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Abstract
In process discovery methods that build workflow nets (WF-nets), computing activity concurrency is
essential to achieve the construction of a suitable model. The condition 𝑎||𝑏 ← 𝑎𝑏 + 𝑏𝑎, used to determine
the concurrency relation between two activities is surpassed when the event log is incomplete. This paper
presents a technique for deducing additional concurrency relations between activities from incomplete
event logs. The proposed technique is based on the detection of repetitive patterns within the traces
in the event log; using these patterns, new logs in which the traces do not have repeated activities are
derived. Afterward, a set of partial order structures is built from these event logs and then concurrency
relations are straightforwardly obtained. Finally, we use a heuristic to determine concurrent relations
between activities belonging to different repetitive patterns. The technique performs as a concurrency
oracle; it has been implemented and tested on artificial event logs generated by WF-nets with diverse
structures. Experiments show that the proposed oracle extracts more concurrent relations than other
methods.
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1. Introduction

Extracting concurrency relationships from event logs is an increasingly relevant problem in
Process Mining, mainly when not all direct follows relationships have been recorded; that is
when the event log is incomplete. A function that takes an event log as input and returns a set of
pairs of concurrent activities is called concurrency oracle [1]. This paper proposes a concurrency
oracle for dealing with incomplete event logs.

Usually, the input to Process Discovery methods is an event log, where concurrency becomes
explicit only until a process model (usually a Petri net) is discovered. However, there is a recent
approach known as partial-order-based Process Mining [2], which considers input logs as partial
languages (labeled partial orders). This approach has beenmostly exploited in discoverymethods
based on the theory of regions [3, 4, 5]. Regions of partial languages have been investigated for
two decades, obtaining important results that increasingly narrow the difference in execution
times between region-based methods and other discovery approaches.

However, techniques based on partial orders are not restricted to discovery; tasks such as
conformance checking and process enhancement have also been addressed. Even in [6], Dumas and
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García-Bañuelos proposed reloading all Process Mining operations as operations between Prime
Event Structures, labeled partial orders, assembled through their common prefixes, preserving
conflicts. In [2], a summary of the works that start from a partial language is presented.

This trend has generated the need to extract concurrency relations directly from the event
log since the usual way of transforming an event log into a set of partial orders (see [5], for
example) requires knowing the concurrency relations beforehand. Despite the relevance of this
topic, little research has been done on it.

The most used oracle, called 𝛼-oracle, is derived from the concurrency relationship of the
𝛼-algorithm [7]. In this, a pair of activities, x and y, are considered concurrent if both subtraces
xy and yx are present in the event log. Concurrent relations used in the extensions of the
𝛼-algorithm [8, 9] are used too as oracles. In [10], the authors proposed using a domain expert
as an oracle; a human expert points concurrency between activities. This approach can be used
to refine another oracle, like the 𝛼.

If the event log contains information about the life cycle of activities, the life-cycle oracle can
be implemented [5]. A pair of activities are concurrent if their life cycles overlap. In [11], one of
the early works on process discovery, four statistical metrics are used to determine concurrency
between activities; therefore, it can be considered an oracle.

The effectiveness of a concurrency oracle strongly depends on the completeness of the event log.
Unfortunately, real-life event logs may be non-complete, as was pointed out in the challengers
of the Process Mining Manifesto [12].

Only a few concurrency relationships can be extracted from an incomplete event log. This
situation creates some problems. For example, the discovered models will lack generalizability;
that is, they will not be able to generate unrecorded behavior or will generate very little. That is
especially true for region-based methods because they assume that only the recorded behavior
should be in the process model.

Furthermore, discovery methods based on region theory ultimately consist of solving an
Integer Linear Programming problem, where the size of the problem is a function of the size of
the partial order relation. When transforming a set of traces (linearly ordered sets) into a set of
partial orders, the size of the relation is reduced since the partial order relation does not include
relations between concurrent activities, while these are included in the traces. Therefore, the
fewer concurrency relations we know, the more elements the partial order relations will have.
The latter translates into a longer execution time.

This paper presents a novel Concurrency Oracle that deals with incomplete event logs. This
method obtains a set of pairs of concurrent activities, including some that were not explicitly
recorded. Our proposal is based on detecting cyclic components of the process and projecting
the event log on their activities, obtaining new ”event logs” in which all the activities present
in these logs are in the same cycle. These new event logs are transformed in a specific way
so that activities do not appear more than once in each trace. Once we have such a set of
traces without repeated activities, we can find the concurrency relationships using an algorithm
from the early days of Process Mining. Experimental tests using artificial event logs showed a
good performance in finding unrecorded concurrent relations. However, in some cases, fake
concurrences are determined.



2. Preliminaries

This section contains the notions and notation used in the proposal. Concurrency oracles are
independent of the process modeling notation. However, we use Petri nets for the running
examples, as is customary in the Process Mining literature. Therefore, we began this section by
presenting basic definitions of Petri nets. Later, formal definitions of concepts related to Process
Mining are presented. Moreover, we recall an algorithm to build a directed acyclic graph from
an event log.

2.1. Petri nets, and workflow nets

Definition 2.1 An ordinary Petri net structure is a triple 𝐺 = (𝑃, 𝑇 , 𝐹 ) where 𝑃 is a finite set of
places, 𝑇 is a finite set of transitions such that 𝑃 ∩ 𝑇 = ∅, and 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑃 × 𝑇 ) is a set of
direct arcs, called the flow relation. A marked Petri net is a pair (𝑁 ,𝑀0), where 𝑁 = (𝑃, 𝑇 , 𝐹 ) is
a Petri net structure and 𝑀0 ∈ 𝐵(𝑃) is a multi-set over 𝑃 denoting the marking of the net. The
elements of multisets will be written between square brackets.

Places in a Petri net structure are drawn as circles, while transitions are drawn as rectangles.
The marking of the net is represented by tokens, black dots inside places. Figure 1 shows a
marked Petri net.

Given a Petri net structure 𝑁 = (𝑃, 𝑇 , 𝐹 ) and 𝑥 ∈ 𝑇 ∪ 𝑃, we call preset of 𝑥 to the set
•𝑥 = {𝑦 | (𝑦 , 𝑥) ∈ 𝐹}. Respectively, the postset of 𝑥 is 𝑥• = {𝑦 | (𝑥, 𝑦) ∈ 𝐹}. In a marked Petri net
(𝑁 ,𝑀), the transition 𝑡 ∈ 𝑇 can be fired, iff •𝑡 ⊆ 𝑀. The red firing of 𝑡 leads to a new marking
𝑀

′
= (𝑀\ • 𝑡) ⊎ 𝑡•. Where 𝑀\ • 𝑡 is the multiset formed by deleting of 𝑀 the elements in •𝑡, and

⊎ is the sum of multisets. 𝑀
𝑡
→ 𝑀

′
, denote that being in marking 𝑀, firing transition 𝑡 led to

marking 𝑀
′
. The set of all reachable markings of (𝑁 ,𝑀) is denoted by [𝑁 ,𝑀⟩.

Definition 2.2 Given a Petri net structure 𝑁 = (𝑃, 𝑇 , 𝐹 ). The incidence matrix of 𝑁 is the matrix
𝐶 ∈ {0, +1, −1}|𝑃 |×|𝑇 | defined by 𝐶𝑖𝑗 = −1 if 𝑝𝑖 ∈ •𝑡𝑗 ∧ 𝑝𝑖 ∉ 𝑡𝑗•, 𝐶𝑖𝑗 = 1 if 𝑝𝑖 ∈ 𝑡𝑗 • ∧𝑝𝑖 ∉ •𝑡𝑗, and 𝐶𝑖𝑗 = 0
otherwise.

Definition 2.3 A 𝑇-invariant 𝑌𝑖 of a Petri net structure 𝑁 = (𝑃, 𝑇 , 𝐹 ) with incidence matrix
𝐶, is an integer solution to the equation 𝐶𝑌𝑖 = 0 such that 𝑌𝑖 ≥ 0 and 𝑌𝑖 ≠ 0. The support
of 𝑌𝑖, denoted as ⟨𝑌𝑖⟩ is the set of transitions whose corresponding entries in 𝑌𝑖 are strictly
positive. A 𝑇-component 𝐺(𝑌𝑖) = (𝑃𝑖, 𝑇𝑖, 𝐹𝑖), is a subnet of 𝑁 where 𝑃𝑖 = •⟨𝑌𝑖⟩ ∪ ⟨𝑌𝑖⟩•, 𝑇𝑖 = ⟨𝑌𝑖⟩,
𝐹𝑖 = ((𝑃𝑖 × 𝑇𝑖) ∪ (𝑇𝑖 × 𝑃𝑖)) ∩ 𝐹.

Proposition 1 Fundamental property of 𝑇-invariants
Let 𝜎 be a finite sequence of transitions of a net 𝑁 which is enabled at a marking 𝑀. Then the

Parikh vector ⃖⃗𝜎 is a 𝑇-invariant iff 𝑀
𝜎
→ 𝑀. [13]

The Proposition 1 results are essential for our goal. This states that after executing all the
transitions in a 𝑇-invariant (including repetitions), we arrive at the same marking from which
we started. Thus, a 𝑇-component is a possible cycle of the net. In Figure 1, the subnet in red is
the 𝑇-component induced by the 𝑇-invariant [0 1 1 1 0 0].



Figure 1: Graphical representation of a Petri net

Definition 2.4 A labelled Petri net is a tuple (𝑃, 𝑇 , 𝐹 , 𝐴, 𝑙) where (𝑃, 𝑇 , 𝐹 ) is a Petri net structure,
𝐴 is a set of activity labels, and 𝑙 ∶ 𝑇 → 𝐴, a labelling function that assigns activity names to
transitions.

In this context, the labels will be the names of the process activities. The rest of the article
assumes that no two transitions can have the same label. So, when we say label, transition, or
activity, we mean the same thing.

Definition 2.5 Let 𝑁 = (𝑃, 𝑇 , 𝐹 , 𝐴, 𝑙) be a labeled Petri net and 𝑡 a transition not in 𝑃 ∪ 𝑇. 𝑁 is a
workflow net (WF-net) [14] if and only if:

1. 𝑃 contains an input place 𝑖 (source place) such that •𝑖 = ∅,
2. 𝑃 contains an output place 𝑜 (sink place) such that 𝑜• = ∅,
3. 𝑁 = (𝑃, 𝑇 ∪ {𝑡}, 𝐹 ∪ {(𝑜, 𝑡), (𝑡, 𝑖)}, 𝐴 ∪ 𝜏 , 𝑙 ∪ {(𝑡, 𝜏 )}) is strongly connected.

In Process Mining, it is common to assume that WF nets are ”well-formed”. Specifically, it
requires that a WF-net be sound.
Definition 2.6 Let 𝑁 = (𝑃, 𝑇 , 𝐹 , 𝐴, 𝑙) be a WF-net with an input place 𝑖 and an output place 𝑜.
𝑁 is sound [14] if and only if:

1. (𝑁 , [𝑖]) is safe, i.e., places cannot hold multiple tokens at the same time;
2. for any marking 𝑀 ∈ [𝑁 , [𝑖]⟩, 𝑜 ∈ 𝑀 implies 𝑀 = [𝑜];
3. for any marking 𝑀 ∈ [𝑁 , [𝑖]⟩, [𝑜] ∈ [𝑁 ,𝑀⟩;
4. (𝑁 , [𝑖]) contains no dead transitions.

2.2. Event logs, and concurrency oracles

Events stored in event logs have several attributes, for example, case identifier, name of the
activity executed, resources used, information about who performs the activity, start and end
date, etc. For our purposes, it is enough to consider that the events have the name of the
executed activity and a case identifier. Also, we assume that the events with the same case
identifier are in a total order relationship. Thus, we use the following simplified definition of an
event log.



Definition 2.7 Let 𝐴 be a set of activity names. A trace 𝜎 is a finite sequence of elements of 𝐴.
An event log is a set of traces.

An event log may contain noise or behavior that does not belong to the underlying process.
However, in this work, we assume that the event logs are noise-free; that is, we consider that
the process generated all the recorded behavior. In real-life event logs, this can be a huge
assumption. However, there are preprocessing methods that mitigate this problem, for example,
[15, 16]

Two essential concepts mentioned briefly in the introduction are the completeness of an
event log and the concurrency between activities. Both are based on the direct-follows relation
defined in [7].

Definition 2.8 Let 𝐿 be an event log. 𝑎 is directly followed by 𝑏, denoted by 𝑎 >𝐿 𝑏, if and only
if there is a trace 𝜎 = ⟨𝑡1, 𝑡2, ..., 𝑡𝑛⟩ and 𝑖 ∈ {1, ..., 𝑛 − 1} such that 𝜎 ∈ 𝐿 and 𝑡𝑖 = 𝑎 and 𝑡𝑖+1 = 𝑏. The
set >𝐿= {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐴, 𝑥 >𝐿 𝑦} is the direct follow relation.

For a Petri net, we can also consider the direct follow relation between transitions.

Definition 2.9 Let 𝑡1 and 𝑡2 transitions of the marked Petri net (𝑁 ,𝑀0) labeled by 𝑎, and 𝑏
respectively. We say that 𝑎 is directly followed by 𝑏 if and only if there are reachable markings

𝑀, 𝑀
′
and 𝑀

″
of 𝑁 such that 𝑀

𝑡1→ 𝑀
′ 𝑡2→ 𝑀

″
.

Note that, unlike the causal relationship, there is no need for a place connecting the transitions
in this case.

Now, the usual definition of completeness is recalled from [7].

Definition 2.10 Let 𝐿 be an event log extracted from the WF-net 𝑁. It is said that 𝐿 is complete
if the direct follows relation derived from 𝐿, coincides with that derived from 𝑁.

The completeness property is weaker than requiring that all possible traces be in the event
log, which is impossible if the Petri net has cycles. However, even this weak definition rarely
holds true in real-life settings. Therefore, it would be more meaningful to talk about the rate of
completeness rather than completeness.

Definition 2.11 Let 𝐿 be an event log extracted from the aWF-net𝑁, with at least two transitions.
By #(𝐿,→), we denote the number of pairs of activities in direct follow relation concerning 𝐿.
Similarly, #(𝑁 ,→) denotes the number of pairs of activities in direct follow relation concerning
𝑁. The quotient #(𝐿,→)

#(𝑁 ,→) is the rate of completeness of the log 𝐿 with respect to the net 𝑁.

To the best of our knowledge, the above definition had not been explicitly stated in the
literature. However, it was used in [17] to evaluate the rediscovery capability of the algorithm
proposed there. The rate of completeness can measure the completeness of an event log. Note
that the rate of completeness is 1 only if the log is complete in the usual sense mentioned earlier.



Intuitively, two activities are concurrent if there is neither a causal relationship nor a conflict
between them. In a Petri net, we considered that two transitions are concurrent if:

Definition 2.12 A pair of transitions labeled by 𝑎, 𝑏 ∈ 𝐴 are concurrent in the sound WF-net
(𝑁 , [𝑖]) if •𝑎 ∩ •𝑏 = ∅, and if there is a marking 𝑀 ∈ [𝑁 , [𝑖]⟩ such that transitions labeled by 𝑎
and 𝑏 can be fired, and after firing one of them, the other one can still be fired.

In agreement with [7], concurrency can be inferred from the log based on the direct-follow
relation.

Definition 2.13 Let 𝐿 be an event log and 𝐴 the set of activities. If 𝑎, 𝑏 ∈ 𝐴, we said that 𝑎 is
concurrent with 𝑏 if 𝑎 >𝐿 𝑏, and 𝑏 >𝐿 𝑎. Concurrency is denoted by 𝑎||𝛼𝑏.

A formal definition of a concurrency oracle is given in [18]. However, it is enough for us to
say that a concurrency oracle is “a black-box Boolean function that asserts whether a given pair
of events are concurrent or not” [1].

Let 𝑂 be a concurrency oracle. Abusing the notation, we will treat 𝑂 as a family of two-
element sets, such that {𝑎, 𝑏} ∈ 𝑂 ⇔ 𝑎||𝑏. That is, we consider an oracle 𝑂 as the set of pairs of
concurrent activities.

2.3. Building directed acyclic graphs

In this subsection, we recall one of the earlier works of Process Discovery due to Agrawal et,
al. [19]. The goal of that work was not to build a Petri net but a labeled directed graph. In
particular, we summarize the second algorithm shown there, which assumes that the traces
have no repeated activities. This algorithm is fundamental to our proposal; for this reason, it is
described in detail through an example.

Example 1: We illustrate the Agrawal’s algorithm using the log 𝐿1 = {⟨𝑎, 𝑏, 𝑐, 𝑓 ⟩, ⟨𝑎, 𝑐, 𝑑, 𝑓 ⟩,
⟨𝑎, 𝑑, 𝑒, 𝑓 ⟩, ⟨𝑎, 𝑒, 𝑐, 𝑓 ⟩}. (Example 7 of [19])

Firstly, a graph is created with vertices equal to the set of activities ({𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 }) and initially
an empty set of arcs. Then:

1. For each trace of 𝐿1, the transitive closure of the direct follow relation is added to the set
of arcs. The resulting graph is shown in the Figure 2 on the left.

2. Arcs that appear in both directions are removed. In addition, arcs belonging to some
strongly connected component of the graph are eliminated too. The resulting graph from
step 2 is shown in the Figure 2 in the center.

3. For each trace, the subgraph induced by it is taken, and its transitive reduction is calculated.
Arcs that do not belong to any of these transitive reductions are removed. The resulting
graph from step 3 is shown in the Figure 2 on the right.

Figure 3 shows the transitive reductions of the step 3. These graphs are indeed the skeletons
of 𝑝𝑜𝑠𝑒𝑡𝑠 (partial-ordered sets). 𝑃𝑜𝑠𝑒𝑡𝑠 express Petri net executions as an alternative to traces,
although the verification problem (checking if a 𝑝𝑜𝑠𝑒𝑡 is executable by a given Petri net) is more



Figure 2: Steps of the Agrawal algorithm on 𝐿1

complex [20]. In this context, the fact that two vertices are not related is interpreted as the
activities involved (their labels) being concurrent. In the Example, (𝑐, 𝑑), (𝑑, 𝑒), and (𝑐, 𝑒) are
concurrent relationships. Thus, Agrawal’s algorithm is useful to extract concurrency relations
between activities from traces.

Figure 3: Graphical representation of the transitive reduction induced by traces of log 𝐿1

3. Extracting Concurrency from Incomplete Event Logs

3.1. Searching concurrency

We hypothesize that concurrent relationships between activities within a cycle are not observed
when analyzing the event log due to the interleaved occurrence of activities outside the cycle.
However, if the part of the traces corresponding to a cycle is isolated, ignoring everything
outside the cycle, the previously hidden concurrent relationships become observable.

Example 2: Consider the WF-net shown in Figure 4 in which tran-
sitions belonging to cyclic components are colored with different col-
ors. From this net the following event log is extracted: L2 =
{⟨𝑞, 𝑠, 𝑤, 𝑓 , 𝑒, 𝑟 , 𝑖, 𝑎, 𝑔, 𝑗, 𝑦 , 𝑓 , 𝑔, 𝑗, 𝑓 , 𝑢, 𝑑, 𝑜, 𝑔, 𝑗, 𝑒, 𝑟 , 𝑡 , 𝑓 , 𝑖, 𝑎, 𝑔, 𝑗, 𝑢, 𝑓 , 𝑔, 𝑑, ℎ, 𝑘, 𝑧, 𝑥, 𝑐⟩, ⟨𝑞, 𝑤, 𝑠, 𝑓 , 𝑒, 𝑟 , 𝑦 ,



𝑖, 𝑢, 𝑎, 𝑑, 𝑜, 𝑒, 𝑔, 𝑖, ℎ, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑, 𝑙, 𝑛⟩, ⟨𝑞, 𝑠, 𝑤, 𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑓 , 𝑒, 𝑔, 𝑖, ℎ, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜,
𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑡 , 𝑢, 𝑑, 𝑙, 𝑛⟩}.

Figure 4: Petri net with the transitions belonging to the same cycle colored in the same color

If instead of considering the complete event log, we consider only the projection
of the traces on one of the cycles, for example, the pink one, we obtain the traces 𝐿

′
2 =

{⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑟 , 𝑡 , 𝑖, 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑟 , 𝑦 , 𝑖, 𝑢, 𝑎, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑,
𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑡 , 𝑢, 𝑑⟩}. From 𝐿

′
2 we can build an event log with no re-

peated activities in the traces (splitting the trace just before starting the cycle again). In our exam-
ple, we get the log 𝐿

″
2 = {⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑟 , 𝑡 , 𝑖, 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑟 , 𝑦 , 𝑖, 𝑢, 𝑎, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩,

⟨𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜⟩, ⟨𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑎, 𝑟 , 𝑡 , 𝑢, 𝑑⟩}.
Notice that, 𝐿

″
2 fulfill the assumptions of the Agrawal’s algorithm. Hence, we obtain that

(𝑟 , 𝑖), (𝑖, 𝑦), (𝑎, 𝑦), (𝑎, 𝑢), (𝑑, 𝑢), (𝑦 , 𝑑), (𝑡 , 𝑖), and (𝑎, 𝑡) are concurrent relationships. Only the red
ones were explicitly recorded.

3.2. A method for inferring hidden concurrences

3.2.1. Support concepts and operators

First, some concepts and operators on the event log needed for concurrency extraction are
introduced. The concept of repetitive dependency introduced in [21] is also recalled.

Definition 3.1 Let 𝐿 be an event log, and 𝜎 ∈ 𝐿 be a trace.

1. The non-repetitive division of 𝜎, denoted as 𝑑(𝜎), is a set of sub-traces {𝜎1, 𝜎2, ..., 𝜎𝑛} such
that:

• 𝜎 = 𝜎1𝜎2⋯𝜎𝑛,
• 𝜎1 is the larger prefix of 𝜎 with no repeated activities, and
• for 𝑖 ∈ {2, ..., 𝑛}, 𝜎𝑖 is the larger prefix of 𝜏 without repetition of activities, where
𝜎 = 𝜎1⋯𝜎𝑖−1𝜏.

2. The non-repetitive event log derived from 𝐿 is 𝒟(𝐿) = ⋃𝑖 𝑑(𝜎𝑖); the union of all non-
repetitive divisions of traces in 𝐿.



Notice that the non-repetitive division of a trace 𝜎 is unique; consequently, 𝒟(𝐿) is unique
for a given 𝐿 and contains traces that have no repeated activities.

Example 3: Consider the event log 𝐿3 = {𝜎1 = ⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑟 , 𝑡 , 𝑖, 𝑎, 𝑢, 𝑑⟩, 𝜎2 = ⟨𝑒, 𝑟 , 𝑦 , 𝑖,
𝑢, 𝑎, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑⟩, 𝜎3 = ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜,
𝑒, 𝑖, 𝑎, 𝑟 , 𝑡 , 𝑢, 𝑑⟩} extracted from WF-net in Figure 4. 𝑑(𝜎1) = {⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑟 , 𝑡 , 𝑖, 𝑎, 𝑢, 𝑑⟩}.
𝒟(𝐿3) = {⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑟 , 𝑡 , 𝑖, 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑟 , 𝑦 , 𝑖, 𝑢, 𝑎, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢,
𝑑⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜⟩, ⟨𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜⟩, ⟨𝑒, 𝑖, 𝑎, 𝑟 , 𝑡 , 𝑢, 𝑑⟩}

The next definition was stated in [21], and it is the base for computing the 𝑇-invariants of a
Petri net from their language.

Definition 3.2 Let 𝐿 be an event log, with activity names in 𝐴. An activity 𝑥 is repetitively
dependent on 𝑦, denoted as 𝑥 ≺ 𝑦 iff 𝑦 is always observed between two apparitions of 𝑥 in 𝜎 ∈ 𝐿.
If 𝑥 has been observed at least twice in 𝜎 ∈ 𝐿, then 𝑥 ≺ 𝑥. The set of transitions from which 𝑥 is
repetitively dependent is given by the function 𝑅𝑑(𝑥) ∶ 𝑇 → 2𝑇; then 𝑅𝑑(𝑥) = {𝑦 |𝑥 ≺ 𝑦}. If 𝑥
was observed at most once in each 𝜎 ∈ 𝐿, then 𝑅𝑑(𝑥) = ∅.

The sets 𝑅𝑑(𝑥) are not 𝑇-invariant; however, it was shown in [21] that these are included in
the support of at least one 𝑇-invariant, thus representing repetitive parts of the underlying Petri
net.

Now, using the introduced concepts, the concurrency oracle can be stated.

3.2.2. General Approach

The algorithm is divided into two steps. In the first step, the goal is to build a tree. The idea is
that the tree nodes represent the repeating parts of a WF-net. The root node represents the
complete WF-net. A WF-net is not a repeating component, but if we add an artificial transition
like point 3 of definition 2.5, we can consider it so. Its child nodes are the cycles contained in it
that are not contained in other cycles. In turn, the children of these will be their inner cycles
until reaching the cycles that do not include any cycle inside, which will be the tree leaves. The
non-repeating part of the WF-net also forms a node. For the WF-net in Figure 4, the generated
tree is shown in Figure 5.

Of course, we do not have a WF-net in advance. Figure 5 only illustrates the ideal case
where we know the cycles. In real cases where we only have one event log, the tree we will
build will have traces on the nodes instead of the subnets in Figure 5. To construct the traces
corresponding to one cycle, we use the sets 𝑅𝑑(𝑡) from Definition 3.3.

The second step is to find the concurrency relationships one node at a time. The strategy is to
take an in-depth tour. Once a tree leaf is reached, we break the cycles so that the traces generated
by them do not have repeated activities. This allows us to find concurrency relationships using
Agrawal’s algorithm.

We repeat the same strategy as in the leaves as we go up through the nodes. The difference
is that Agrawal’s algorithm can now find concurrences between activities that belong to the
child nodes. We resort to a heuristic to decide whether these concurrences are conserved.



Figure 5: Decomposition of a Petri net in its cycles.

3.2.3. Step 1: Building the Tree

In sections 3.2.2 and 3.2.3, we described the method using the event log 𝐿2 shown above as a
running example.

This section shows the first step of our algorithm: the decomposition of a process into its
repetitive components and the arrangement of these in the form of a tree. Unlike Figure 5, we
do not have a WF-net to extract the cycles from there; all we have is an incomplete event log.
We will try with this log to approximate the tree we would obtain if we had a model.

The nodes will contain sets of traces, and we define the root node as the one that contains
the original event log, 𝐿2.

To find its child nodes, we proceed as follows: we find the first repeated activity in any of the
traces; in our example, this activity is 𝑓. In this case, 𝑓 is the first activity repeated in the first
trace, although we could consider any other trace.

This activity 𝑓 represents the “start” of the cycle. We compute the set of activities
on which 𝑓 repetitively depends. In our example, this set is 𝑅𝑑(𝑓 ) = {𝑓 , 𝑔, 𝑗}. The
projection of the traces of 𝐿2 onto 𝑅𝑑(𝑓 ), denoted by 𝑃𝑟𝑅𝑑(𝑓 )(𝐿2), results in the set:
{⟨𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔⟩, ⟨𝑓 , 𝑔⟩, ⟨𝑓 , 𝑔⟩}. This set is a child node of the root.

Note that we did approximate the yellow loop (Figure 4) using the repeating dependency. We
project the log onto 𝑅𝑑(𝑓 ) = {𝑓 , 𝑔, 𝑗} because, as we mentioned when illustrating our hypothesis,
we want to leave out all behavior outside of cycles.

Now, we remove from 𝐿2 all the activities that appear in 𝑅𝑑(𝑓 ); the new ”event log” is 𝐿
′
2 =

{⟨𝑞, 𝑠, 𝑤, 𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑟 , 𝑡 , 𝑖, 𝑎, 𝑢, 𝑑, ℎ, 𝑘, 𝑧, 𝑥, 𝑐⟩, ⟨𝑞, 𝑤, 𝑠, 𝑒, 𝑟 , 𝑦 , 𝑖, 𝑢, 𝑎, 𝑑, 𝑜, 𝑒, 𝑖, ℎ, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖,
𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑, 𝑙, 𝑛⟩, ⟨𝑞, 𝑠, 𝑤, 𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, ℎ, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑡 , 𝑢, 𝑑, 𝑙, 𝑛⟩}.

We proceed in a similar way with the event log 𝐿
′
2. We find the first repeated activity in any

of its traces. In this example, the activity is 𝑒, when we start from the first trace. Although any
other trace with repeated activities can be used. We compute 𝑅𝑑(𝑒) for 𝐿

′
2, resulting: 𝑅𝑑(𝑒) <=

{𝑟 , 𝑒, 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜}. Now, we project the traces of 𝐿
′
2 onto 𝑅𝑑(𝑒), resulting in the set 𝑃𝑟𝑅𝑑(𝑒)(𝐿

′
2) =

{⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑟 , 𝑖, 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑟 , 𝑦 , 𝑖, 𝑢, 𝑎, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜,
𝑒, 𝑖, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑢, 𝑑⟩}. The projection of the log onto 𝑅𝑑(𝑒) is an-
other child of the root node. In this case, we approximate the pink cycle using the set
𝑅𝑑(𝑒) = {𝑟 , 𝑒, 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜}.



Now, we remove all activities that appear in 𝑅𝑑(𝑒) from the log 𝐿
′
2. The resulting ”event log”

is 𝐿
″
2 = {⟨𝑞, 𝑠, 𝑤, 𝑡 , ℎ, 𝑘, 𝑧, 𝑥, 𝑐⟩, ⟨𝑞, 𝑤, 𝑠, ℎ, 𝑙, 𝑛⟩, ⟨𝑞, 𝑠, 𝑤, ℎ, 𝑡 , 𝑙, 𝑛⟩}. We call this set 𝐿

″
2 . In 𝐿

″
2 there are

no repeating activities, therefore it represents the activities from WF-net that are not included
in a cycle. 𝐿

″
2 is the last descendant from the root node.

The following algorithm summarizes the procedure described.

Algorithm 1. Find Child Nodes

Input: 𝐿 ◁ Set of traces contained in the node to expand
Output: Child Nodes of 𝐿

1. 𝑐ℎ𝑖𝑙𝑑𝑁 𝑜𝑑𝑒𝑠 ← ∅
2. 𝑎𝑢𝑥𝐿𝑜𝑔 ← 𝐿
3. while 𝑎𝑢𝑥𝐿𝑜𝑔 ℎ𝑎𝑠 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑎𝑐𝑡𝑖𝑣 𝑖𝑡 𝑖𝑒𝑠 do:
4. 𝑟𝑒𝑝𝐴𝑐𝑡 ← 𝑓 𝑖𝑛𝑑𝐹 𝑖𝑟𝑠𝑡𝑅𝑒𝑝.(𝑎𝑢𝑥𝐿𝑜𝑔)
5. 𝑑𝑅 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑝𝑒𝑡𝑖𝑡 𝑖𝑣𝑒.(𝑟𝑒𝑝𝐴𝑐𝑡)
6. 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝐿𝑜𝑔 ← 𝑃𝑟𝑑𝑅(𝑎𝑢𝑥𝐿𝑜𝑔)
7. 𝑐ℎ𝑖𝑙𝑑𝑁 𝑜𝑑𝑒𝑠 ← 𝑐ℎ𝑖𝑙𝑑𝑁 𝑜𝑑𝑒𝑠 ∪ {𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝐿𝑜𝑔}
8. 𝑎𝑢𝑥𝐿𝑜𝑔 ← 𝑃𝑟𝐴\𝑑𝑅(𝑎𝑢𝑥𝐿𝑜𝑔) ◁ 𝐴 is the set of activities
9. end while
10. 𝑐ℎ𝑖𝑙𝑑𝑁 𝑜𝑑𝑒𝑠 ← 𝑐ℎ𝑖𝑙𝑑𝑁 𝑜𝑑𝑒𝑠 ∪ {𝑎𝑢𝑥𝐿𝑜𝑔}
11. return 𝑐ℎ𝑖𝑙𝑑𝑁 𝑜𝑑𝑒𝑠

The 𝑓 𝑖𝑛𝑑𝐹 𝑖𝑟𝑠𝑡𝑅𝑒𝑝 function returns the first repeated activity in a trace of 𝑎𝑢𝑥𝐿𝑜𝑔, and is stored
in 𝑟𝑒𝑝𝐴𝑐𝑡. The 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑝𝑒𝑡𝑖𝑡 𝑖𝑣𝑒 function returns the set of activities that 𝑟𝑒𝑝𝐴𝑐𝑡 repetitively
depends on and is stored in 𝑑𝑅.

Once the root has been expanded, the rest of the tree is built by expanding the children by
width traversal. Leaf nodes contain a set of traces, such that all activities that can be retrieved
via the 𝑓 𝑖𝑛𝑑𝐹 𝑖𝑟𝑠𝑡𝑅𝑒𝑝 function lead to a set of traces already contained in another node.

The black subgraph in Figure 6 shows the tree built from 𝐿2. The gray nodes would be the
children of the leaf nodes; however, as mentioned, these contain sets of traces that have already
been found before. Therefore they are not considered.

Figure 6: Tree generated using algorithm 1, from the event log 𝐿2.



3.2.4. Step 2: Finding concurrency

Once the tree is built, we traverse its nodes in depth-first order. Upon reaching a node, the
concurrency relations between activities in the traces of that node are extracted as follows:

• For leaf nodes, we transform the log contained in the node to a non-repetitive event log
(Definition 3.2). The resulting log fulfills the assumptions of the Agrawal algorithm. So,
we apply the Agrawal algorithm to this log, and the pairs of concurrent activities returned
by the algorithm are added to the set of concurrent relations.

• For internal nodes, there is a slight change. Consider an internal node named nd. First, the
non-repeating event log is obtained from the log contained in node nd. We applied the
Agrawal algorithm to this non-repeating log, but since we are not making any assumptions
about the rate of completeness of the log, it is impossible to guarantee that the found
concurrency relations are all WF-net concurrences. That is because we are inferring
beyond what is recorded. However, we apply the following heuristic rule to decide if a
concurrency relationship returned by Agrawal’s algorithm holds in the set of concurrency
relationships delivered by our oracle.
If Agrawal’s algorithm returns that 𝑥 and 𝑦 are concurrents, wemust consider the following
cases:

1. 𝑥 and 𝑦 belong to the set of activities of one of the child nodes of nd.
2. 𝑥 belongs to the set of activities of one child node of nd, and 𝑦 belongs to the set of

activities of another different child node of nd.
3. 𝑥 belongs to one of the child nodes of nd and 𝑦 to none.
4. neither 𝑥 nor 𝑦 belongs to any of the children nodes of nd.

In the first case, the concurrency between 𝑥 and 𝑦 will be preserved only if it was found
when the child node was parsed. If there are concurrency between 𝑥 and 𝑦, it should have
been observed when executing the innermost cycle (deepest node) that contains 𝑥 and 𝑦.
If it was not observed when analyzing the inner cycle, there is no reason why it could be
observed in a larger cycle.
In the second case, concurrency is preserved if and only if there is some explicitly observed
concurrency (according to definition 2.13) between one of the activities of one node and
an activity of the other node. This is because two inner cycles of a third cycle can be
concurrent with each other, but they can also be sequential. To ensure that we are not
adding false concurrency relationships (which actually are sequential relationships), we
require that at least one concurrency relationship has been observed between the activities
in the inner loops.
In cases 3 and 4, concurrency is always preserved. The reason is that they are activities
inside a cycle with nested cycles, but those activities are in the ”non-repetitive” part of
the cycle; that is, they are not inside any of the nested cycles. Therefore, the fact that
they appeared in reverse order, as required by Agrawal’s algorithm, is indicative that they
are, in fact, concurrent.

Following our example, the first node visited contains the traces {⟨𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔, 𝑗, 𝑓 , 𝑔, 𝑗,
𝑓 , 𝑔⟩, ⟨𝑓 , 𝑔⟩, ⟨𝑓 , 𝑔⟩}. Applying the described procedure, no concurrency relationship was found
there, which is consistent with the model.



The second node visited contains the traces {⟨𝑒, 𝑟 , 𝑖, 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑟 , 𝑖, 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑟 , 𝑦 , 𝑖, 𝑢, 𝑎, 𝑑, 𝑜, 𝑒,
𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑟 , 𝑦 , 𝑎, 𝑢, 𝑑⟩, ⟨𝑒, 𝑖, 𝑟 , 𝑎, 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑑, 𝑦 , 𝑢, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑦 , 𝑢, 𝑑, 𝑜, 𝑒, 𝑖, 𝑎, 𝑟 , 𝑢, 𝑑⟩}.
Applying the procedure, it follows that 𝐶𝑜𝑛𝑐1 = {(𝑟 , 𝑖), (𝑢, 𝑎), (𝑖, 𝑦), (𝑟 , 𝑎), (𝑢, 𝑑), (𝑦 , 𝑎), (𝑦 , 𝑑)} are
concurrency relations, which is consistent with the model.

The third node visited contains the traces 𝐶𝑜𝑛𝑐2 = {⟨𝑞, 𝑠, 𝑤, 𝑡 , ℎ, 𝑘, 𝑧, 𝑥, 𝑐⟩, ⟨𝑞, 𝑤, 𝑠, ℎ, 𝑙, 𝑛⟩, ⟨𝑞, 𝑠,
𝑤, ℎ, 𝑡 , 𝑙, 𝑛⟩}. Applying the procedure, it follows that {(𝑠, 𝑤), (𝑡 , ℎ)} are concurrency relations,
which is consistent with the model.

The last node visited contains the original event log. Following the described procedure, it fol-
lows that 𝐶𝑜𝑛𝑐3 = {(𝑒, 𝑔), (𝑓 , 𝑢), (𝑓 , 𝑎), (𝑢, 𝑔), (𝑓 , 𝑜), (𝑜, 𝑔), (𝑗, 𝑢), (𝑓 , 𝑦), (𝑑, 𝑔), (𝑓 , 𝑟), (𝑖, 𝑔), (𝑓 , 𝑒),
(𝑓 , 𝑑), (𝑓 , 𝐼 ), (𝑟 , 𝑗), (𝑎, 𝑔), (𝑟 , 𝑔), (𝑗, 𝑒)} are concurrency relations, which is consistent with the
model.

Therefore, the concurrences returned by our oracle are 𝐶𝑜𝑛𝑐 = 𝐶𝑜𝑛𝑐1 ∪ 𝐶𝑜𝑛𝑐2 ∪ 𝐶𝑜𝑛𝑐3. Only
the red ones are found by the 𝛼-oracle.

4. Implementation and Tests

The procedures derived from the proposed method have been implemented as a software tool in
Phyton. It is available at https://www.websysmex.online/#/Cesar. The experiments have been
performed on eight test cases where artificial logs are obtained from Petri nets with diverse
structures; the logs are obtained by executing the modes in the PIPE tool [22].

The reason for using artificial event logs instead of real-life ones is that it is possible to
compare the effectiveness of the method to known concurrency relationships in the test PN,
which are unknown in real-life event logs. Petri nets and their corresponding event logs are
available too at the same site. In the tests, we use event logs with rates of completeness of 30%,
40%, and 50%, approximately. The results of the tests are compared to those of the 𝛼-oracle.

Below the results of the method are shown for the eight event logs: 𝑂 is the set of pairs
of concurrent relations returned by our oracle, 𝑂𝛼 is the set of pairs of concurrent relations
computed by the 𝛼-oracle, and 𝑁|| is the set of concurrent relations in the Petri net 𝑁.

Figure 7 shows
|𝑂∩𝑁|||
|𝑁|||

for each of the eight Petri nets and the three rates of completeness; in

other words, the percentage of the actual concurrency relationships of the Petri net that were

found by our method. Analogously, Figure 8 shows
|𝑂𝛼∩𝑁|||
|𝑁|||

. As expected, the higher the rate of

completeness of the event log, the higher the percentage of revealed concurrency relationships.
The results achieved by our proposal show that it can extract significantly more concurrency

relationships than those explicitly recorded.
However, in no case were they able to reveal the total attendance. Furthermore, the percentage

of concurrency relationships found is very similar to the completeness rate for some nets.
Extracting unrecorded concurrency relations would be trivial if overgeneralization did not

matter. However, discovering precise models requires that the oracle return as few false
concurrency relationships as possible.

Figure 9 shows
|𝑂∩𝑁|||
|𝑂| , the percentage of concurrency relations of the 𝑃𝑁 extracted by our

oracle concerning the total number of relations that the oracle determined as concurrences.



Figure 7: Percentage of concurrency relationships found for the proposed oracle.

Figure 8: Percentage of concurrency relationships found for the 𝛼-oracle.

Figure 10 shows the same rate for the 𝛼-oracle (
|𝑂𝛼∩𝑁|||
|𝑂𝛼|

).

Our proposal achieved results above 90% for most of the nets, which we consider favorable.
However, for Petri net 6, it was found that almost 30% of the relationships that the oracle ”said”
were concurrent were not. Therefore, in this case, using our oracle could lead to models with
low precision. It is also striking that, in some cases, the higher the completeness rate, the more



Figure 9: Percentage of concurrency relationships found by the proposed oracle that are concurrent
relationships in the Petri net

false matches are obtained. As expected, the alpha oracle gets fewer errors. All 𝛼-oracle errors
are associated with short loops.

5. Conclusions

This paper proposed a novel approach to building concurrency oracles based on discovering
repetitive patterns from the event log. It has been shown in the tests that although the imple-
mented oracle cannot determine all the concurrences, it can infer significantly more concurrency
relationships than those straightforwardly determined from the event log. These results are
encouraging and show that a concurrency oracle can be helpful when dealing with incomplete
logs.

However, a few issues remain before it can be used in real logs. Mainly, the surplus of false
concurrency relationships should be mitigated. Heuristic rules like that in step two of our
proposal can reduce spurious concurrences. This approach has the advantage of not imposing
constraints on the event log; however, for the same reason, it will not be possible to guarantee
that all the concurrences found are indeed in the net.

Another approach to solve this issue is to constrain the class of WFNs to be dealt with to find
a ”minimum behavior” that the log must hold to ensure that all the concurrency relationships
determined by the oracle are true. Although we aim to make the oracle usable in actual
environments, we prefer the first option. Our current research goes in that direction.



Figure 10: Percentage of concurrency relationships found by the 𝛼-oracle that are concurrent relation-
ships in the Petri net.
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