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Abstract
With its ability to operate at high speeds and capacity, high-speed rail offers a fast, dependable, and eco-
friendly urban transportation option. Safety-critical systems such as high-speed rail signaling systems
must be tested regularly to assess compliance with specifications and ensure reliable performance. Given
that the onboard equipment is the core component of the signaling system, conducting safety testing on
this equipment is of utmost importance. Current methods of analyzing test requirements mainly rely on
human interpretation of specifications. However, the official technical specifications usually only outline
standard operational scenarios, which could result in an inefficient and unclear safety analysis. This
paper focuses on safety-oriented testing for onboard equipment. In particular, we propose a Petri net
based approach to generate test cases for diverse operational scenarios. This approach improves both
the efficiency and reliability of the testing process while ensuring compliance with safety requirements.
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1. Introduction

In high-speed rail lines where the maximum train speed can reach over 350 kilometers per hour,
even a small error or malfunction could have catastrophic consequences. Onboard equipment is a
crucial component of high-speed rail responsible for ensuring safe and efficient train operations.
Therefore, it is vitally important to test onboard equipment thoroughly. In particular, anomalies
and exceptions that could lead to hazards must be identified and tested before putting into
service. The primary objective of safety-oriented testing is to design test cases that assess the
system’s performance under anomalies.

Various factors which may affect the function execution of onboard equipment [1], including
the internal states of the device itself and the external inputs from the track and balise (an
electronic beacon placed between rails). Normally, the test engineer designs test cases based on
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the specifications and then executes them in a virtual test environment while observing the
system’s behavior. Current studies about testing of rail signaling systems mainly focus on three
aspects: a) developing a virtual simulation environment for testing [2, 3]; b) enhancing test
automation and efficiency [4]; c) increasing the comprehensiveness of test scenarios [5, 6]. The
third type of aforementioned studies usually needs to consider various faults or malfunctions
that may lead to unexpected outcomes during the system’s operation in order to meet the safety
requirements. This involves identifying fault scenarios, selecting appropriate external events,
and determining their timing and location. However, relying solely on expert experience and
human judgment can result in inefficiencies and unreliable outcomes [7, 8].

On the other hand, formal methods rely on mathematical tools and employ various symbolic
languages or representations to describe and analyze systems. These methods effectively
mitigate ambiguity and reduce redundancy inherent in the use of natural languages [9, 10].
In safety analysis and testing, formal models mainly include the Unified Modelling Language
(UML) [11, 12], timed automata [13, 14] and Petri nets [15, 16]. UML is a semi-formal approach
and lacks the capability to examine the model, making it difficult to ensure its correctness. The
main focus of timed automata lies in modeling time-dependent systems. As the number of clocks
and the complexity of timing constraints in the model increase, the complexity of analysis and
verification grows. Moreover, it is challenging to describe mechanisms such as concurrency and
resource allocation using timed automata since the state space has to be enumerated first. Petri
nets offer distinctive advantages compared to other methods with a series of well-developed
mathematical tools and the ability to describe multiple structures within complex systems. For
rail signaling systems, Petri nets are widely used for different safety-related issues, such as
safety and reliability analysis [17], control policy design [18, 19], and fault diagnosis [20, 21].
To the best of our knowledge, there is currently no work available regarding the generation of
test cases for rail signaling systems using Petri nets.

In this paper, we apply Petri nets to model the requirement specifications of onboard equip-
ment, based on which test cases covering different scenarios through the injection of faults can
be obtained. Finally, the proposed approach is illustrated by modeling the safe-critical scenario
of level-conversion.

2. Preliminaries

2.1. Petri Net Model

A Petri net is a structure𝑁 = (𝑃, 𝑇 , 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡), where 𝑃 is a set of𝑚 places graphically represented
by circles; 𝑇 is a set of 𝑛 transitions graphically represented by bars; 𝑃𝑟𝑒 ∶ 𝑃 × 𝑇 → ℕ and
𝑃𝑜𝑠𝑡 ∶ 𝑃 × 𝑇 → ℕ are the pre- and post-incidence functions that specify the arcs directed from
places to transitions, and vice versa, whereℕ is the set of non-negative integers. We also denote
by 𝐶 = 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒 the incidence matrix of a net. The set of input places of 𝑡 is the set of places
𝑝 ∈ 𝑃 that have an arc going from 𝑝 to 𝑡, denoted by ⋅𝑡 and the set of output places of 𝑡 is the
set of places 𝑝 ∈ 𝑃 that have an arc going from 𝑡 to 𝑝, denoted by 𝑡 ⋅. Analogously, ⋅𝑝 and 𝑝⋅
represent the set of input transitions and output transitions, namely the set of transitions 𝑡 ∈ 𝑇
that have an arc going from 𝑡 to 𝑝, and from 𝑝 to 𝑡, respectively. Given a set 𝐴, its cardinality is
denoted by |𝐴|.



A marking is a vector 𝑀 ∶ 𝑃 → ℕ that assigns to each place a non-negative integer number
of tokens, represented by black dots. We denote by 𝑀(𝑝) the marking of place 𝑝. A Petri net
system 𝐺 = ⟨𝑁 ,𝑀0⟩ is a net 𝑁 with an initial marking 𝑀0.
A transition 𝑡 is enabled at marking 𝑀 if 𝑀 ≥ 𝑃𝑟𝑒(⋅, 𝑡) and may fire yielding a new marking

𝑀′ = 𝑀 +𝐶(⋅, 𝑡). We use𝑀[𝜎⟩ to denote that the sequence of transitions 𝜎 = 𝑡𝑗1⋯ 𝑡𝑗𝑘 is enabled
at 𝑀, and 𝑀[𝜎⟩𝑀′ to denote that the firing of 𝜎 yields 𝑀′. The set of all transition sequences
that can fire in a net system 𝐺 is denoted by 𝐿(𝐺) = {𝜎 ∈ 𝑇 ∗|𝑀0[𝜎⟩}, where 𝑇 ∗ denotes the
Kleene closure of 𝑇, i.e., the set of all sequences over 𝑇 including the empty sequence 𝜀.
A marking 𝑀 is reachable in 𝐺 if there exists a firable sequence 𝜎 ∈ 𝐿(𝐺) such that 𝑀0[𝜎⟩𝑀.

The set of all markings reachable from 𝑀0 defines the reachability set of 𝐺 and is denoted by
𝑅(𝐺). A Petri net system is bounded if there exists a non-negative integer 𝐾 ∈ ℕ such that for
any place 𝑝 ∈ 𝑃 and for any reachable marking 𝑀 ∈ 𝑅(𝐺), 𝑀(𝑝) ≤ 𝐾 holds.

For bounded Petri net systems, it is possible to enumerate in a systemic way the reachability
set by means of the reachability graph. In the reachability graph, each node corresponds to a
reachable marking, and each arc corresponds to a transition.

2.2. CTCS-2 Onboard Equipment

The Chinese Train Control System (CTCS) consists of five application levels, progressing from
Level 0 to Level 4, each designed to meet different requirements and conditions [22]. C0 and
C1 are designated for the current normal-speed railway lines, operating at approximately 120
kilometers per hour. C2 and C3, on the other hand, are well developed and widely employed for
high-speed lines, while C4 is currently not in use. C2 has two features: a) continuous supervision
of train movement by onboard equipment, and b) non-continuous communication between the
train and the trackside through balise. The structure of C2 is shown in Fig. 1. Consisting of
the onboard subsystem and trackside subsystem, C2 relies on the track circuit to detect track
occupancy and train integrity and relies on balises to receive ground information encoded by
the train control center. When the train passes over a balise, the Balise Transmission Module
(BTM) on the train will send a signal to activate the balise to start the telegrams transmission
process. The telegrams include messages such as the train location and route information
(gradient, speed limit, etc.).

The onboard subsystem, also referred to as onboard equipment, is the safety platform in-
stalled on the train, composed of vital processing unit, driver-machine interface, speed sensor,
balise transmission module, track circuit antennas, etc. The onboard equipment calculates the
continuous speed control curve to guarantee the train’s safe operation in real-time, combining
the train’s parameters with the received data from the track circuit and balise.
In order to support different operating conditions, the onboard equipment has a variety of

operating modes. Also, the different levels of onboard equipment in C0-C4 have backward
compatibility so that the C2 onboard equipment can also work in C1 or in C0. The conversion
between two working levels, known as level-conversion, is executed by the onboard equipment
by altering a series of current control policies.



Figure 1: Structure of the CTCS-2 onboard equipment.

3. Design Safety-Oriented Test Cases Using Petri Nets

Safety-oriented testing for onboard equipment aims to evaluate the system’s performance during
failures or errors. The test cases should cover not only typical scenarios but also abnormal ones,
in which one or more subsystems fail or are limited 1. This section illustrates the application
of Petri nets in designing safety-related test cases, covering diverse occasions that contain
failures. Specifically, the level-conversion scenario has been chosen as a representative case to
demonstrate the feasibility and efficiency of this approach.

3.1. Level-conversion Scenario from C2 to C0

According to the system requirements of C2 Onboard equipment [23], the level-conversion
scenario from C2 to C0 consists of the following two cases.

Case 1. The train runs to the boundary between the C2 zone and the C0 zone, and receives
the message from the balises indicating the train should execute conversion from C2 to C0. If
the train is braking, it will remain at C2 until the brake is released.
Case 2. In the C2 zone, the driver manually selects C0 through the DMI (Driver-Machine

Interface).
For the first case, automatic level-conversion, the onboard equipment needs to perform an

automatic degradation from C2 to C0, by changing a range of train control strategies such as
operating mode, maximum speed limitation, to suit the line condition of C0.
Fig. 2 shows the layout of the two level-conversion balise groups on the track and the

movement of the train crossing them. The first group is positioned in the C2 zone, usually 240𝑚
or 260𝑚 before the border, while the second one is positioned at the border.

1Note that in this paper, the words safe/safety do not refer to 1-bounded nets in Petri net theory, but refer to the
general term in system engineering.



Figure 2: Automatic level-conversion from C2 zone to C0 zone.

Figure 3: Overview of the proposed approach.

3.2. Scenario Modeling

As mentioned earlier, safety-oriented testing aims to verify whether the system can operate
safely when faced with fault conditions that are outside normal operating conditions, which we
term fault-mode events. The flow of our approach is illustrated in Fig. 3. There are four steps
that lead to determining the Petri net model 𝐺𝑓 and its set of final markingsℳ𝑓, from which
the test cases can be derived.
• Step 1: Model the normal scenario
Construct the normal scenario model 𝐺0.
• Step 2: Add fault-mode transitions
Add a set of transitions that represent fault-mode events in 𝐺0.
• Step 3: Add safe-guard logic
Specify how the occurrence of fault-mode transitions is taken into account by the safe-guard

logic, and construct the fault scenario model 𝐺𝑓.
• Step 4: Safety analysis
Analyze the safety of firing sequences and determine the final markings set ℳ𝑓.
In the rest of this section, a detailed description of each step is provided, along with an example

to demonstrate the proposed method. Note that [23], the system requirement specification of
C2 Onboard equipment published by the China National Railway Corporation, is the primary
reference throughout the procedure of scenario modeling.



Figure 4: 𝐺0: the normal scenario model.

3.2.1. Construct normal scenario model

First, based on the description of the nominal behavior of the system, we model the normal
scenario as a Petri net system 𝐺0. This net has a simply sequential structure. When 𝐺0 is at
its initial marking, the onboard equipment is initialized to start the train and movement on a
specific line.
Example 1 Consider the automatic level-conversion scenario, whose Petri net model 𝐺0 is

shown in Fig. 4. It is clear that 𝐺0 typically has a simple sequential structure. The initial marking
is [1 0 0 0 0]𝑇, to indicate that the onboard equipment works at C2 while the train runs before
entering the conversion zone. The markings of the places 𝐶2_1, 𝐶2_2, 𝐶2_3, 𝐶2_4 represent that
the passage of the train along consecutive track segments while onboard equipment works at
C2. When 𝐶0 is marked, it indicates that the onboard equipment works at C0, and the train has
entered the C0 zone. The process of level-conversion corresponds to the firing of the transition
sequence 𝜎0 = 𝑡1𝑡2𝑡3𝑡4. ♢

3.2.2. Add fault-mode transitions

Referring to the system specifications, we do an exhaustive analysis by going through every
transition in 𝐺0, identifying the vulnerable transitions that have fault modes. The definitions of
vulnerable transitions and corresponding fault-mode transitions are given as follows.

Definition 1. The set of vulnerable transitions 𝑇𝑣 ⊆ 𝑇 defined for the normal scenario model
𝐺0 is the set of transitions whose occurrence can be replaced by another faulty case. Given
a vulnerable transition 𝑡𝑖 ∈ 𝑇𝑣, we can associate 𝑡𝑖 to a set of fault-mode transitions 𝑇𝑓 (𝑡𝑖) =
{𝑡′𝑖 , 𝑡″𝑖 , … , 𝑡𝑛𝑖𝑖 } that represent different types of malfunction of 𝑡𝑖. We denote 𝑇𝑓 = {𝑡|∃𝑡𝑖 ∈ 𝑇𝑣, 𝑡 ∈
𝑇𝑓 (𝑡𝑖)} the set of all fault-mode transitions. ♢

The fault-mode transitions in 𝑇𝑓 (𝑡𝑖) have exactly the same input and output as its correspond-
ing vulnerable transition 𝑡𝑖. Fig. 5 illustrates the structure of a vulnerable transition 𝑡𝑖 and its
fault-mode transitions 𝑇𝑓 (𝑡𝑖).
Fault-mode transitions, even if they belong to different vulnerable transitions’ fault-mode

transition sets, may have associations with the same interface or functional module of the



Figure 5: A vulnerable transition 𝑡𝑖 and its fault-mode transition set 𝑇𝑓 (𝑡𝑖).

onboard equipment. Based on the causes of faults, we categorize all fault-mode transitions into
several fault classes (denoted as 𝑞 where 𝑞 is in the set 1,2,3,...), namely 𝑇𝑓 = ⋃𝑞

𝑗=1 𝑇
𝑗
𝑓 .

When 𝑞 = 1, it means that all the fault-mode transitions belong to the same fault class. When
𝑞 = |𝑇𝑓 |, it means that each fault-mode transition is in a class by itself. Besides, the fault-mode
transitions associated with the same vulnerable transition do not necessarily belong to the same
fault class.

Example 2 Let us consider the model for level-conversion in Fig. 4. Consider transitions 𝑁_𝑅
and 𝐸_𝑅, describing that in the nominal model, the train passes a balise while the onboard
equipment correctly receives the message. In an abnormal scenario, the train fails to receive
the message when passing the balise. By Definition 1, 𝑁_𝑅 and 𝐸_𝑅 are vulnerable transitions,
and two fault-mode transitions 𝑁_𝑀 and 𝐸_𝑀 are added, which represent missing the notice
message and missing the execution message, respectively. The transition 𝑛𝑜𝐵, presenting that
no braking has been detected, is vulnerable to the detection of the braking. This is modeled by
the fault-mode transition 𝐵. The firing of transition 𝑆𝑤𝑖𝑡𝑐ℎ represents the fact that the onboard
equipment executes the level-conversion from C2 to C0. Since the onboard equipment will
certainly execute the level-conversion under appropriate conditions, we assume 𝑆𝑤𝑖𝑡𝑐ℎ is not
vulnerable.

The model with the fault-mode transitions is shown in Fig. 6. For the vulnerable transition
set 𝑇𝑣 = {𝑡1, 𝑡2, 𝑡3}, fault-mode transition sets are 𝑇𝑓 (𝑡1) = {𝑡5}, 𝑇𝑓 (𝑡2) = {𝑡6}, 𝑇𝑓 (𝑡3) = {𝑡7}, and
thus 𝑇𝑓 = {𝑡5, 𝑡6, 𝑡7}. Transitions 𝑁_𝑀 and 𝐸_𝑀 both mean missing the balise message, i.e., they
all relate to the balise receiving function of the onboard equipment. Thus, they are classified in
the same class, written in 𝑇 1𝑓 = {𝑡5, 𝑡6} and 𝑇 2𝑓 = {𝑡7}. ♢
The balise message is essentially a data input for the train, and the onboard equipment is

required to check its legality. If it is not compliant with the encoding rules of balise telegrams,
which is called illegal telegrams, the onboard equipment should reject such a message, determin-
ing a message loss. When focusing on the vulnerability of 𝑁_𝑅 or 𝐸_𝑅, we can simultaneously
test the balise receiving function of onboard equipment by adding various message failures in
the fault-model, but this goes beyond the scope of this paper.



Figure 6: 𝐺0 with the fault-mode transitions.

3.2.3. Add safe-guard logic

Including 𝑇𝑓 in 𝐺0 enables all potential fault modes to be considered. Meanwhile, we need to
further specify how the occurrence of these abnormal events affects the operational scenario or
functional execution result.
To address this problem, we model the safe-guard logic which restricts the behavior of the

system in case of faulty execution, as per the provided specification or the fail-safe principle.
In particular, if a fault-mode event and its consequence have been explicitly stated in the
requirement documents, the added safe-guard logic should comply with the specifications
outlined in those documents. When such specifications are not provided, we adhere to the
fail-safe principle, which is a crucial concept in railway signaling systems. The fail-safe principle
mandates that the train should continue to operate safely in the event of a failure or malfunction.
This may require actions such as applying brakes, initiating a stop, interrupting the execution
of functions, or transferring control of the train to the driver.
There are various fault measuring and contingency mechanisms within the onboard equip-

ment. Due to space limitations, here we only discuss a typical one that works by prohibiting
critical events when a certain number of failures have been detected.

Definition 2. Given a fault class 𝑇 𝑗𝑓 , let 𝑡
𝑗
𝑐𝑟 ∈ 𝑇 be a normal transition, the critical blocking policy

is to block 𝑡 𝑗𝑐𝑟 whose firing should be blocked after 𝑘 (𝑘 ≤ |𝑇 𝑗𝑓 |) or more fault-mode transitions in
this class occur. ♢

The critical blocking policy can be implemented by a simple safe-guard logic defined as follows.

• Add a new place named guard place 𝑝𝑗𝑔.
• Add a post-arc from each transition in 𝑇 𝑗𝑓 to 𝑝𝑗𝑔.

• Add |𝑇 𝑗𝑓 | − 𝑘 + 1 pre-arcs from 𝑝𝑗𝑔 to 𝑡 𝑗𝑐𝑟.

• The initial marking of the guard place is 𝑀(𝑝𝑗𝑔) = |𝑇 𝑗𝑓 |.

When 𝑘 or more fault-mode transitions in 𝑇 𝑗𝑓 occur, the guard place will block critical transition

𝑡 𝑗𝑐𝑟. Fig. 7 illustrates the structure of a guard place for a critical blocking policy. The normal



Figure 7: Structure of a guard place for a critical blocking policy.

Figure 8: 𝐺𝑓: the fault scenario model.

scenario model 𝐺0 with the fault-mode transitions and the safety-guard logic is denoted by 𝐺𝑓
and called a fault scenario model.
Example 3 Continue with Example 2, to demonstrate the effect of missing balise messages

and braking. The obtained fault scenario model 𝐺𝑓 is shown in Fig. 8. Two safe-guard logics are
considered here:
- safe-guard logic 1: no conversion if both two balise messages are missed. A guard place
𝐵𝑎𝑙𝑖𝑀𝑖𝑠𝑠𝑖𝑛 (𝑝6) is added to describe the critical blocking policy for the fault class 𝑇 1𝑓 and the
normal transition to be blocked is 𝑆𝑤𝑖𝑡𝑐ℎ with 𝑘 = 2.
- safe-guard logic 2: no conversion if the train is braking. A guard place 𝑂𝑢𝑡𝐵𝑟𝑎𝑘𝑖𝑛 (𝑝7) is added
to describe the critical blocking policy for the fault class 𝑇 2𝑓 and the normal transition to be
blocked is 𝑆𝑤𝑖𝑡𝑐ℎ with 𝑘 = 1. ♢

3.2.4. Safety analysis on final markings

This section analyzes the evolution of 𝐺𝑓 from the viewpoint of safety. First, we introduce a new
place that will be marked whenever a fault occurs. Then we compute the reachability graph of
the new model and identify the final markings and the firing sequences reaching them.
The explicit fault scenario model ̂𝐺𝑓 is obtained by adding a new place 𝑝𝑓 in 𝐺𝑓, which we

call flag place. Such a place has initial marking 𝑀0(𝑝𝑓) = 0, and has an input arc from each
transition in 𝑇𝑓.
Fig. 9 illustrates the structure of the flag place 𝑝𝑓 and all the fault-mode transitions in 𝑇𝑓.

We can monitor the firing of any fault-mode transition by observing the token change in 𝑝𝑓.



Figure 9: The fault flag place 𝑝𝑓 and all the fault-mode transitions.

Figure 10: ̂𝐺𝑓: the explicit fault scenario model.

When 𝑀(𝑝𝑓) > 0, it means that one or more fault-mode transitions have fired. Otherwise, no
fault-mode transitions have fired.

There are many techniques to analyze the evolution of the Petri net model, such as the state
equation and the reachability graph. In this paper, we assume ̂𝐺𝑓 is bounded and investigate its
reachability problem by constructing the reachability graph. Then two types of final markings
in ̂𝐺𝑓 are defined as follows.

Definition 3. Given a model ̂𝐺𝑓, its set of normal final markings ℳ𝑛
𝑓 is defined as ℳ𝑛

𝑓 =
{𝑀 ∈ 𝑅( ̂𝐺𝑓) | 𝑀(𝑝𝑓) = 0 𝑎𝑛𝑑 (∄𝑡 ∈ 𝑇 )𝑀[𝑡⟩}. The set of fault final markings ℳ𝑎

𝑓 is defined as

ℳ𝑎
𝑓 = {𝑀 ∈ 𝑅( ̂𝐺𝑓) | 𝑀(𝑝𝑓) > 0 𝑎𝑛𝑑 (∄𝑡 ∈ 𝑇 )𝑀[𝑡⟩}. The set of all final markingsℳ𝑓 = ℳ𝑛

𝑓 ⋃ℳ𝑎
𝑓 .
♢

Example 4 The explicit fault scenario model ̂𝐺𝑓 for Example 3 is shown in Fig. 10. Assume
𝑀0 = [1 0 0 0 0 2 1 0]𝑇 (𝑝𝑓 is 𝑝8), the reachability graph of ̂𝐺𝑓 is depicted in Fig. 11, from which
we can derive the two sets of final markingsℳ𝑛

𝑓 = {𝑀4},ℳ𝑎
𝑓 = {𝑀5, 𝑀9, 𝑀10, 𝑀12, 𝑀13}. ♢

3.3. Deriving Test Cases

In this section, we extract test cases from the acquired fault scenario model. First, we provide
a formalization of the test case utilizing Petri net semantics, building upon the model ̂𝐺𝑓 and
its previously introduced set of final markings. Subsequently, we establish a correspondence



Figure 11: Reachability graph of ̂𝐺𝑓.

Table 1
Mapping from a 𝑇𝐶 to a test case

element in a 𝑇𝐶 test case component

Initial marking Preset condition
Transition sequence Operation sequence

Final marking Expected result

relationship between the formalized test case and the real test case that is prepared for execution
by the test engineer.

Definition 4. Given an explicit fault scenario model ̂𝐺𝑓 and its set of final markings ℳ𝑓, a test
case is defined as a three-tuple 𝑇𝐶 = (𝑀0, 𝜎 , 𝑀), where 𝑀0 is the initial marking, 𝜎 is the firing
sequence, and 𝑀 ∈ ℳ𝑓 is a final marking reached from 𝑀0 by firing 𝜎. The set of all test cases
is defined as 𝕏 = {𝑇𝐶 = (𝑀0, 𝜎 , 𝑀) ⊆ 𝑅(𝐺) × 𝑇 ∗ × 𝑅(𝐺)|∃𝜎 ∈ 𝐿( ̂𝐺𝑓), 𝑀0[𝜎⟩𝑀 𝑎𝑛𝑑 𝑀 ∈ ℳ𝑓}.
A test case 𝑇𝐶 = (𝑀0, 𝜎 , 𝑀) ∈ 𝕏 is called normal if its final marking 𝑀 is normal, otherwise

it is called faulty. ♢

Referring to the Union Industry of Signaling (UNISIG) scheme on ERTMS/ETCS system testing,
a widely recognized technical document introduced by the European Union Agency for Railways,
a test case consists of several essential components, including a test name, test objective,
operation sequence, preset condition, and expected result [24]. Among these components,
the preset condition (the initial state of the system under test before executing the case), the
operation sequence (a series of events or operations that the test engineer need to perform),
and the expected result (the expected final outcome after performing actions specified in the
operation sequence) are of the utmost importance and constitute the backbone of a test case. In
particular, the operation sequence is the element that makes a test case distinct from others.
The relationship between a test case generated by an explicit fault scenario model and these
primary components can be illustrated in Table 1.



Example 5 Continuing with Example 4, in the reachability graph of ̂𝐺𝑓, there are 8 transition
sequences leading to 6 final markings. Accordingly, 8 test cases are obtained, and they apply the
same preset condition 𝑀0 = [1 0 0 0 0 2 1 0]𝑇, which implies that the train runs within the C2
zone, nearing the border of the C0 zone, while functioning at level-2. The full test case set can
be found in the appendix. Besides the normal test case 𝑇𝐶1, seven faulty test cases 𝑇𝐶2 − 𝑇𝐶8
are obtained. In particular, final markings in test cases 𝑇𝐶1, 𝑇𝐶3 and 𝑇𝐶4 imply the successful
execution of level-conversion, and the three test cases cover the exceptions where one of the
two balise messages is missing. Whereas 𝑇𝐶2, 𝑇𝐶5, 𝑇𝐶6, 𝑇𝐶7 and 𝑇𝐶8 represent the scenarios of
unsuccessful execution, covering the combinatorial occurrences of fault-mode events including
braking output and missing balise messages. ♢

After obtaining the test cases 𝕏, additional document work is necessary for executing them
in a real test environment, such as compile to scripts, which however is beyond the scope of
this paper. However, the structure provided by the obtained test cases already offers a solid
foundation for formalizing and organizing the subsequent version of the mature test case set.

We point out that the size of a reachability graph is exponential in the size of the net and its
initial marking. In the worst case, we need to find all the firing transition sequences leading to
the final markings, which could be done by exhaustively computing all corresponding directed
paths in the reachability graph. A promising topic for future studies is that of finding more
efficient algorithms for generating test cases using Petri nets.

4. Conclusion

This paper provides an approach to formalize the test scenario containing abnormalities. We
apply Petri nets to describe the system behavior, calculate the reachability graph to derive test
cases that cover various types of scenarios. We take a critical scenario in Chinese high-speed
rail as an example to illustrate the proposed approach.

By designing test cases in the appearance of faults, the approach allows a better understanding
of system specifications, which is important for the testing of safety-critical systems, to discover
potential drawbacks aroused by accidental failure.
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Appendix: Full Test Case Set in Example 5

1. 𝑇𝐶1 = (𝑀0, 𝜎1, 𝑀4), 𝜎1 = 𝑡1𝑡2𝑡3𝑡4.
• Operation sequence:
a. receive the level-conversion notice message
b. receive the level-conversion execution message
c. detect no braking output
d. convert to C0
• Expected result:
The onboard equipment works at C0.

2. 𝑇𝐶2 = (𝑀0, 𝜎2, 𝑀5), 𝜎2 = 𝑡1𝑡2𝑡7.
• Operation sequence:
a. receive the level-conversion notice message
b. receive the level-conversion execution message
c. detect the braking output
• Expected result:
The onboard equipment works at C2.

3. 𝑇𝐶3 = (𝑀0, 𝜎3, 𝑀9), 𝜎3 = 𝑡5𝑡2𝑡3𝑡4.
• Operation sequence:
a. miss the level-conversion notice message
b. receive the level-conversion execution message
c. detect no braking output
d. convert to C0



• Expected result:
The onboard equipment works at C0.

4. 𝑇𝐶4 = (𝑀0, 𝜎4, 𝑀9), 𝜎4 = 𝑡1𝑡6𝑡3𝑡4.
•Operation sequence:
a. receive the level-conversion notice message
b. miss the level-conversion execution message
c. detect no braking output
d. convert to C0
• Expected result:
The onboard equipment works at C0.

5. 𝑇𝐶5 = (𝑀0, 𝜎5, 𝑀10), 𝜎5 = 𝑡5𝑡2𝑡7.
• Operation sequence:
a. miss the level-conversion notice message
b. receive the level-conversion execution message
c. detect the braking output
• Expected result:
The onboard equipment works at C2.

6. 𝑇𝐶6 = (𝑀0, 𝜎6, 𝑀10), 𝜎6 = 𝑡1𝑡6𝑡7.
• Operation sequence:
a. receive the level-conversion notice message
b. miss the level-conversion execution message
c. detect the braking output
• Expected result:
The onboard equipment works at C2.

7. 𝑇𝐶7 = (𝑀0, 𝜎7, 𝑀12), 𝜎7 = 𝑡5𝑡6𝑡7.
• Operation sequence:
a. miss the level-conversion notice message
b. miss the level-conversion execution message
c. detect the braking output
• Expected result:
The onboard equipment works at C2.

8. 𝑇𝐶8 = (𝑀0, 𝜎8, 𝑀13), 𝜎8 = 𝑡5𝑡6𝑡3.
• Operation sequence:
a. miss the level-conversion notice message
b. miss the level-conversion execution message
c. detect no braking output
• Expected result:
The onboard equipment works at C2.
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