
A syntax-independent code generation tool for
IOPT-Petri nets
Fernando Pereira1,2,∗,†, Filipe Moutinho2,3,† and Luís Gomes2,3,†

1Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal
2Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI), 2829-516
Caparica, Portugal
3NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Lisbon, Portugal

Abstract
This paper presents a new code generation infrastructure for the IOPT-Tools framework, that automati-
cally produces code in multiple languages from Input-Output Place-Transition (IOPT) Petri net models,
to support the development of hardware/software controllers for embedded systems. The proposed
infrastructure employs a two-step approach that starts with the creation of a language-independent XML
document describing the execution semantics of the original Petri net model, which is later transformed
into the syntax of the desired target programming or hardware description languages. The output of
the first step is shared by all target languages, ensuring execution behavior consistency, independent
of the chosen target language. As the IOPT simulation and model-checking tools also employ the
code generated automatically, the proposed solution contributes to obtaining consistency between the
behavior observed during simulation and model-checking and the final controllers running on embedded
devices.

Keywords
Petri nets, automatic code generators, IOPT-nets, IOPT-Tools

1. Introduction

The usage of design automation tools frameworks has a strong impact on the way the current
system’s development is performed, namely when considering the development of controllers
for embedded and cyber-physical systems. Design automation frameworks have an important
role in contributing to several societal challenges. Among those challenges, important to refer
the contributions to digital transformation, as well as to reduce carbon emissions, contributing to
performance, availability, and robustness improvements on final systems, as well as on wastes on
materials used during the development processes. In this sense, design automation frameworks
are completely in line with the goals of the ”twin transition” concept, promoted within European
initiatives combining digital transformations and decarbonising and sustainability approaches.

Algorithms Theories for the Analysis of Event Data and Petri Nets for Twin Transition 2023, June 26–27, 2023, Lisbon,
Portugal
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open fjp@deea.isel.ipl.pt (F. Pereira); fcm@fct.unl.pt (F. Moutinho); lugo@fct.unl.pt (L. Gomes)
Orcid 0000-0001-7255-369X (F. Pereira); 0000-0002-0930-7418 (F. Moutinho); 0000-0003-4299-8270 (L. Gomes)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fjp@deea.isel.ipl.pt
mailto:fcm@fct.unl.pt
mailto:lugo@fct.unl.pt
https://orcid.org/0000-0001-7255-369X
https://orcid.org/0000-0002-0930-7418
https://orcid.org/0000-0003-4299-8270
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The IOPT-Tools framework [1, 2], available online at http://gres.uninova.pt/IOPT-Tools/, has
been successfully used over the years to develop controllers for embedded devices and to design
digital systems. The systems are designed using IOPT-net [3] models, a class of non-autonomous
Petri nets [4], that include input and output capabilities to communicate with the external
world. In addition to the usual Places and Transitions found on traditional Petri net classes,
IOPT models also have the concept of input and output signals and events. The input events
are used to inhibit the firing of transitions and input signals are used to define guard conditions
that also inhibit Transition firing. In the opposite direction, the marking of the Places may be
used to activate output signals or assign new values to signals using output expressions, and
transition firing may also trigger output events and modify the value of output signals. Signals
may hold Boolean or integer values, to represent digital and analog values.

The IOPT-Tools framework contains a simulator tool used to test and debug models, presented
in Figure 1, with a graphical user interface to manipulate the values of the input signals and
events and observe the evolution of the system state and the resulting output signals. In addition,
a state-space-based model-checking tool may be used to automatically verify certain model
properties, including the reachability of desired states, the reachability of undesired states that
could represent hazardous situations, or the existence of deadlocks.

Figure 1: The IOPT-Tools user interface (simulator page)

Using these tools, it is possible to debug and validate the models directly on the IOPT-tools
user interface, and most errors are detected in the early design stages. This aspect is specially
important, as any mistakes undetected before the prototype implementation may result in
damaged hardware or cause hazardous situations.
After a model has been debugged using the software tools, the framework offers several

automatic code generators that are employed to create software programs to run on embedded
micro-controller boards, or hardware descriptions for Field Programmable Gate Arrays (FPGAs).
In the prototype implementation phase, the inputs and output signals/events of the original IOPT
model are associated with General Purpose Input/Output (GPIO) pins. This way, the controllers

are able to read sensors, command the status of mechanical actuators or read button/switch
values, and control displays/LEDs to communicate with the users.

As mentioned before, any remaining undetected mistakes may cause expensive malfunctions
thatmay damage the prototype hardware. This way, it is very important to avoid the introduction
of new coding errors in the software/hardware that will run on the embedded devices. Compared
to manual coding, the availability of automatic code generation tools was a major contribution
to solve this problem. However, even the code produced by different code generation tools may
exhibit small inconsistencies, that may lead to behavioral changes.

A common situation happens when a Petri net [4] model contains conflicts between Petri net
Transitions that share common input Places: there are tokens to fire any of the Transitions, but
not enough to fire all of them. In this situation, the code generated automatically must choose
the Transitions that will fire and the ones that do not fire. The IOPT-net class offers Transitions
priorities to help solve conflicts, always firing the transitions with the lowest priority value.
However, if two transitions in conflict have the same priority, is the code generators that decide
which transition fires.

Traditional autonomous Petri net classes typically solve this problem using a round-robin
or random strategy. However, as IOPT-nets were created to support the design of embedded
systems, the execution must be absolutely deterministic and must perform the same behavior
consistently. This way, all the code generation tools must produce code with identical behavior,
consistent with the simulation and model-checking tools.

This consistency is very difficult to ensure for code created manually, as each developer may
sort the sequence of Transitions firing evaluation in different orders and even automatic tools
may employ different ordering strategies. Although none of these strategies may be wrong,
it is important to maintain consistent behavior between tools, to ensure that the resulting
systems obey the same rules verified during simulation and model-checking. This problem is
not exclusive to the Transitions evaluation sequence, as similar considerations could be applied
to other aspects of the generated code, including the processing of input and output signals and
events.
The automatic code generation infrastructure presented in this paper aims to contribute in

this direction, by splitting the code generation into two steps. The first step is common to all
languages and deals with the execution semantics of the models. It generates an XML document
with a meta-program containing an algorithm that implements the model semantic rules. The
second step deals with syntax and simply converts the language-independent XML to the syntax
of the target language. This way, the code for the final implementation will share the first phase
with the code used by the simulation and model-checking tools, ensuring the same behavior.

This paper has the following structure. The next section presents the IOPT-nets class, and
section 3 presents related work. Then, in section 4, the proposed generation approach is
described, followed by a generated code example in section 5. Finally, section 6 presents
conclusions and future work.

2. IOPT-nets

A formal description of the IOPT-net class can be found at [5]. Petri-net based formalisms offer
many advantages to model discrete event systems, due to the capability to express parallelism
and concurrency, in addition to a long list of mathematical properties. The IOPT-tools framework
takes advantage of these properties to offer simulation, model-checking, and code generation
tools.

The IOPT-nets inherit the characteristics of the low-level P/T nets, with the addition of input
and output signals and events. It is a non-autonomous Petri net class, as the system state
evolution is limited by external conditionalities: a) Transition firing can be inhibited by guard
functions, consisting of logical expressions related to the values of input signals; b) Transition
firing can also be inhibited with input events; c) Output actions associated with Places are
used to define the value of output signals, that are only active when the places hold tokens;
d) Transition firing can trigger output events, that may cause changes in output signals; e)
Output actions associated with transitions may also change the value of output signals when
the Transitions fire. The input and output signal can hold Boolean or integer range values, and
are usually associated to physical GPIO pins on the hardware controller boards. Integer range
signals are usually to represent analog values and Boolean signals are associated with digital
GPIOs. This way, an IOPT-net model can read information from sensors, buttons, and switches
and can also control physical actuators and motors, etc. As the main goal of IOPT-nets is the
design of embedded system controllers, execution determinism is very important. This way, a
maximal step execution semantics is used, meaning that all Transitions enabled and ready to
fire, will fire on the next execution step. In order to help solve conflicts between transitions,
the class also offers Test arcs, that prevent transition firing but do not remove tokens from the
input Places and support Transition priorities.
Figure 2 presents a very simple example model, presenting 4 places (yellow circles) and 4

Transitions (cyan squares). This model also employs 3 input signals (cyan left arrows), two
input events (cyan triangles), and two output signals (green arrows). The IE1 and IE2 input
events are used to monitor changes in the IN1 and IN2 signals, detecting positive edges that
happen when the signal changes from 0 to 1. These events are associated with Transitions T1
and T2 that can only fire when place P1 is marked and the respective event is triggered. The
output signals OUT1 and OUT2 are associated with places P2, P3, and P4 by means of output
actions. The value of OUT1 will be 1 when P2 is marked, 2 when P3 has tokens, and revert to a
default value 0 when none of these Places is Marked. In the same way, OUT2 will have a value
of 5 when P4 is marked or the default value is 0 otherwise.
Figure 3 presents the state-space (reach-ability graph) of the model presented in Figure

2, produced by the IOPT-tools model-checking tools. The model-checking tools detected 2
deadlock states (drawn as red) and two states containing Transition conflicts (drawn as magenta).
This is a result of a design mistake in this model, whose correct execution depends on the
sequence of external events: if events IN1 and IN2 occur in an alternate fashion, then both
transitions T1 and T2 will fire. However, if two consecutive IN1 events occur (or two consecutive
IN2 events) then one of the transitions T1 or T2 will fire twice, leading to a marking with two
tokens on one of the P2/P3 Places and none in the other, that will prevent T3 from firing. This
problem may be solved with two additional high-priority Transitions, to detect two tokens in

Figure 2: A simple IOPT-net model

one of the P2/P3 Places and inform the user about a possible error on the external hardware
that generates EV1/EV2.

Figure 3: The state-space of the example model

3. Related work

The IOPT-tools framework has offered several automatic code generator tools for many years [1,
2], including support for the languages C, Javascript [6], VHDL [7], Matlab [8], and Instruction-

List [9] to generate code for Programmable Logic Controllers. Although the previous code
generators offered by IOPT-tools were already based on XSLT transformations, each of these
tools has an independent code-base and all generators start from plain PNML files. All of these
tools were subject to extensive testing and efforts were made to check behavioral consistency.
However, in case the same approach was used to create new code generators for other languages,
it would require similar efforts for each language. In contrast, with the new approach, this work
is greatly reduced as all generators share the same execution-semantics step.
Other tools employing Petri nets to design embedded system controllers, or to execute

software code from Petri net models should be mentioned. For example, the CPN tools [10]
framework allows the execution of Standard-ML code from high-level Colored Petri nets, and
the Renew framework [11] combines Reference Petri nets with Java code. Other tools include
CPN-AMI [12], Signal/Event nets [13], and Signal Interpreted Petri nets [14]. Finally, many
works have been published that use code generated automatically using Petri nets. Some of
these works include[15, 16, 17].

4. Automatic code generation

The execution of an IOPT-net model is performed in discrete steps that happen at a pre-
determined frequency. Each step starts by reading all input signals from the respective hardware
GPIO pins, followed by the computation of input events according to changes in the input
signals. Next, the Transitions are evaluated according to a predefined sequence, evaluating
both the pre-conditions related to the marking of input Places and also the guard conditions
and input events. When a transition fires, tokens are removed from the input places, and new
tokens are added to output Places. After all, transitions have been evaluated, the new values of
output signals and events are calculated according to the resulting marking and the transitions
that fired. The evaluation sequence takes into account the Transition priorities and when
multiple transitions have the same priority, they are sorted according to the respective name
and identifier. This way, a deterministic sequence o evaluation is always respected.
As mentioned previously, the automatic code generation process is divided into two steps:

1. Execution semantics: In the first step, an XSL transformation examines a PNML file
containing an IOPT model and produces an XML file containing a meta-program that
implements the model execution rules. This step is shared by all code generators for the
different languages: C, Javascript, VHDL, Python, etc.

2. Target language syntax: The second step uses other XSL transformations to convert the
XML produces in the first step to the syntax of the desired target language.

Figure 4 illustrates the code generation process. In the first step, an XSL transformation receives
a PNML file with an IOPT model and creates an XML file with a syntax independent description
of a program to execute the model semantics. In the second step, different XSL transformations
translate the XML document to the desired target language. The resulting code may be deployed
on physical embedded devices, or may be used by the simulation (Javascript) and state-space
generation (C code) tools. At the moment, these tools employ the code produced by the previous
version of the code generation tools, which should be replaced by the new version.

Figure 4: The code generation process

The XML documents produced in the first step contain all the information required to build
executable programs that implement the original model’s behavior. It is divided into two
sections: a header containing a description of the variables and data structures, and a code
section with a set of procedures that perform several tasks. The data structures include variables
to represent all input and output signals and events, data structures to hold the Petri net marking,
and another data-structure to record the transitions that have fired. The execution algorithm
employs three copies of the marking data-structure, one to memorize the previous marking,
another to hold the remaining tokens after each transition fires, and another to store the new
tokens created. At the end of each step, the remaining tokens are added to the newly created.
The code section contains procedures to initialize all variables, initialize GPIO pins, read input
signal values from GPIO, delay/pause between steps, compute input events, compute output
signals associated with transition firing and marked places, and compute signals affected by
output events. Another procedure performs a single execution step, evaluating all transitions
and performing the corresponding token manipulation. Finally, a main procedure coordinates
all the other procedures running a continuous loop. Instead of defining a touring-complete
language, the XML documents produced in the first step employ just a minimal set of XML tags
(presented in Table 1), required to execute IOPT models. Mathematical expressions, besides
containing a list of operands and operators, may also contain multiple levels of sub-expressions.
In addition to the tags listed in Table 1, each tag has a set of configuration attributes. For

example, variables have data-types, default values, and a min/max range. Operators have
different types and operands may contain references to other variables or structure fields. Based
on these tags it is possible to create different XSL transformations that convert the XML meta-

Table 1
XML tags

XML Tags Meaning

<execution-semantics> Top node XML tag
<header> Header defining variables and data structures
<code> Code section containing procedures
<variable> Declared variables associated with signals and events
<struct> <field> Declare data structures and the respective fields
<data-table> <item> </data-table> Declare tables containing data
<procedure> Define procedures/functions containing a set of instructions
<call-procedure> Call a procedure/function
<let> <variable|field> <value>|<expression> Assign a value to a variable or data-structure’s field
<if> <condition> <then> <else> Conditional if-then-else
<loop> Define a loop containing instructions
<read-input> Read an input signal from a GPIO
<read-event> Read an input event from a GPIO
<write-output> Write an output signal to a GPIO
<write-event> Write an output signal to a GPIO
<expression> <operand> <operator> Mathematical expressions, operands, and operators

programs into the syntax of specific programming or hardware description languages. However,
the second transformation step just performs a direct conversion from each XML tag to the
corresponding code construct on the target language and does not apply any semantic changes.
For example, a <struct> may be converted into a class or object in some languages, procedures
may be translated to functions, and expressions are coded using the operators specific to each
language. The only detail that may require attention, is the operator precedence rules that
may differ from one language to another: in this case, the transformation may have to insert
additional parenthesis in the resulting code.

5. Generated code example

Applying the new code generator to the model in Figure 2, resulted in an XML execution-
semantics document containing variables corresponding to each signal and event, data structures
to store place-making and transitions fired, plus a series of procedures.
Some of the variables include:

< v a r i a b l e name=” IN1 ” or ig −node =” s i g n a l ” mode=” i npu t ” type =” boo l ean ” va lue =”0 ” i o _p i n =”1 ” s h i f t − r e g i s t e r −depth =”1” / >
< v a r i a b l e name=” IN2 ” or ig −node =” s i g n a l ” mode=” i npu t ” type =” boo l ean ” va lue =”0 ” i o _p i n =”2 ” s h i f t − r e g i s t e r −depth =”1” / >
< v a r i a b l e name=” IN3 ” or ig −node =” s i g n a l ” mode=” i npu t ” type =” boo l ean ” va lue =”0 ” i o _p i n =”3” / >
< v a r i a b l e name=”OUT1” or ig −node =” s i g n a l ” mode=” ou tpu t ” type =” boo l ean ” va lue =”0 ” i o _p i n =”4 ” wrap =”0” / >
< v a r i a b l e name=”OUT2” or ig −node =” s i g n a l ” mode=” ou tpu t ” type =” boo l ean ” va lue =”0 ” i o _p i n =”5 ” wrap =”0” / >
<!−− Inpu t and ou tpu t ev en t s : −−>
< v a r i a b l e name=” IE1 ” or ig −node =” even t ” mode=” i npu t ” type =” boo l ean ”/ >
< v a r i a b l e name=” IE2 ” or ig −node =” even t ” mode=” i npu t ” type =” boo l ean ”/ >
<!−− Net marking : −−>
< s t r u c t name=”marking ”>

< f i e l d name=” p_2 ” type =” range ” min =”0 ” max=”255 ” node −name=” P1 ” d e f _ v a l u e =”2” / >
< f i e l d name=” p_5 ” type =” range ” min =”0 ” max=”255 ” node −name=” P2 ” d e f _ v a l u e =”0” / >
< f i e l d name=” p_12 ” type =” range ” min =”0 ” max=”255 ” node −name=” P4 ” d e f _ v a l u e =”0” / >
< f i e l d name=” p_17 ” type =” range ” min =”0 ” max=”255 ” node −name=” P3 ” d e f _ v a l u e =”0” / >

</ s t r u c t >

Procedures to read and write inputs and outputs:
<procedure name=” r e a d I npu t s ”>

<read − inpu t v a r i a b l e =” IN1 ” type =” boo l ean ” i o _p i n =”1” / >
<read − inpu t v a r i a b l e =” IN2 ” type =” boo l ean ” i o _p i n =”2” / >
<read − inpu t v a r i a b l e =” IN3 ” type =” boo l ean ” i o _p i n =”3” / >

</ procedure >
<procedure name=” wr i t eOu tpu t s ”>

<wr i t e − ou tpu t v a r i a b l e =”OUT1” type =” boo l ean ” i o _p i n =”4” / >
<wr i t e − ou tpu t v a r i a b l e =”OUT2” type =” boo l ean ” i o _p i n =”5” / >

</ procedure >
<procedure name=” s e t u p _ i o ”>

< c a l l − procedure name=” pinMode ” i o _p i n =”1 ” mode=” INPUT”/ >
< c a l l − procedure name=” pinMode ” i o _p i n =”2 ” mode=” INPUT”/ >
< c a l l − procedure name=” pinMode ” i o _p i n =”3 ” mode=” INPUT”/ >
< c a l l − procedure name=” pinMode ” i o _p i n =”4 ” mode=”OUTPUT”/ >
< c a l l − procedure name=” pinMode ” i o _p i n =”5 ” mode=”OUTPUT”/ >

</ procedure >

The procedure that executes a single step of the model contains code to evaluate the firing of
each transition and the corresponding token consumption and creation. For example, transition
T3 can only fire when both P2 and P3 contain tokens and the guard condition «IN3 = 1» is true:
< i f >

< cond i t i on >
<operand type =” s t r u c t ” i dR e f =” ava i l _ma rk i ng ” f i e l d =” p_2 ”/ >
< op e r a t o r type =”more−or − equa l ” / >
<operand type =” l i t e r a l ” v a l u e =”1” / >
< op e r a t o r type =” and ”/ >
<operand type =” s t r u c t ” i dR e f =” ava i l _ma rk i ng ” f i e l d =” p_3 ”/ >
< op e r a t o r type =”more−or − equa l ” / >
<operand type =” l i t e r a l ” v a l u e =”1” / >
< op e r a t o r type =” and ”/ >
<operand type =” v a r i a b l e ” i dR e f =” IN3 ”/ >
< op e r a t o r type =” equa l ” / >
<operand type =” l i t e r a l ” v a l u e =”1” / >

</ cond i t i on >
<then >

< l e t type =” s t r u c t ” s t r u c t =” t r a n s i t i o n _ f i r e d ” f i e l d =” t _3 ”>
< exp r e s s i on >

<operand type =” l i t e r a l ” v a l u e =”1” / >
</ exp r e s s i on >

</ l e t >
< l e t s t r u c t =” ava i l _ma rk i ng ” f i e l d =” p_2 ”>

< exp r e s s i on >
<operand type =” s t r u c t ” i dR e f =” ava i l _ma rk i ng ” f i e l d =” p_2 ”/ >
< op e r a t o r type =” sub ”/ >
<operand type =” l i t e r a l ” v a l u e =”1” / >

</ exp r e s s i on >
</ l e t >
< l e t s t r u c t =” ava i l _ma rk i ng ” f i e l d =” p_3 ”>

< exp r e s s i on >
<operand type =” s t r u c t ” i dR e f =” ava i l _ma rk i ng ” f i e l d =” p_3 ”/ >
< op e r a t o r type =” sub ”/ >
<operand type =” l i t e r a l ” v a l u e =”1” / >

</ exp r e s s i on >
</ l e t >
< l e t s t r u c t =” new_marking ” f i e l d =” p_4 ”>

< exp r e s s i on >
<operand type =” s t r u c t ” i dR e f =” new_marking ” f i e l d =” p_4 ”/ >
< op e r a t o r type =” add ”/ >
<operand type =” l i t e r a l ” v a l u e =”1” / >

</ exp r e s s i on >
</ l e t >

</ then >
</ i f >

This XML document is subsequently transformed into the target language syntax. For
example, the above XML fragment is transformed into the equivalent Javascript code:

i f (a v a i l _ma rk ing . p_2 >= 1 && ava i l _ma rk i ng . p_3 >= 1 && da t a . IN3 == 1) {
t r a n s i t i o n _ f i r e d . t _ 3 = Boolean (1) ;
a v a i l _ma rk ing . p_2 = (ava i l _ma rk ing . p_2 − 1) ;
a v a i l _ma rk ing . p_3 = (ava i l _ma rk ing . p_3 − 1) ;
new_marking . p_4 = (new_marking . p_4 + 1) ;

}

The equivalent code produced using VHDL syntax is:

I f (ava i l _mark ing_p_2 >= 1 AND ava i l _mark ing_p_3 >= 1 AND s_IN3 = 1)
Then

t r a n s i t i o n _ f i r e d _ t _ 3 : = 1 ;
ava i l _mark ing_p_2 : = ava i l _mark ing_p_2 − 1 ;
ava i l _mark ing_p_3 : = ava i l _mark ing_p_3 − 1 ;
new_marking_p_4 : = new_marking_p_4 + 1 ;

End I f ;

The entire code can be consulted on the development area of IOPT-Tools, currently available
at http://89.38.135.221/ fjp/iopt-tools/, opening the model ”test.pnml” and executing the XML-
2Step code generator tool. Currently, there are syntax transformations to produce C, Javascript,
Python, and VHDL code.

6. Conclusions

The new approach to IOPT code generation offers advantages in terms of consistency in the
output produced for different languages, as the first step, which deals with execution semantics,
is common to all generators. The second step just performs direct syntactic translation and
should not produce any semantic changes. This is specially important, as the simulation and
model-checking tools make use of the Javascript/C code generated automatically. This way,
the new solution contributes to ensure consistency between the code used during testing and
debugging and the final version running on real hardware. Finally, the two-step approach greatly
contributes to simplifying the creation of new code generators for different languages, that will
reuse the existing execution-semantics XML and only require the development of a different
transformation to the syntax of the desired language. Using this strategy, most of the code
required to create a new code generator is re-used, contributing to reduce development time. As
the second-step transformation does not deal with model semantics details, the developer can
just focus on the target language syntax, meaning that possible design choices regarding open
semantic details were already taken when the first-step transformation was created. Future
work includes the creation of more transformations to generate code for other languages and
porting the current IOPT simulator and model-checking tools to start using the code produced
by the new code generator.

Acknowledgments

This research was funded (in part) by the Portuguese FCT program, Center of Technology and
Systems (CTS) UIDB/00066/2020/UIDP/00066/2020.

References

[1] F. Pereira, F. Moutinho, A. Costa, J.-P. Barros, R. Campos-Rebelo, L. Gomes, IOPT-
Tools – From Executable Models to Automatic Code Generation for Embedded Con-
trollers Development, in: L. Bernardinello, L. Petrucci (Eds.), PETRI NETS 2022 -
43rd International Conference on Application and Theory of Petri Nets and Concur-
rency, Springer International Publishing, Bergen, Norway, 2022, pp. 127–138. Doi: https:
//doi.org/10.1007/978-3-031-06653-5_7.

https://doi.org/10.1007/978-3-031-06653-5_7
https://doi.org/10.1007/978-3-031-06653-5_7

[2] F. Pereira, F. Moutinho, L. Gomes, IOPT-tools - Towards cloud design automation of digital
controllers with Petri nets, in: 2014 International Conference on Mechatronics and Control
(ICMC), 2014, pp. 2414–2419. doi:10.1109/ICMC.2014.7232002 .

[3] L. Gomes, F. Moutinho, P. Fernando, J. Ribeiro, A. Costa, J.-P. Barros, Extending input-
output place-transition Petri nets for distributed controller systems development, in:
2014 International Conference on Mechatronics and Control (ICMC), 2014, pp. 1099–1104.
doi:10.1109/ICMC.2014.7231723 , doi: https://doi.org/10.1109/ICMC.2014.7231723.

[4] W. Reisig, Petri nets: an Introduction, Springer-Verlag New York, Inc., 1985.
[5] L. Gomes, J. P. Barros, A. Costa, R. Nunes, The Input-Output Place-Transition Petri Net

Class and Associated Tools, in: 2007 5th IEEE International Conference on Industrial
Informatics, volume 1, 2007, pp. 509–514. doi:10.1109/INDIN.2007.4384809 .

[6] JavaScript Tutorial, https://www.w3schools.com/js/, 2023. Accessed: 2023-04-05.
[7] V. A. Pedroni, Circuit Design with VHDL, MIT Press, Cambridge, MA, USA, 2004.
[8] MATLAB - MathWorks, https://www.mathworks.com/products/matlab.html, 2023. Ac-

cessed: 2023-04-05.
[9] IEC 61131-3:2013, Programmable controllers - Part 3: Programming languages, Interna-

tional Standard, International Electrotechnical Commission, 2013.
[10] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,

volume 1, Springer Berlin, Heidelberg, 1997.
[11] F. D. M. C. L. Kummer, O.; Wienberg, Renew – User Guide, University of Hamburg,

Department for Informatics, Theoretical Foundations Group, 2009.
[12] A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault, Y. Thierry-Mieg, New

features in CPN-AMI 3: focusing on the analysis of complex distributed systems, in: Sixth
International Conference on Application of Concurrency to System Design (ACSD’06),
2006, pp. 273–275. doi:10.1109/ACSD.2006.15 .

[13] P. Starke, H.-M. Hanisch, Analysis of signal/event nets, in: 1997 IEEE 6th International
Conference on Emerging Technologies and Factory Automation Proceedings, EFTA ’97,
1997, pp. 253–257. doi:10.1109/ETFA.1997.616278 .

[14] M. Minas, G. Frey, Visual PLC-programming using signal interpreted Petri nets, in:
Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), volume 6,
2002, pp. 5019–5024 vol.6. doi:10.1109/ACC.2002.1025461 .

[15] T. Mohammadpour, M. Yadollahi, A. Haghighat, A system modeling and simulation
tools with capability of code generation using color-timed Petri net, 2009. doi:10.1142/
9789814289986_0006 .

[16] H. Dezani, N. Marranghello, A. S. Pereira, A. C. R. da Silva, M. Węgrzyn, Automatic
Code Generation for Microcontrollers from Place-Transition Petri Net Models, IFAC
Proceedings Volumes 44 (2011) 7873–7878. URL: https://www.sciencedirect.com/science/
article/pii/S1474667016448731. doi:https://doi.org/10.3182/20110828- 6- IT- 1002.02934 ,
18th IFAC World Congress.

[17] F. Pereira, L. Gomes, Combining data-flows and petri nets for cyber-physical systems spec-
ification, in: L. M. Camarinha-Matos, A. J. Falcão, N. Vafaei, S. Najdi (Eds.), Technological
Innovation for Cyber-Physical Systems, Springer International Publishing, Cham, 2016,
pp. 65–76.

http://dx.doi.org/10.1109/ICMC.2014.7232002
http://dx.doi.org/10.1109/ICMC.2014.7231723
https://doi.org/10.1109/ICMC.2014.7231723
http://dx.doi.org/10.1109/INDIN.2007.4384809
https://www.w3schools.com/js/
https://www.mathworks.com/products/matlab.html
http://dx.doi.org/10.1109/ACSD.2006.15
http://dx.doi.org/10.1109/ETFA.1997.616278
http://dx.doi.org/10.1109/ACC.2002.1025461
http://dx.doi.org/10.1142/9789814289986_0006
http://dx.doi.org/10.1142/9789814289986_0006
https://www.sciencedirect.com/science/article/pii/S1474667016448731
https://www.sciencedirect.com/science/article/pii/S1474667016448731
http://dx.doi.org/https://doi.org/10.3182/20110828-6-IT-1002.02934

	1 Introduction
	2 IOPT-nets
	3 Related work
	4 Automatic code generation
	5 Generated code example
	6 Conclusions

