
Towards an agile distributed management system
based on Petri Nets
Jose Jean Paul Zanlucchi de Souza Tavares1,∗,†, Jose Reinaldo Silva2,†

1Manufacturing Automated Planning Lab, Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia,
Brazil
2Design Lab, Department of Mechatronics and Mechanical Systems, University of Sao Paulo, Brazil

Abstract
The post-pandemic society demands interactive structures requiring autonomous logistics and manu-
facturing systems that could be monitored and changed during distributed implementation. Different
methods have been used to model requirements satisfying all the target system’s demands while pro-
viding the best matching to an implementable framework. Two aspects are detached: i) the need to
formalize requirements so that the interactive process (systems/user) could be modeled and verified
during the requirements phase; ii) an implementable framework that fits the interactive model, adherent
to the requirement formalization: a distributed discrete system. The application is directed at fitting
logistics and manufacturing process requirements in a digital factory approach with many distributed
physical sites and low connections. The development of a Petri Nets Management System (PNMS) can
integrate artifacts inside the logistic by using Radio Frequency Identification - RFID - readers along
these different sites, exchanging and storing Petri Net information inside a RFID tag, and using Petri Net
inside RFID Database (PNRD) and/or inverse PNRD (iPNRD) as a contingent system. This paper presents
the proposal of a PNMS with two distinct modes: Setup, which deals with a Petri Net Modeling Tools
interface - based on PNML (Petri Net Markup Language), and a RFID interface; and Runtime, standing
for real-time activities management and monitoring. Thus, the PNMS has an internal data structure
integrating RFID and Petri Nets. It is adaptive and applicable to assist operational management, including
PNRD/iPNRD supervision, integrating design and deployment. A case study illustrates the application of
PNRD/iPNRD Arduino Library Management System (a.k.a. PALMS) based on PNMS concept.

1. Introduction

The evolution of logistics and manufacturing systems points to distributed and re-configurable
modes with agile and precise control. A clear consequence is that such models should be
visualized directly or through supervisory or twin systems. Recent events launched after
the pandemic accelerated this tendency, motivated by reduced human mobility, minimizing
crowding in production and service environments.
Holloway et al. [1] distinguish three methods for discrete event control systems: i) the

R-W framework, based on the Supervisory Control System (SCT) theory [2]; ii) the logic

Algorithms Theories for the Analysis of Event Data and Petri Nets for Twin Transition 2023, June 26–27, 2023, Lisbon,
Portugal
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open jean.tavares@ufu.br (J. J. P. Z. d. S. Tavares); reinaldo@usp.br (J. R. Silva)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jean.tavares@ufu.br
mailto:reinaldo@usp.br
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


control approach [3]; iii) and the behavior approach [4]. The logic controller approach aims
to design a controller defining input-output behavior to achieve the desired behavior for the
closed-loop system. This method can be applied to control simple processes, and simulation is
necessary to validate the closed-loop behavior. The controlled behavior approach is preferable
for designing complex manufacturing systems. It consists of modeling the desired closed-loop
system behavior, namely, the joint model of the plant and controller, and then extracting the
discrete event controller for implementation. This strategy allows properties of interest such as
liveness, boundedness, and reversibility to be guaranteed or even previously analyzed using the
desired closed-loop model. Most of these discrete event approaches still separate the control
level from plants, making rapid configuration difficult or dealing with that without proper
visualization or a delay between analysis and re-configuration. Therefore, there is a space for
new approaches relying upon a hybrid schema where control information or preconditions are
spread among the production system and the artifacts. The higher-level control is based on an
open relationship between a target agent and the environment.

Many applications could benefit from a mixed distributed system environment, but we could
mention two main areas where its suitability is straightforward and intuitive: logistics and
healthcare. Of course, modern manufacturing - from the Industry 4.0 perspective - is also a
target. For instance, logistic Radio Frequency Identification - RFID - tags could be spread in the
environment guiding retrieval or insertion of new resources to avoid conflicts, using its internal
data as the deadline for use - to perishing products. Such police could be changed without
modifying the control of Automated Guided Vehicles or AGVs by changing the dynamic guiding
in the RFID tags.

Thus the main contribution of this paper is to present how to manage to disperse information
along a non-structured physical framework using Radio Frequency Identification (RFID) and
Petri Net. This solution must fulfill these challenges once there is no guarantee of network
connection in many places and agents (such as the logistics one) since they can have poor
computational infrastructure on a lack of it.

As several initiatives emerged, based on technology representation [5][6], it raised a question
on how to model and design hybrid and re-configurable environments with high visualization
and agility to change valuable information. Once the target is dispersed, dynamic information
and visualization are connected to a workflow, and Petri Nets are a suitable formal representation.
Petri Nets are suitable for modeling parallelism and concurrency. Petri Nets models can

be formally verified by property analysis or Model Checking [7] [8] [9], which constitutes
an additional advantage for the hybrid system approach. Some studies show how to directly
integrate the Petri nets model with process monitoring or IoT (Internet of Things) devices via
Client-Server communication [10]. Fig.1 presents a schema showing the different application
domains for Petri nets, which justifies its choice to represent hybrid distributed environments
based on resource concurrency and parallel activities. The interaction generates a continuous
improvement structure: once the Model is updated, all the implementations reflect this change.
Many works relate RFID and Petri Net in different areas: quality management [11], logistic

modeling [12], healthcare [13], design of flexible manufacturing cells [14], monitoring and
control of assembly and disassembly systems [15], material management [16]. Most of these
works propose a low-level connection between Petri Net and RFID, focusing on generating the
Petri Net marking after reading tags.



Figure 1: Petri nets application schema.

A question arises about how to fit logistics and manufacturing process requirements, in-
cluding the dynamic of new revisions, production schedule re-planning, and process updates.
Elementary Petri Nets inside RFID Database (a.k.a.PNRD) [17] uses RFID tags and readers as
a dispersed data structure, based on Petri Nets matrix equation, along with logistics passive
agents. For active agents, the inverse PNRD, a.k.a. iPNRD, changes the Petri nets data structure
between RFID readers and tags compared to the original one. With these approaches, RFID tags
can store process information trought Petri net data structure, and interact to the RFID reader
transmitting its internal data, and allowing RFID reader to calculate the RFID tag next state. Both
can provide automatic identification of non-conformities in the expected and stored process.
[18] presented the PNRD and iPNRD integration for the block world domain with three blocks.
It showed that the robotic arm could solve some inconsistencies by itself. However, this solution
cannot deal with a more complex model, integrating flow with automatic planning. Even in the
case which requires automated planning assistance, it is possible to translate the plan in a Petri
net as presented by [19]. Regardless of whether the PNRD and iPNRD can integrate logistics
and manufacturing process requirements, there is a lack of management of new versions and
process updates.

This paper presents a PNRD/iPNRD Management System, supporting the PNMS concept. The
PNMS has two distinct modes: one called Setup that deals with the Petri Nets Modeling Tools
interface - based on PNML (Petri Net Markup Language) [20] [21], and also with RFID; and
another named Runtime, which deals with PNRD/iPNRD real-time monitoring and supervising,
following state calculus results, including exception identification.
Based on PNMS concept, this paper proposes a framework called PNRD/iPNRD Arduino®

Library Management System - PALMS. PALMS has two distinct interfaces: the first is related to
PN modeling tools based on PNML files 1; the second cares about Runtime mode, monitoring
the RFID tag according to state calculus results, and providing feedback to PN modeling tools
through PNML file updating. PALMS modifies the original PNRD/iPNRD Arduino® library to
include a TCP/IP communication and memory card access in order to propitiate data exchange
with an MQTT (Message Queuing Telemetry Transport) Broker.

1PALMS has an internal data structure that deals with RFID and PN relationship, assisting RFID tag initial marking
in PNRD format and Arduino® trigger vector programming



The following section reviews the PNRD/iPNRD. Section 3 presents PNMS concept. A PALMS
implementation example is shown in section 4. Conclusions are in Section 5, followed by the
acknowledgment and references.

2. PNRD/iPNRD : the base for a network independent shop-floor
distributed communication

An RFID system is composed of tags (usually sticky on objects) and readers. Readers have one
or more antennas (up to 4) that emit a signal at a certain frequency. The tag is composed of an
integrated circuit coupled to an antenna. When stimulated by the frequency of a reader antenna,
the tag responds to the information stored internally. This information is generally unambiguous
identification; however, there may be room for additional data. The signal transmitted by the
tag is received by the reader’s antenna, which decodes it. The reader can be inserted into a
communication network.

A Petri net inside RFID Database or PNRD is a formal data structure grounded in elementary
Petri Nets, which stores Petri Net state equation into RFID tags (marking𝑀𝑘 and adjacent matrix
𝐴𝑡) and RFID reader (trigger vector 𝑢𝑘). An RFID tag could be abstractly related to a single
marking on PNRD, and each reader can represent a Petri nets transition [18].

PNRD was developed to be a network independent shop-floor distributed communication that
automatically identifies and monitors passive agents, such as commercial items, parts, logistics
units, and physical products. The target process is associated with the intended behavioral
model formally represented by Petri Nets. Operationally, along the physically distributed RFID
readers, tag data can represent a single marking. Following the Petri Nets next state calculus,
this marking is automatically updated during the tag data capture from the RFID reader. As
the PNRD data is previously stored, this calculus and marking updating is independent of
network connection. This feature allows the real-time evaluation of whether the next calculated
marking is suitable, depending on its results. In this sense, a suitable marking should respect
the tag-token bi-univocal unique relationship, which means each tagged object cannot have
any negative component in its marking. A marking with a negative component is called PNRD
exception.
A conflict in the PNRD approach arises when the same label, in the PNRD context means

the same RFID reader/antenna, is related to more than one transition for the same RFID tag
identification and previous marking. In this case, it is necessary to apply a decision algorithm
to define which transition should be chosen based on additional data or software based on a
specific case as presented in [17]. This conflict can also be represented as a stochastic choice.
The iPNRD [18] evolved from the PNRD structure to provide a framework with distributed

knowledge information. As the active agents are normally embedded with a microcontroller, it
becomes impracticable to associate their identity with only one RFID tag, as it is more reasonable
to place a RFID reader in agents similar to mobile robots. In order to fit the PNRD approach
in the control and monitoring of active agents, it is necessary to swap the storage locations of
the state and incidence matrices of the Petri nets. This approach was called inverse PNRD or
iPNRD as presented in [18]. In the original iPNRD, the RFID tag stores information about the
firing vector 𝑢𝑘, while the adjacent matrix 𝐴𝑡 and the current marking 𝑀𝑘 are associated with



the RFID Reader/Antenna.
Fig.2 summarizes how the terms of Petri nets state calculus parameters are originally associ-

ated with the RFID components in both approaches.

Figure 2: Original Petri nets state equation association with PNRD/iPNRD

PNRD can be integrated with iPNRD to generate a more autonomous system, as well as,
iPNRD from distinct active agents can be integrated through smart environment [18].
A PNRD/iPNRD Arduino ® library [22] assists the generation of stand-alone programs in each
device Arduino. This tool applied to the logistic and manufacturing process evokes a question
concerning how to manage PNRD/iPNRD gadgets in a distributed arrangement with Petri nets
modeling tools. This library allows three different types of Petri nets state equation components
to be stored in RFID tags and readers. This paper works with the original PNRD/iPNRD data
structure.
RFID systems can fail, such as RFID tag reading and writing issues, preventing 𝑀𝑘 update and
generating false exceptions after this point. Despite the fact the RFID tag ID can be integrated
with an external Database, in order to structure a contingent system preventing network
malfunctioning, a PNRD/iPNRD Management System could inform in advance RFID readers of
the new marking, that was not stored in the RFID tag, avoiding false exception identification.

3. PNMS - PNRD/iPNRD Management System Concept

The main idea of the PNRD/iPNRD Management System or PNMS is to intermediate PN model
with a logistics and manufacturing automated system. In this sense, the PNMS receives a PNML
(Petri net Markup Language) file from the PN modeling tool; it generates and transfers a Setup
file to the Implementation, based on PNRD/iPNRD approach; it receives 𝑀𝑘+1 and exception
from PNRD/iPNRD devices; it generates a Runtime PNML file; and it can store PNRD/iPNRD
history to be integrated with process mining tools optionally. Fig.3 presents the correspondent
PNMS concept.

As informed before, the PNMS has two modes: Setup and Runtime. The Setup mode manages
both PN modeling tool and PNRD/iPNRD application connection. From the PN model, PNMS
receives the PNML file related to the process to be implemented in PNRD/iPNRD. The PNML



Figure 3: PNMS Concept.

File is converted to PN state equation and additional data, depending on the model. PNMS
manages the connections from PN transitions to each RFID reader, including RFID reader
network connection. Another feature of the Setup mode is the generation of a PNRD/iPNRD
Setup file including RFID tag initial marking and RFID reader trigger vector distribution. On
one hand, this file structures PNRD tag initial marking and adjacent matrix, and the RFID reader
triggers vector data; on the other hand, iPNRD Reader initial marking and adjacent matrix, and
the RFID tag triggers vector data. PNMS transfers these files to the PNRD/iPNRD applications
dispersed along the logistic and manufacturing process. PNRD/iPNRD updating parameters are
sent during this data exchange.
The PNMS Runtime mode can monitor asynchronously several PNRD/iPNRD next state

calculus messages containing RFID tag id, new marking vector, transition firing id, exception
info, and additional data. If an exception is identified, PALMS is warned. As discussed in [18],
RFID components can malfunction, and, in this case, a false exception occurs. For instance, if
an RFID tag is not able to be written, the new marking is not stored, and all the PNRD/iPNRD
applications must be informed about actual RFID tag marking. Thus, the PNMS has to monitor
false exceptions. Another feature is the PNRD/iPNRD tag and reader historical database. In the
PNMS Runtime mode, the RFID tag and marking relationship, and also the RFID reader transition
one, is managed. Based on this information, the new marking and the triggered transition
are updated in the Runtime PNML file to be sent to a PN supervising system. To explain the
PNMS concept, the next section presents the implementation of PNRD/iPNRD Arduino® Library
Management System - PALMS.

4. PALMS - PNRD/iPNRD Arduino ® Library Management System

PALMS or PNRD/iPNRD Arduino Library Management System is a middleware able to integrate
Petri net modeling tools (through the use of PNML exported file) with PNRD/iPNRD. The PALMS
version proposed in this paper allows managing as many Arduinos Mega® as available through
MQTT connection. As presented in Figure 4, PALMS internal structure has two modes, which
means, Setup and Runtime. Although PALMS can deal with both PNRD/iPNRD, this paper focuses



Figure 4: PNMS internal schema and PALMS General Schema.

on only PNRD.
On one hand, as presented by Figure 5 PALMS Setup opens a PNML file from a PNModeling tool.

This file is converted as PNRD/iPNRD data structure and sends it to PNRD/iPNRD Application
following MQTT subscribe/publish approach, an 1 to N relationship. PALMS Setup also manages
MQTT and Reader connection, and it generates initial marking and RFID Reader trigger vector
files. It is necessary to inform the RFID Reader name, its number of antennas (up to 3), and
its corresponding Arduino IP information. Each transition is automatically linked with RFID
Reader-Antenna following the sequence of the transition in the setup.palms file. If the transition
antenna relationship is distinct, the setup.palms file can be manually edited. The PNRDInfo.pnrd
file is generated for each RFID reader, and the pnrd-initTag.pnrd file is created to assist in the
initial recording of the RFID tag. In this version of PALMS there is no tag initial recording
management system, required when the process has more than one RFID tag with different
Petri nets initial marking.
On the other hand, PNRD/iPNRD Applications send the next state calculus result to PALMS

Runtime mode which consolidates this information. PALMS Runtime monitors each RFID tag’s
next state and exceptions, it stores PNRD/iPNRD history and it generates Runtime PNML file to
be exported to a PN Supervisory tool (see Figure 6). This mode is still in development and it
was implemented only the Setup MQTT one. Another version of PALMS exchanging file using
ftp was already implemented integrating tag history in the PNML file. More detail about PALMS



Figure 5: PALMS Setup MQTT Schema.

Figure 6: PALMS Runtime MQTT Schema.

ftp2. Both ftp and MQTT initiatives can be in use of PALMS and follow the PNMS concept.

4.1. PALMS Implementation

PALMS3 was implemented in Phyton 3.8. PALMS was tested in Linux and Windows OS. Figure 7
presents PALMS GUI showing Setup mode behind and a window with the PNML file or Setup
file opening options.

PNRD/iPNRD Arduino ® Library had to be updated to open files on an SDCard in order to be
able to update the internal settings files. Another change refers to the inclusion of libraries for
MQTT communication, which requires that Arduinos ® have Ethernet shield available. PALMS-
MQTT assumes setups based on Arduinos complemented with Ethernet shields and SD cards.
Each Arduino Mega ® can connect up to three PN532 RFID readers.

4.2. PALMS Setup Mode, case study

After PALMS installation, the MQTT Broker must be connected.
The first action in PALMS is to open a PNML file related to the PNRD/iPNRD process to be

2https://github.com/MAPL-UFU/palms
3https://github.com/MAPL-UFU/PALMS-MQTT



Figure 7: PALMS GUI

Figure 8: PNRD process example.

implemented. This paper focuses on PNRD approach because it represents better passive logistic
and manufacturing objects.
To demonstrate the practical application of PALMS, consider the PNRD shown in Figure 8.

Schematically this example depicts a machined part test system identified with RFID tags, and
some part of the process holding RFID readers. The process in question tests a metal part
𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑑𝑃𝑎𝑟 𝑡 for its cylindricity in place 𝑃𝑎𝑟 𝑡𝐼 𝑛𝑇 𝑒𝑠𝑡1. If the cylindricity test rejects the piece
then the same goes for recycling 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟 𝑡. If the part is approved, it goes to the roughness
test in place 𝑃𝑎𝑟 𝑡𝐼 𝑛𝑇 𝑒𝑠𝑡2 and, if it meets the specification, the part is directed to the stock
𝑃𝑎𝑟 𝑡𝐼 𝑛𝑆𝑡𝑜𝑐𝑘. If the part does not meet the roughness test, it goes into the reworked queue
𝑃𝑎𝑟 𝑡𝐼 𝑛𝑄𝑢𝑒𝑢𝑒, and through a new machining process 𝑃𝑎𝑟 𝑡𝐼 𝑛𝑊 𝑜𝑟𝑘𝑠𝑡𝑎𝑡𝑖𝑜𝑛 and it returns to the
beginning of the test system. It is noticed that the input of each activity is monitored by an
exclusive reader/antenna set. For example, the part that enters the cylindricity test system
passes through Reader1/Ant1. There is one marking at 𝑝0, 7 places, and 7 transitions.

After PALMS setup loads the PNML file, automatically, PALMS extracts the Incidence Matrix



Figure 9: PALMS after PNML file upload in PALMS Setup Mode.

and token vector from it. In PALMS GUI, the Incidence Matrix has an additional column where
it is possible to inform the correspondent transition label. For each transition, an RFID Reader
must be associated. This association is automatically depending on the RFID reader/ antenna
manual identification. In this example, Reader 1 and 2 have only one antenna, Reader 3 has 3
antennas, and Reader 4 has 2. Thus Reader1/antenna1 is the transition T0, Reader2/antenna1
is T1, Reader3/antenna1 T2, Reader3/antenna2 T3, and Reader3/antenna3 T4. Figure 9 shows
Reader/antenna and transition association, and also Reader IP’s info.
After finishing the automatic reader/antenna association with transition, there is a need

to push the CREATE SETUP FILE button to generate the PALMS Setup File. Figure 10 shows
this information. It is possible to notice the number of antennas in each Reader, the Reader
IP, and the transition and antenna relationship are sequential, which means, that Reader 1 (IP:
10.0.208.10) has one antenna which is associated with ”transition 0”, Reader 2 (IP:10.0.208.11)
has one antenna linked to ”transition 1”, and so one. This relationship can be manually updated
directly in the PALMS Setup File and a new version of PALMS will assist this more properly.
As mentioned before, the PALMS Setup generates initial marking and RFID Reader trigger

vector files, and it doesn’t check the number of initial markings because it is dependent on
the context. However, it is possible to receive an acknowledgment from each tag stored, and
another release of PALMS will have this functionality.

4.3. PALMS Runtime mode, case study

Opening the setup.palms file, PALMS enables the Runtime mode. Figure 11 shows that this
mode presents what approach is in use (PNRD in this example), the number of Readers, their
correspondent antenna numbering, and IP information.

There are three buttons in the Runtime mode TRANSFER PNRD SETUP, GET RUNTIME INFO,
and GENERATE NEW PNML.
TRANSFER PNRD SETUP button stores PNRD data in each RFID reader, and it is mandatory

to be done before the process is running. Two distinct files are generated, one related to PNRD
initial marking, and another to RFID Reader information. PALMS creates the folder palmsSetup
inside PNMLexamples. Figure 12 presents the palmsSetup folder for the example. Can be seen



Figure 10: PALMS Setup File for the PNRD process example.

Figure 11: PALMS Runtime mode front end.

in four folders related to each RFID Reader IP and two files: pnrd-initTag.pnrd and setup.pnrd.
In front of it pnrd-initTag.pnrd is opened with the number of places (7), transitions (7), initial
marking vector(1, 0, 0, 0, 0, 0, 0) and the Incidence Matrix in vector format (see Figure 12-a).

As an example of an RFID Reader file shown in Figure 12-b its information to Reader 10.0.208.13
IP (Reader4). This file stores the number of places (7), transitions (7), Reader name, and trigger
vector ([5, 6]), meaning transitions 5 and 6. Each PNRDInfo.pnrd file is sent to the correspondent
Arduino ® , and stored in the SD card. As consequence, as already informed, the original
PNRD/iPNRD Arduino® Library Management System internal structure was updated to read this
information. PALMS has twoArduino ®file example with this approach inside startupArduinoFiles
folder, this means, pnrd-initTag.ino to initial marking, and pnrd-reader,ino to RFID Readers.

To send all these files, all Arduino’s®Mega and their respective RFID Readers/Antennas must
be physically connected and integrated with an Ethernet network. For example, Figure 13 shows



Figure 12: PALMS internal Files.

Figure 13: Bench with one Arduino Mega ®with one PN532 RFID readers example.

one Arduino®Mega with Ethernet Shield, SD card, and one PN532 RFID reader connected.
As informed before, in the MQTT PALMS version the GET RUNTIME INFO and GENERATE

NEW PNML are still in development. The FTP PALMS version implemented the GET RUNTIME
INFO, called CONNECT button. A sequence example shows Reader0, Reader1, and Reader0
transaction trigger for RFID tagId 80𝑓 𝑎2243. The first and second triggers had no error and they
change the marking vector from 1, 0, 0, 0, 0, 0, 0 to 0, 1, 0, 0, 0, 0, 0 and, after it, to 0, 0, 1, 0, 0, 0, 0.
The last trigger points out an exception. Exception treatment is not implemented yet. Figure 14
shows this sequence of transition triggers.
The GENERATE NEW PNML button creates an updated PNML file for Petri net supervision.

This feature is still under development.

4.4. Other PN Examples

Figure 15 shows a Petri net model with parallelism. The PALMS Setup Mode of the correspondent
PNML file is at Figure 16. It can be noticed that each transition has a different label in the
Incidence Matrix’s last column.
Figure 17 shows a PN with only one transition which produces and destroys markings of



Figure 14: PALMS Runtime Experiment of Sequential Triggering.

a single place with 78 markings and its correspondent PALMS Setup Mode. It is possible to
introduce the label rule as ′𝑎′𝑖𝑓 𝑓 𝑅𝑒𝑎𝑑𝑒𝑟1;′ 𝑏′𝑖𝑓 𝑓 𝑅𝑒𝑎𝑑𝑒𝑟2 meaning that Reader1 and Reader2 are
linked to the same RFID reader/antenna and each one has a different label. Another feature
can be viewed in the Incidence Matrix which presents -1/1 inside to represent the effect of
this transition. Figure 18 shows the correspondent PALMS Runtime Mode. This example can
be applied in an unknown process with RFID devices along it. Label histories can assist a PN
model generation through process mining techniques [13].

5. Conclusion

In this paper, we presented the proposition of a new framework to manage distributed in-
formation related to the control and automation of discrete systems based on the concept of
PNRD/iPNRD Management System - PNMS, integrating logistics and manufacturing processes



Figure 15: PN process example with parallelism.

Figure 16: PALMS Setup for the PN process example with parallelism.

into a Petri Nets model. The PNMS concept requires RFID readers disposed into a local network
connection. On the one hand, PNRD/iPNRD is network independent, and any failure in network
connection cannot affect the shop floor implementation. Once the connection is restored, all
data are updated in the Petri Net modeling/ supervising tool. This framework attends to logistics
and manufacturing process requirements, dealing automatically with its dynamics, with include
new versions of the production process, production schedule re-planning, and process updates.
A software tool called PALMS (PNRD/iPNRD Arduino®LibraryManagement System) is in develop-
ment to provide practical use of the PNMS concept. PALMS software connects several Arduino®

devices through MQTT communication, and it integrates model and execution grounded in
PNML data sharing. This integration can generate a more robust and autonomous logistic and
manufacturing process, reaching their requisites.
As can be viewed in [23], for 80 different logistics applications, 44 applied High-Level Petri
nets (HLPN). Thus the current PALMS version can evolve to use HLPN, where real-time data
PNRD/iPNRD can still be updated in Arduino.
Using PALMS, a PNML file can be updated depending on the tag’s following state result during
RFID data capture. A new feature can be implemented in PN tools related to the execution



Figure 17: PALMS Setup for the PN with only one transition which produces and destroys markings of
a single place.

Figure 18: PALMS Runtime for the PN with only one transition which produces and destroys markings
of a single place.

system, monitoring and supervising the physical system.
A brief case study for PALMS’s version was included, with PNML examples, to implement a
Runtime PNML file, adding timestamps and historical PNRD/iPNRD database and an Adjacent
matrix in GUI.
New developments are being planned to improve the framework, especially the relationship
between high-level design and the implementation of communication in production environ-
ments and to fit IoT. The PALMS development is still in process, and new features will be added
to fit PNMS concept. The next PALMS version will present two Adjacent Matrix instead of only
one Incidence Matrix, it will have MQTT PALMS RUNTIME mode implemented, and the PNMS
will be formalized using High-Level PN.



6. Acknowledgement

This work is supported by CNPq, CAPES, FAPEMIG, and UFU.We special thanks Roger Henrique
Carrijo de Paula, Thiago Souza Alves and Daniel Barbosa Pereira. This paper was partially
supported by MEC- EMENDA 40640016.

References

[1] L. Holloway, B. Krogh, A. Giua, A survey of petri net methods for controlled discrete event
systems, Discrete Event Dynamic Systems: Theory and Applications 7 (1997) 151–190.

[2] P. Ramadge, W. Wonham, Supervisory control of a class of discrete event processes, SIAM
Journal on Control and Optimization 25 (1987) 206–230. doi:https://doi.org/10.1137/
0325013 .

[3] M. Zhou, F. DiCesare, D. Rudolph, Design and implementation of a petri net based
supervisor for a flexible manufacturing system, Automatica 28 (1992) 1199–1208.

[4] I. Suzuki, T. Murata, A method for stepwise refinement and abstraction of petri nets,
Journal of Computer and System Sciences 27 (1983) 51–76. doi:https://doi.org/10.1016/
0022- 0000(83)90029- 6 .

[5] R. Brennan, P. Vrba, P. Tichy, A. Zoitl, C. Snder, T. Strasser, V. Marik, Developments in
dynamic and intelligent reconfiguration of industrial automation, Computers in Industry
59 (2008) 533–547. doi:https://doi.org/10.1016/j.compind.2008.02.001 .

[6] G. Doukas, K. Thramboulidis, A real-time-linux-based framework for model-driven
engineering in control and automation, IEEE Transactions on Industrial Electronics 58
(2011) 914–924. doi:10.1109/TIE.2009.2029584 .

[7] K. Wolf, Petri net model checking with lola 2, in: V. Khomenko, O. H. Roux (Eds.),
Application and Theory of Petri Nets and Concurrency, Springer International Publishing,
Cham, 2018, pp. 351–362.

[8] L. M. Hillah, F. Kordon, Petri nets repository: A tool to benchmark and debug petri net
tools, in: W. van der Aalst, E. Best (Eds.), Application and Theory of Petri Nets and
Concurrency, Springer International Publishing, Cham, 2017, pp. 125–135.

[9] F. Kordon, L. Hillah, F. Hulin-Hubard, L. Jezequel, E. Paviot-Adet, Study of the efficiency
of model checking techniques using results of the mcc from 2015 to 2019, Int J Softw Tools
Technol Transfer 23 (2021) 931–952. doi:https://doi.org/10.1007/s10009- 021- 00615- 1 .

[10] D. Mourtzis, N. Milas, A. Vlachou, An internet of things-based monitoring system for
shop-floor control, Journal of Computing and Information Science in Engineering 18
(2018). doi:10.1115/1.4039429 .

[11] Y. Lv, C. Lee, H. Chan, W. Ip, Rfid-based colored petri net applied for quality monitoring
in manufacturing system, Int J Adv Manuf Technol 60 (2012) 225–236. doi:https://doi.
org/10.1007/s00170- 011- 3568- z .

[12] Y. Li, A. Oberweis, H. Zhang, Modelling and facilitating rfid-based collaborative logistics
processes, International Journal of Organizational Design and Engineering 2 (2012) 85–105.
doi:https://doi.org/10.1504/IJODE.2012.045907 .

[13] C. Fernandez-Llatas, A. Lizondo, E. Monton, J.-M. Benedi, V. Traver, Process mining

http://dx.doi.org/https://doi.org/10.1137/0325013
http://dx.doi.org/https://doi.org/10.1137/0325013
http://dx.doi.org/https://doi.org/10.1016/0022-0000(83)90029-6
http://dx.doi.org/https://doi.org/10.1016/0022-0000(83)90029-6
http://dx.doi.org/https://doi.org/10.1016/j.compind.2008.02.001
http://dx.doi.org/10.1109/TIE.2009.2029584
http://dx.doi.org/https://doi.org/10.1007/s10009-021-00615-1
http://dx.doi.org/10.1115/1.4039429
http://dx.doi.org/https://doi.org/10.1007/s00170-011-3568-z
http://dx.doi.org/https://doi.org/10.1007/s00170-011-3568-z
http://dx.doi.org/https://doi.org/10.1504/IJODE.2012.045907


methodology for health process tracking using real-time indoor location systems, Sensors
15 (2015) 29821–29840. URL: https://www.mdpi.com/1424-8220/15/12/29769. doi:10.3390/
s151229769 .

[14] K.-Y. Chen, Cell controller design for rfid based flexible manufacturing systems, Inter-
national Journal of Computer Integrated Manufacturing 25 (2012) 35–50. doi:10.1080/
0951192X.2010.523845 .

[15] H. Sun, Z. Chang, R. Mo, Monitoring and controlling the complex product assembly
executive process via mobile agent and rfid tags, Assembly Automation 29 (2009) 263–271.
doi:10.1108/01445150910972949 .

[16] E. Ngai, K. K. Moon, F. J. Riggins, C. Y. Yi, Rfid research: An academic literature review
(1995–2005) and future research directions, International Journal of Production Economics
112 (2008) 510–520. doi:https://doi.org/10.1016/j.ijpe.2007.05.004 , special Section on
RFID: Technology, Applications, and Impact on Business Operations.

[17] J. J.-P. Z. d. S. Tavares, T. A. Saraiva, Elementary petri net inside rfid distributed database
(pnrd), International Journal of Production Research 48 (2010) 2563–2582. doi:10.1080/
00207540903564934 .

[18] J. J.-P. Z. d. S. Tavares, G. D. A. Souza, PNRD and iPNRD integration assisting adaptive
control in a block world domain, in: D. Moldt, E. Kindler, M. Wimmer (Eds.), Petri Nets
and Software Engineering. International Workshop, PNSE’19, Aachen, Germany, June 24,
2019. Proceedings, volume 2424 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp.
73–92. URL: http://CEUR-WS.org/Vol-2424.

[19] J. R. Silva, J. M. Silva, T. S. Vaquero, Formal Knowledge Engineering for Planning: Pre
and Post-Design Analysis, Springer International Publishing, Cham, 2020, pp. 47–65.
doi:10.1007/978- 3- 030- 38561- 3_3 .

[20] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci, R. Post,
C. Stehno, M. Weber, The petri net markup language: Concepts, technology, and tools, in:
W. M. P. van der Aalst, E. Best (Eds.), Applications and Theory of Petri Nets 2003, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 483–505.

[21] E. Kindler, The ePNK: A generic PNML tool Users’ and Developers’ Guide for Version
1.0.0., Technical Report 2012-14, Technical University of Denmark, 2012.

[22] C. E. A. da Silva, J. J.-P. Z. d. S. Tavares, M. V. M. Ferreira, Arduino library developed for
petri net inserted into rfid database and variants, in: V. Khomenko, O. H. Roux (Eds.),
Application and Theory of Petri Nets and Concurrency, Springer International Publishing,
Cham], pages=396–405, isbn=978-3-319-91268-4, 2018.

[23] G. Cavone, M. Dotoli, C. Seatzu, A survey on petri net models for freight logistics and
transportation systems, IEEE Transactions on Intelligent Transportation Systems 19 (2018)
1795–1813. doi:10.1109/TITS.2017.2737788 .

https://www.mdpi.com/1424-8220/15/12/29769
http://dx.doi.org/10.3390/s151229769
http://dx.doi.org/10.3390/s151229769
http://dx.doi.org/10.1080/0951192X.2010.523845
http://dx.doi.org/10.1080/0951192X.2010.523845
http://dx.doi.org/10.1108/01445150910972949
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2007.05.004
http://dx.doi.org/10.1080/00207540903564934
http://dx.doi.org/10.1080/00207540903564934
http://CEUR-WS.org/Vol-2424
http://dx.doi.org/10.1007/978-3-030-38561-3_3
http://dx.doi.org/10.1109/TITS.2017.2737788

	1 Introduction
	2 PNRD/iPNRD: the base for a network independent shop-floor distributed communication
	3 PNMS - PNRD/iPNRD Management System Concept
	4 PALMS - PNRD/iPNRD Arduino ® Library Management System
	4.1 PALMS Implementation
	4.2 PALMS Setup Mode, case study
	4.3 PALMS Runtime mode, case study
	4.4 Other PN Examples

	5 Conclusion
	6 Acknowledgement

