysis of machine learning methods, namely decision trees, a 
general analysis of ensemble methods, and a detailed analysis of batching and random forests. 

The peculiarities of the random forest method, such as the use of bags and subsamples of 
predictors when the tree is broken, are analyzed to reduce the variability of the model. Theoretical 
comparative characterization of random forests and selected trees were also carried out. 

In practice, the problem of diagnosing cardiovascular diseases was solved using the random 
forest method. The data set was analyzed (checked the absence and repeated values, linear 
dependencies, and extreme values), and data was prepared for training and model training. Model 
results were also analyzed using various metrics (error matrix, roc-AUC). 
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