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Abstract
Elementary net systems are fundamental Petri net models with very simple markings which are sets of
places. Their standard semantics is based on sequences of executed transitions, which can be understood
as (labelled) total orders. In this paper, we consider a newly proposed semantics based on interval (partial)
orders which allows one to describe behaviours where transitions have non-atomic duration. For such a
semantical model, we consider the net synthesis problem, and show that the standard notion a region of a
transition system can still be applied.

1. Introduction

Petri nets are a general model of concurrent systems which emerged in the 1960’s as a counterpart
to the state machines that were used so successfully to model sequential systems. A particular
advantage of Petri nets is that the model allows one to both specify concurrent system designs, and
the behaviours of such systems. It is generally acknowledged that concepts related to fundamental
notions of concurrency theory, such as causality and independence, can be well explained using
the framework provided by Petri nets [1, 2, 3, 4]. A fundamental class of Petri nets in that respect
are Elementary Net systems (EN-systems) [5].

In general, the execution semantics of Petri nets (i.e., the representation of individual runs
or observations) is captured by total orders of executed transitions (or, equivalently, by firing
sequences), or stratified orders of executed transitions where simultaneity is transitive (or, equiva-
lently, by step sequences). Having said that, it was argued by Wiener in 1914 [6] (and later, more
formally, in [7]) that any execution that can be observed by a single observer must be an interval
order, and so the most precise (qualitative) observational semantics is based on interval orders,
where simultaneity is often non-transitive.

In this paper, using EN-systems as a system model, we first show how one can generate interval
order observations of their executions in a direct way, without the need to modify the original
system specification (e.g., splitting transitions into explicit beginnings and endings) as it was
done, for example, in [8, 9, 10]. We also define interval reachability graphs (IR-graphs) which can
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be seen as finite generators of potentially infinite sets of interval orders defined by EN-systems.
IR-graphs are a subclass of interval transition systems (IT-systems) which differ from the standard
transition systems since instead of having their arcs labelled by executed transitions, they have
states labelled by sets of transitions (interpreted as transitions currently being executed). Then,
assuming the interval order semantics of EN-systems, we consider the problem of synthesising
EN-systems from given IT-systems.

We approach the new synthesis problem using the standard synthesis approach based on the
theory of regions [11, 12, 13]. If one considers sequential behaviours of nets, a transition system
is realised by a net iff it is isomorphic to the sequential reachability graph (or case graph) of this
net. Ehrenfeucht and Rozenberg investigated the realisation of transition systems by elementary
nets and produced an axiomatic characterisation of the realisable transition systems in terms
of regions [11, 12]. As in the existing literature about Petri net synthesis, the net realisable
IT-systems are characterised by adapted State Separation and Forward Closure axioms.

2. Preliminaries

Labelled partial orders with domain elements representing executed actions are commonly used
in concurrency theory to formalise different notions of dynamic semantics.

A (strict labelled) partial order is a triple po = ⟨X ,≺, ℓ⟩ such that X(= Xpo) is a set, ≺ (=≺po)
is a binary relation over X which is irreflexive and transitive, and ℓ(= ℓpo) is a labelling for
the elements of X . The maximal elements of po are maxpo = {x ∈ X | ¬∃y ∈ X : x ≺ y}, and
nomaxpo = X \maxpo are the non-maximal elements. For all x ̸= y ∈ X , x ⌒ y if x ̸≺ y ̸≺ x.

If X =∅ then po is the empty partial order denoted by ∅.
The partial order is total whenever, for all x ̸= y ∈ X , x ≺ y or y ≺ x. Moreover, it is interval

whenever, for all x,y,z,w ∈ X , if x ≺ z and y ≺ w then x ≺ w or y ≺ z. The adjective ‘interval’
derives from the following result.

Theorem 1 (Fishburn [14]). A countable partial order ⟨X ,≺, ℓ⟩ is interval iff there exists a total
order ⟨Y,◁, ℓ′⟩ and two injective mappings β ,ε : X → Y such that β (X)∩ ε(X) =∅ and, for all
x,y ∈ X, β (x)◁ ε(x) and x ≺ y ⇐⇒ ε(x)◁β (y).

The mappings β and ε above are usually interpreted as providing the ‘beginnings of’ and
‘endings of’ actions represented by the elements of X .

The relevance of interval orders in concurrency theory follows from an observation, credited
to Wiener [6], that any execution of a physical system that can be observed by a single observer
must be an interval order. It implies that the most precise observational semantics should be
defined in terms of interval orders (cf. [7]).

3. Elementary net systems and their standard semantics

Definition 1 (EN-system). An elementary net system (or EN-system) is a tuple en = ⟨P,T,F,m0⟩,
where P and T are disjoint finite sets of nodes, called respectively places and transitions,
F ⊆ (T ×P)∪ (P×T ) is the flow relation, and m0 ⊆ P is the initial marking (in general, any
subset of places is a marking). Moreover, we have the following:
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Figure 1: EN-system where p1 = p2, p3 = p4, and p5 = p6.

• For every node x, •x = {y | ⟨y,x⟩ ∈ F} and x• = {y | ⟨x,y⟩ ∈ F}.
• For every transition t, •t ̸=∅ ̸= t• and •t ∩ t• =∅.
• For every place p, there is a unique complement place p such that: •p = p•, p• = •p, and

p ∈ m0 ⇐⇒ p /∈ m0.

Note that the last part of Definition 1 is added to the standard one in order to simplify
Definition 2.

In diagrams, places are represented by circles, transitions by rectangles, the flow relation by
directed arcs, and a marking by small black dots drawn inside places belonging to the marking.

Example 1. Figure 1 shows an EN-system. Intuitively, its three components represented by cyclic
sub-nets progress independently, but any action shared by two components can be executed only
if both of them do so.

The dynamic behaviour of EN-systems is introduced by defining valid sequences of executed
transitions, called firing sequences.

Definition 2 (firing sequence). Let en = ⟨P,T,F,m0⟩ be an EN-system. The firing sequences of
en, denoted by SEQen, are generated as follows.

• The empty sequence λ is a firing sequence of en, and it leads to marking marλ = m0.
• Let σ be a firing sequence of en leading to marking marσ , and t be a transition such that

•t ⊆ marσ (t is enabled at marσ ). Then σt is a firing sequence of en leading to marking
marσt = marσ \•t ∪ t•.

Note that the last part of Definition 1 implies that, for all places p ̸= q and reachable markings
m, •p ̸= •q or p• ̸= q• or m(p) ̸= m(q) (markings are treated here as characteristic functions of
sets they represent).

Proposition 1. Let en = ⟨P,T,F,m0⟩ be an EN-system, σ be a firing sequence of en, and t ∈ T
be a transition such that •t ⊆ marσ . Then t•∩marσ =∅.

Proof. Suppose that there is p ∈ P such that p ∈ t•∩marσ . The complement place p of p which
belongs to P (Definition 1) is such that p ∈ •t ⊆ marσ . But p ∈ marσ as well, which is not
possible as p and p are complementary places. Hence we obtained a contradiction.



An alternative way of defining the standard semantics of EN-systems is by associating labelled
total orders of transition occurrences with the executed interleaving sequences of transitions. In
what follows, the i-th occurrence of transition t will be denoted by t(i) and called event.

Definition 3 (total orders of EN-system). Let en = ⟨P,T,F,m0⟩ be an EN-system. The total orders
of en, denoted by TPOen, are generated as follows.

• The empty total order tpo∅ is a total order of en, and it leads to marking martpo∅ = m0.
• Let tpo = ⟨X ,≺, ℓ⟩ be a total order of en leading to marking martpo, and t be a transition

such that •t ⊆ martpo. Then,

tpo′ = ⟨X ∪{x},≺ ∪ X ×{x}, ℓ′⟩ (1)

is a total order of en leading to marking martpo′ = martpo \•t ∪ t•, where:

– x = t(n+1) with n being the number of the elements of X labelled by t.
– ℓ′|X = ℓ and ℓ′(x) = t.

Proposition 2. Let en = ⟨P,T,F,m0⟩ be an EN-system. Then TPOen is a set of labelled total
orders.

Proof. Follows directly from the definitions.

There is a canonical way of associating a labelled total order with a finite sequence of transitions
σ = t1 . . . tk (k ≥ 0), namely

seq2tpo(σ) = ⟨{x1, . . . ,xk},≺, ℓ⟩ ,

where x1 ≺ ·· · ≺ xk and, moreover, each xi = t(ki)
i is such that ℓ(xi) = ti, and ki is the number of

occurrences of ti in the sub-sequence t1 . . . ti.

Proposition 3. Let en = ⟨P,T,F,m0⟩ be an EN-system. Then seq2tpo induces a bijection between
SEQen and TPOen.

Proof. Follows directly from the definitions.

4. Interval order semantics of EN-systems

The standard execution semantics of EN-systems implicitly assumes that events are executed
instantaneously, or that their duration is negligible. Let us now assume that transitions are fired
over intervals of arbitrary duration. Moreover, the firing of a transition t is transaction-like. By
this we mean that the places in t• are locked when t starts its execution, and if the execution is
finished, then the tokens present in these places become available for firing.

Our aim is to define an abstract interval order semantics for en in as simple as possible way.
Hence, we start with the traditional way in which the firing of transitions is carried out by taking a
firing sequence t1 . . . tk. In such a view, the firings are instantaneous (or at least non-overlapping),
and so they are implicitly ordered t1(m1) ≺ ·· · ≺ tk(mk). Here, there exists an easy way of relating



the executed transitions, which only takes into account the direct causal dependencies resulting
from creating and consuming resources (tokens), viz. ti(mi) ≺causal t j

(m j) whenever t•i ∩ •t j ̸=∅,
for all 1 ≤ i < j ≤ k.

When working towards a sound interval order semantics for en in the case of interval overlap-
ping, we could proceed by noting down the beginnings and ends of all the executed transitions
and convert the ‘interval sequence’ obtained in this way into the corresponding interval order.
It is crucial now to observe that, in general, the result is in no way based on the fundamental
causality relationship (i.e., ≺causal) which is inherent in EN-systems.

Similarly as in Definitions 2 and 3, we will use an inductive approach to define interval order
semantics of EN-systems. This leads to the following question: Having observed a hypothetical
interval order execution ipo, resulting from extending the initial empty interval order by observed
events t1(m1), . . . , tk(mk), what could we say about the interval order obtained after firing of the
beginning of another transition? In other words, what could we say about ipo′ derived from ipo
after adding a single event x = t(n)? Our answer is based on the following key observations:

(i) If v ∈ nomaxipo is a non-maximal event in ipo then, for sure, we should have v ≺ipo′ x.
(ii) If v∈maxipo is a maximal event in ipo such that ℓ(v)•∩•t ̸=∅, then v must have terminated

before x started, and we should have v ≺ipo′ x.
(iii) If v ∈ maxipo is a maximal event in ipo such that ℓ(v)•∩ •t =∅, then all we can be sure of

is that v has not started after x finished, and so we should have either v ≺ipo′ x or v ⌒ipo′ x.

Intuitively, the maximal events in ipo can be considered ‘unfinished’ before starting x, and can
either be ended ‘just before’ x started or continued to be finished after the execution of x has
started. Note that the first two cases above, (i) and (ii), are deterministic. However, case (iii) is a
source of non-determinism which is not present in the standard interleaving semantics of en.

In what follows, we will assume that each transition of an EN-system occurs in at least one
firing sequence, i.e., there are no dead transitions.

4.1. Interval orders generated by EN-systems

Definition 4 (interval orders of EN-system). Let en = ⟨P,T,F,m0⟩ be an EN-system. The interval
orders of en, denoted by IPOen, are generated as follows.

• The empty interval order ipo∅ is an interval order of en, and it leads to marking maripo∅ =
m0.

• Let ipo = ⟨X ,≺, ℓ⟩ be an interval order of en leading to marking maripo, and t be a
transition such that •t ⊆ maripo. Then

ipo′ = ⟨X ∪{x},≺ ∪ (nomaxipo∪V ∪W )×{x}, ℓ′⟩ (2)

is an interval order of en, and it leads to marking maripo′ = maripo \•t ∪ t•, where:

– x = t(n+1) with n being the number of the elements of X labelled by t.
– V = {v ∈ maxipo | ℓ(v)•∩ •t ̸=∅}.
– W ⊆ {v ∈ maxipo | ℓ(v)•∩ •t =∅}.
– ℓ′|X = ℓ and ℓ′(x) = t.



We also denote ipo →en ipo′ and ipo t−→en ipo′.

Note that in Definition 4 we need to consider all possible sets W . Even when {v ∈ maxipo |
ℓ(v)•∩ •t =∅}= {w}, we have two possibilities: W =∅ and W = {w}. The nondeterministic
execution results from having 2|{v∈maxipo|ℓ(v)•∩•t=∅}| choices of W .

Proposition 4. Let en = ⟨P,T,F,m0⟩ be an EN-system. If ipo →en ipo′ then there is a unique
transition t such that

ℓipo′(maxipo′)\ ℓipo(maxipo) = {t} and ℓipo′(maxipo′)\{t} ⊆ ℓipo(maxipo) .

Proof. Follows directly from Definition 4.

Proposition 5. Let en = ⟨P,T,F,m0⟩ be an EN-system, t ∈ T , and ipo ∈ IPOen. Moreover, let

{ipo1, . . . , ipok}= {ipo′ | ipo t−→en ipo′} ̸=∅ ,

where ipoi ̸= ipo j, for all 1 ≤ i < j ≤ k. Then:

{ℓipo1(maxipo1)\{t}, . . . , ℓipok(maxipok)\{t}}= 2(ℓipo1 (maxipo1 )∪···∪ℓipok (maxipok ))\{t} .

Also, for every u ∈ (ℓipo(maxipo)\ (ℓipo1(maxipo1)∪·· ·∪ ℓipok(maxipok)), we have u•∩ •t ̸=∅.

Proof. Follows directly from Definition 4 and Proposition 4.

Proposition 6. Let en = ⟨P,T,F,m0⟩ be an EN-system. Then IPOen is a set of labelled interval
orders such that TPOen ⊆ IPOen.

Proof. Clearly, as we can always set W = maxipo \V , we have TPOen ⊆ IPOen.
To show that IPOen is a set of interval orders, we use Theorem 1. More precisely, for every

ipo ∈ IPOen, we will show there exist suitable integer-valued functions βipo and εipo such that
there is kipo ≥ 0 such that εipo(y) ≤ kipo, for all y ∈ nomaxipo, and εipo(z) = kipo + 1, for all
z ∈ maxipo. We proceed by induction on the derivation of ipo.

In the base case there is nothing to show, and if ipo has one element x we set βipo(x) = 0 and
εipo(x) = 2.

In the inductive case, we assume that ipo, x, and ipo′ are as in Definition 4. We then set
βipo′(x) = kipo+2, εipo′(x) = kipo+3, and keep β and ε unchanged except for re-setting εipo′(z) =
kipo +3, for all z ∈ maxipo′ \{x}. Moreover, kipo′ = kipo +2.

Remark 1. The construction of interval orders in Definition 4 is not only a natural generalisation
of that for the total orders of en, but it also can capture other semantics which might be used to
define execution semantics of EN-systems. Below we describe some of more obvious possibilities,
depending on the choice of W. (Note that the same option is taken at all the stages of an
execution.)

1. W =maxipo \V . Then the construction generates all the total orders of en, as in Definition 3.
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Figure 2: (a) EN-system; (b) its interleaving reachability graph; (c) its IR-graph; and (d) an
isomorphic IT-system.

2. W =V =∅ or W = maxipo \V . Then the construction generates all the stratified orders1

included in IPOen. The result is the step sequence semantics of en expressed using partial
orders corresponding to step sequences.

3. W =V =∅ or (W = maxipo \V )∧(∀u ∈ T : •u ⊆ maripo =⇒ ℓ(maxipo)
• ∩ •u ̸=∅). Then

the construction generates all the stratified orders included in IPOen such that no stratum
can be extended to yield a valid stratified order. The result is the ‘maximal concurrency’
semantics of en.

4. W =∅. To our knowledge this option does not correspond to any semantical framework
considered in the literature. Intuitively, it can be regarded as ‘maximally prolonged’
execution model.

1A partial order po = ⟨X ,≺, ℓ⟩ is stratified if {⟨x,y⟩ ∈ X ×X | x ̸≺ y ̸≺ x} is an equivalence relation.
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Figure 3: (a) EN-system (some of complement places are omitted); and (b) its IR-graph.

4.2. Reachable states and interval reachability graphs

In the standard semantics of EN-systems, one usually associates the notion of a ‘a reachable
system state’ with that of the marking reached after executing a firing sequence. This, in turn,
leads to the notion of the reachability graph of an EN-system. Such graphs can be seen, in
particular, as generators of all the firing sequences that can be executed.

It is not difficult to see that markings alone are insufficient to identify states of EN-systems under
the interval order semantics. Consider, for example, the EN-system en depicted in Figure 3(a).
It generates two interval orders, ipo1 and ipo2, both with the domain {a(1),c(1)} and such that
c(1) ≺ipo1 a(1) and a(1) ⌒ipo2 c(1). Both orders lead to the same marking {p2, p5} which enables
transition b. Furthermore, following Definition 4, ipo1 can only be extended in one way (with
a(1) ≺ b(1) as in Figure 5(c)), whereas ipo2 can be extended in two ways (one with a(1) ≺ b(1) and
c(1) ⌒ b(1) as in Figure 5( f ), and the other with a(1) ≺ b(1) and c(1) ≺ b(1) as in Figure 5(e)).

Clearly, each ipo ∈ IPOen leads to a ‘state’. However, associating a state with each individual
interval order would generate a huge (infinite) state space. This is not the way to go. It turns out
that we can associate a state of en with all those interval orders which lead to the same marking,
and have the same set of labels of maximal events. The reason is that all the ‘continuations’ for
such interval orders are the same.

Definition 5 (equivalent interval orders). Let en = ⟨P,T,F,m0⟩ be an EN-system. Then ∼ be a
binary relation on IPOen such that, for all ipo, ipo′ ∈ IPOen, we have ipo∼ ipo′ if maripo =maripo′

and ℓipo(maxipo) = ℓipo′(maxipo′).

The above relation is an equivalence relation. Moreover, as the next result states, it can be used
to define system states.

Proposition 7. Let en = ⟨P,T,F,m0⟩ be an EN-system. If ipo1 ∼ ipo2 and ipo1 →en ipo′1, then
there is ipo′2 such that ipo2 →en ipo′2 and ipo′1 ∼ ipo′2.



Proof. It follows directly from Definition 4.

We can then define the reachability graph of an EN-system.

Definition 6 (interval reachability graph). The interval reachability graph (or IR-graph) of an
EN-system en = ⟨P,T,F,m0⟩ is irgen = ⟨Q,A,q0, i⟩, where:

1. Q = {⟨maripo, ℓipo(maxipo)⟩ | ipo ∈ IPOen} are the states.
2. A = {⟨⟨maripo, ℓipo(maxipo)⟩,⟨maripo′ , ℓipo′(maxipo′)⟩⟩ | ipo →en ipo′} are the arcs.
3. q0 = ⟨m0,∅⟩ is the initial state.
4. i : Q → 2T is the labelling such that i(q) =V , for every q = ⟨m,V ⟩ ∈ Q.

In the next section, we will show that irgen is a generator of all the interval orders of en.
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Figure 4: Reachability graphs for different semantical models of the EN-system in Figure 3(a):
interleaving semantics as in Remark 1(1) (top-left); maximally prolonged semantics as in Re-
mark 1(4) (top-right); step sequence semantics as in Remark 1(2) (bottom-left); and maximally
concurrent semantics as in Remark 1(3) (bottom-right).
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Figure 5: Interval orders generated by different paths in the transition system of Figure 3(b).

Remark 2. Remark 1 mentioned four different kinds of semantics which can be applied to
EN-systems. Figure 4 shows reachability graphs generated by these four semantics applied to
the EN-system in Figure 3(a) using the equivalence relation on interval orders introduced in
Definition 5.

4.3. Transition systems generating interval orders

In general, we are interested in transition systems which are capable of generating interval orders.

Definition 7 (interval transition system). An interval transition system over T (or IT-system) is
its = ⟨S,→,s0, ι⟩, where S is a finite set of states, →⊆ S×S is the set of arcs, s0 ∈ S is the initial
state, and ι : S → 2T is the labelling of states. It is assumed that the following hold, for all s ∈ S:

1. All states are reachable from s0.
2. ι(s) =∅ iff s = s0.
3. If s → r, then there is t ∈ T such that ι(r)\ ι(s) = {t}, and ι(r)\{t} ⊆ ι(s). We then also

denote s t−→ r.
Moreover, we denote s t−→ if there is at least one r ∈ S such that s t−→ r.

4. For every t ∈ T , there is at least one r ∈ S such that r t−→.
5. If s → r and s → q are such that ι(r) = ι(q), then r = q.

6. If s t−→ r and V ⊆ ι(r)\{t}, then there is q ∈ S such that s t−→ q and ι(q) =V ∪{t}.

7. If s t−→ r and s t−→ r′ then there is r′′ ∈ S such that s t−→ r′′ and ι(r′′) = ι(r)∪ ι(r′).

Proposition 8. Let en = ⟨P,T,F,m0⟩ be an EN-system. Then irgen is an IT-system over T .

Proof. It follows from Definitions 4, 6 and 7 as well as Proposition 4.

Note that Definition 7(5) reflects the deterministic nature of EN-systems, and Definition 7(6,7)
captures the non-deterministic aspect of the interval order semantics of EN-systems.

IT-systems are generators of interval orders.

Definition 8 (interval orders of IT-system). The interval orders of an IT-system its = ⟨S,→,s0, ι⟩,
denoted by IPOits, are the interval orders ipoπ generated by its paths π originating at the initial
state. They are generated as follows:



• ipos0
is the empty interval order of its.

• Let π = s0 . . .sk be a path in its such that ipo = ipos0...sk−1
= ⟨X ,≺, ℓ⟩ and sk−1

t−→ sk. Then

ipoπ = ⟨X ∪{x},≺ ∪ R×{x}, ℓ′⟩ (3)

is an interval order of its, where:

– x = t(n+1) with n being the number of the elements of X labelled by t.
– R = X \{y ∈ maxipo | ℓ(y) ∈ ι(sk)}.
– ℓ′|X = ℓ and ℓ′(x) = t.

Proposition 9. Let its = ⟨S,→,s0, ι⟩ be an IT-system over T , t ∈ T , and s ∈ S. Moreover, let

{s1, . . . ,sk}= {s′ | s t−→ s′} ̸=∅ ,

where si ̸= s j, for all 1 ≤ i < j ≤ k. Then:

{ι(s1)\{t}, . . . , ι(sk)\{t}}= 2(ι(s1)∪···∪ι(sk))\{t} .

Also, for every u ∈ ι(s)\ (ι(s1)∪·· ·∪ ι(sk)), we have u ≺ t, where ≺ is as in Definition 8.

Proof. Follows directly from Definition 7(3,5,6,7).

Theorem 2. Let en = ⟨P,T,F,m0⟩ be an EN-system. IPOen = IPOirgen
.

Proof. Follows directly from Definitions 4 and 8 as well as Proposition 8.

Definition 9. Two IT-systems, its = ⟨S,→,s0, ι⟩ and its′ = ⟨S′,→′,s′0, ι
′⟩, are isomorphic if there

is a bijection ψ : S → S′ such that:

• ψ(s0) = s′0.
• For all s,s′ ∈ S, s → s′ if and only if ψ(s)→′ ψ(s′).
• For every s ∈ S, ι(s) = ι ′(ψ(s)).

5. Synthesis

Our synthesis procedure follows the standard approach applied in [11, 12, 13, 15, 16, 17, 18, 19],
where a transition system with its global states is used as an initial specification from which local
states (places of Petri nets) are inferred in the form of regions. In our case, transitions systems are
IT-systems. The verification that a given IT-system is realisable by an EN-system with interval
order semantics is done by checking whether the interval reachability graph of the synthesised
net is isomorphic to the initial IT-system.

Definition 10 (region). A region of an IT-system over T , its = ⟨S,→,s0, ι⟩, is a triple ρ =

⟨Inρ ,Outρ ,σρ⟩, where Inρ ,Outρ ⊆ T and σρ : S → {0,1} are such that, for every s t−→ r, the
following hold:

1. If t ∈ Inρ then σρ(s) = 0 and σρ(r) = 1.



2. If t ∈ Outρ then σρ(s) = 1 and σρ(r) = 0.
3. If σρ(s) = 1 and σρ(r) = 0, then t ∈ Outρ .
4. If σρ(s) = 0 and σρ(r) = 1, then t ∈ Inρ .

There are two trivial regions, ⟨∅,∅,ˆ︁1⟩ and ⟨∅,∅,ˆ︁0⟩, where ˆ︁1 and ˆ︁0 denote constant functions
returning 1 and 0, respectively. The set of all non-trivial regions of its will be denoted by Rits.
We also denote, for every t ∈ T :

t◦ = {ρ ∈ Rits | t ∈ Inρ} and ◦t = {ρ ∈ Rits | t ∈ Outρ} .

The set of states associated with a region ρ = ⟨Inρ ,Outρ ,σρ⟩ is given by Sρ = σ−1
ρ ({1}). Also,

we denote Rs = {ρ ∈ Rits | s ∈ Sρ}.

Proposition 10. Let its = ⟨S,→,s0, ι⟩ be an IT-system over T and t ∈ T be such that there is
s ∈ S with s t−→. Then t◦∩ ◦t =∅.

Proof. Suppose s t−→ s′ and ρ ∈ t◦∩ ◦t. Then t ∈ Inρ ∩Outρ . But, from Definition 10(1,2), we
have σρ(s) = 0 and σρ(s) = 1, a contradiction.

Proposition 11. Let its = ⟨S,→,s0, ι⟩ be an IT-system over T and s t−→ s′. Then

1. ρ ∈ ◦t implies s ∈ Sρ (σρ(s) = 1) and s′ /∈ Sρ (σρ(s′) = 0).
2. ρ ∈ t◦ implies s /∈ Sρ (σρ(s) = 0) and s′ ∈ Sρ (σρ(s′) = 1).

Proof. Follows directly from the definitions of t◦ and ◦t and Definition 10(1,2).

Proposition 12. Let its = ⟨S,→,s0, ι⟩ be an IT-system over T and s t−→ s′. Then Rs \Rs′ =
◦t

and Rs′ \Rs = t◦.

Proof. We show Rs \Rs′ =
◦t as the second part can be shown in a similar way.

By Proposition 11(1), ◦t ⊆ Rs and ◦t ∩Rs′ = ∅. Hence ◦t ⊆ Rs \Rs′ . Suppose now that
ρ ∈ Rs \Rs′ . This implies s ∈ Sρ and s′ /∈ Sρ . Hence, by Definition 10(3) and s t−→ s′, we have
t ∈ Outρ , and so ρ ∈ ◦t. Thus, Rs \Rs′ ⊆ ◦t, and so Rs \Rs′ =

◦t.

Definition 11. The tuple associated with an IT-system over T , its = ⟨S,→,s0, ι⟩, is given as

enits = ⟨Rits,T,Fits,Rs0⟩

where Fits = {(ρ, t) ∈ Rits ×T | t ∈ Outρ}∪{(t,ρ) ∈ T ×Rits | t ∈ Inρ}.

Proposition 13. Let its = ⟨S,→,s0, ι⟩ be an IT-system over T , and enits = ⟨Rits,T,Fits,Rs0⟩ be
the tuple associated with it. Then, for every t ∈ T , •t = ◦t and t• = t◦.

Proof. Follows from Definition 11 and the definitions of ◦t and t◦.

Proposition 14. Let its = ⟨S,→,s0, ι⟩ be an IT-system over T , and ρ = ⟨Inρ ,Outρ ,σρ⟩ ∈ Rits.
Then ρ = ⟨Outρ , Inρ ,σρ⟩ ∈ Rits, where σρ(s) = 1−σρ(s), for every s ∈ S.

Proof. Follows from Definition 10.



The region ρ is called the complement of ρ .

Definition 12 (ENIT-system). Let its = ⟨S,→,s0, ι⟩ be an IT-system over T . Then its is an
ENIT-system over T if the following hold, for all t ∈ T and s,r ∈ S:

1. t◦ ̸=∅ ̸= ◦t.
2. If s ̸= r and ι(s) = ι(r), then there is a region ρ ∈ Rits such that (state separation)

σρ(s) ̸= σρ(r) .

3. If s ̸ t−→, then there is a region ⟨Inρ ,Outρ ,σρ⟩ ∈ Rits such that (forward closure)

(t ∈ Inρ ∧σρ(s) = 1) or (t ∈ Outρ ∧σρ(s) = 0) .

The above three ‘axioms’ characterise the EN-system realisable IT-systems. State separation
requires that if two distinct states are not distinguished by at least one region, then they are
distinguished by the labels of the maximal elements of their associated interval orders. Forward
closure requires that for each action (i.e., transition label), a state at which the considered action
has no occurrence is separated by a region from all states where this action occurs. While the
forward closure axiom has similar form as ‘forward closure’ axioms that can be found in the
literature for solving other synthesis problems [13, 15, 16, 17, 18, 19], the state separation axiom
for ENIT-systems differs from its standard form as here the separation of states does not rely only
on regions.

Proposition 15. Let its = ⟨S,→,s0, ι⟩ be an ENIT-system over T . Then enits = ⟨Rits,T,Fits,Rs0⟩
is an EN-system.

Proof. Let t ∈ T . From Proposition 13 and Definition 12(1) we have that •t ̸=∅ ̸= t•.
From Definition 7(4) we have that there is s ∈ S such that s t−→ r, for some r ∈ S. Suppose

that ◦t ∩ t◦ ̸=∅. Then there is region ρ ∈ ◦t ∩ t◦ and so t ∈ Inρ ∩Outρ , yielding a contradiction
with Definition 10. Hence ◦t ∩ t◦ =∅. This, together with Proposition 13, implies •t ∩ t• =∅.
Moreover, Proposition 14 implies that ρ ∈Rits ⇐⇒ ρ ∈Rits, so in enits every place has a unique
complement. Hence enits is an EN-system.

Proposition 16. Let its = ⟨S,→,s0, ι⟩ be an ENIT-system over T , and en = enits =
⟨Rits,T,Fits,Rs0⟩ be the tuple associated with it. Then the states, arcs, and the labelling function
of irgen = ⟨Q,A,q0, i⟩ are as follows:

1. Q = {⟨Rs, ι(s)⟩ | s ∈ S}.
2. A = {⟨⟨Rs, ι(s)⟩,⟨Rs′ , ι(s′)⟩⟩ | s → s′}.
3. For every s ∈ S, i(⟨Rs, ι(s)⟩) = ι(s).

Proof. First, from Proposition 15 it follows that en is an EN-system. Note also that from
Definition 7(1) all the states of its are reachable from s0. Moreover, all the states of irgen are
reachable from q0, which follows from the construction of irgen and the inductive approach of
Definition 4. Furthermore, from Definition 6(3) we have q0 = ⟨Rs0 ,∅⟩, and from Definition 7(2)
we have ι(s0) =∅. Hence, q0 = ⟨Rs0 , ι(s0)⟩.



Now we show that ⟨q,q′⟩ ∈ A and q = ⟨Rs, ι(s)⟩, for some s ∈ S, imply that there is s′ ∈ S such
that s → s′ and q′ = ⟨Rs′ , ι(s′)⟩. By ⟨q,q′⟩ ∈ A we have, from Definition 6(2) and Definition 4,
that there are two interval orders, ipoq and ipoq′ , such that ipoq →en ipoq′ , and that there is t ∈ T
such that •t ⊆ maripoq . Furthermore, from Proposition 1, t•∩maripoq =∅. Also, as q = ⟨Rs, ι(s)⟩
by the assumption, we have •t ⊆ Rs = maripoq and ℓipoq(maxipoq) = ι(s).

From Proposition 13, we have then that

◦t = {ρ ∈ Rits | t ∈ Outρ} ⊆ Rs and t◦∩Rs =∅ (t◦ = {ρ ∈ Rits | t ∈ Inρ}) .

Therefore, we have that for all ρ ∈ Rits:

1. t ∈ Outρ implies σρ(s) = 1 and
2. t ∈ Inρ implies σρ(s) = 0.

So, from Definition 12(3), as its is an ENIT-system, we have s t−→.
Therefore (see Definition 7(3)), there is at least one s′ ∈ S satisfying s t−→ s′ (there can be more

than one such a state). Hence, by Proposition 12, we have Rs′ = (Rs \ ◦t)∪ t◦. At the same time
we have, from Definition 4,

maripoq′ = (maripoq \
•t)∪ t• = (Rs \ ◦t)∪ t◦ = Rs′ .

Hence maripoq′ = Rs′ .
If there are several states like s′, then the last conclusion will be true for all of them.
Furthermore, we have ℓipoq(maxipoq) = ι(s). If in irgen we have several ‘children’ of the vertex

q = ⟨Rs, ι(s)⟩ such that q t−→ qi (1 ≤ i ≤ k) and q′ is one of them, then from Proposition 5 we
have that their ℓipoqi

(maxipoqi
) will form the set of all subsets of the set

ℓipoq(maxipoq)\{u ∈ T | the execution of t must follow the execution of u} .

From Proposition 9 we have that the ‘children’ of the vertex s in its (si such that s t−→ si)
will be labelled with the sets of transitions that are subsets of the same set of transitions as
ℓipoq(maxipoq) = ι(s) and so we will have the same number of children of q in irgen and children
of s in its. Hence, if q′ is one of the qi’s then we will be able to find s′ among the si’s such that
ℓipoq′ (maxipoq′ ) = ι(s′).

So, we proved that

Q ⊆ {⟨Rs, ι(s)⟩ | s ∈ S} and A ⊆ {⟨⟨Rs, ι(s)⟩,⟨Rs′ , ι(s′)⟩⟩ | s → s′} .

We now prove the reverse inclusions. By Definitions 6(3) and 7(2), ⟨Rs0 , ι(s0)⟩ = ⟨Rs0 ,∅⟩ ∈
Q. It is enough to show that if s → s′ and ⟨Rs, ι(s)⟩ ∈ Q, then ⟨Rs′ , ι(s′)⟩ ∈ Q and
⟨⟨Rs, ι(s)⟩,⟨Rs′ , ι(s′)⟩⟩ ∈ A.

By Definition 7(3) and s → s′, we have that there exists t satisfying s t−→ s′. From s t−→ s′ and
Proposition 12, we have Rs \Rs′ =

◦t and Rs′ \Rs = t◦.
From Definition 6(1) and ⟨Rs, ι(s)⟩ ∈ Q, we have that there exists ipo ∈ IPOen such that

maripo = Rs and ℓipo(maxipo) = ι(s). So, as •t = ◦t ⊆ Rs and t• ∩Rs = t◦ ∩Rs = ∅ (see
Proposition 13) we have that t is enabled at maripo in en. Then, according to Definition 4 there



is an interval order ipo′ such that ipo →en ipo′ and maripo′ = (maripo \•t)∪ t•. At the same time,
we have Rs′ = (Rs \ •t)∪ t•) (see Proposition 13) and maripo = Rs, and so maripo′ = Rs′ . Hence
⟨⟨Rs, ι(s)⟩,⟨Rs′ , ℓipo′(maxipo′⟩⟩ ∈ A.

If we have many ‘children’ of s in its (si such that s t−→ si) and s′ is one of them, then the
conclusion maripo′ = Rs′ will be true for all of them. Furthermore, we can use Propositions 5
and 9 to find the ‘child’ of the state ⟨Rs, ι(s)⟩ ∈ Q in irgen such that ℓipo′(maxipo′) = ι(s′). Hence,
we have ⟨Rs′ , ι(s′)⟩ ∈ Q and ⟨⟨Rs, ι(s)⟩,⟨Rs′ , ι(s′)⟩⟩ ∈ A.

Finally, we observe that part (3) follows from part (1) and Definition 6(4).

Theorem 3. Let its = ⟨S,→,s0, ι⟩ be an ENIT-system over T , and en = enits = ⟨Rits,T,Fits,Rs0⟩
be the tuple associated with it. Then its is isomorphic to the IR-graph of en, irgen = ⟨Q,A,q0, i⟩.
Moreover, the unique isomorphism ψ between its and irgen is given by ψ(s) = ⟨Rs, ι(s)⟩, for
every s ∈ S.

Proof. Note that, by Proposition 16(1), ψ : S → Q such that ψ(s) = ⟨Rs, ι(s)⟩ is a well defined
mapping satisfying ψ(s0) = ⟨Rs0 , ι(s0)⟩= q0.

By Proposition 16(1), ψ is onto. Moreover, by Definition 12(2) (as its is an ENIT-system) it is
injective. Hence ψ is a bijection.

We then observe that, by Proposition 16(2), we have s → s′ if and only if ⟨ψ(s),ψ(s′)⟩ ∈
A. Furthermore, by Proposition 16(3), i(⟨Rs, ι(s)⟩) = ι(s), for every s ∈ S. Hence ψ is an
isomorphism for its and irgen.

6. Conclusion

In this paper, we introduced a new class of transition systems (interval transition systems, or
IT-systems) whose paths are associated with interval partial orders and labelled with the maximal
elements of these interval orders. Also, we demonstrated how EN-systems can generate interval
orders and produce their interval reachability graphs. In this paper, EN-systems are executed
sequentially, but there is an assumption that every transition execution takes time and may
(partially) overlap with transitions that started earlier, but not yet finished. We provided an
axiomatisation of IT-systems that can be synthesised to EN-systems with interval order semantics
(Definition 12 of ENIT-system). We showed that there is a possibility to adapt the synthesis
approach based on the concept of regions of standard sequential transition systems to work also
for the ENIT-systems.

Our approach to constructing a system from ‘interval data’ differs from other approaches
pursued in the area of Petri net synthesis and process mining.

As already mentioned, in this paper we proposed a solution to the problem of synthesising
EN-systems from IT-systems, whose states are labelled by sets of currently active transitions
(there might be more than one), and whose arcs are implicitly labelled by single transitions
representing new actions/activities responsible for the changes of states. As with any type of
initialised transition systems, they capture the behaviour a system starting from its initial state
and show its progress from state to state when transitions are executed.

The IT-systems (including IR-graphs) do not directly show the temporal relationships between
transitions/actions, but these relationships can be inferred from them during the synthesis proce-



dure and become evident in the synthesised EN-systems. However, these relationships are not as
precise as in other approaches found in the literature, where systems are discovered/synthesised
from behavioural information about the activities that are treated as non-instantaneous (i.e., taking
some time to complete). For example, Context-Aware Temporal Network Representation (TNR)
graphs of [20] that are extracted from event logs capture the global relationships between different
non-instantaneous activities/actions and use 13 relationships to relate the intervals of any two
activities as described by Allen’s Interval Algebra [21]. In our approach, we use an abstraction
that recognises only two relationships between the intervals related to two transitions, viz. one
can precede the other or they can overlap. As a result, at every state of an IT-system, a new active
transition can follow the previously active transitions or join some of them to form a new set of
active transitions.

In essence, the approaches of [20, 21] are semantically close to real-time semantics whereas the
approach pursued in this paper is more abstract. For similar reasons, the interval order semantics
used in this paper and the ‘interval semantics’ or ‘interval time semantics’ of, e.g., [22, 23], are
incomparable.
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