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Abstract
In this study, we examine the relationship between surface electromyography (sEMG) and facial expressions using a novel
Virtual Reality multi-sensor mask insert – emteqPROtm, equipped with seven sEMG sensors. We designed a dataset collection
scenario to analyze the effects of expression intensity, expression duration, and head movements. Using data from 30
participants, we developed a machine learning pipeline that included preprocessing of the sensor data, de-noising, filtering,
segmentation, feature engineering, and training a classification model. The experimental results indicate that the mask is
suitable for recognizing five posed facial expressions (smile, frown, eyebrows raise, squeezed eyes, and neutral expression).
The best-performing model achieved an F1-Macro score of 0.86. Head movement decreased the results to an F1-macro score
of 0.82. The facial expressions that activate the same muscles were the most challenging to differentiate. We also present
results on the influence of different scaling and oversampling techniques. Finally, expression duration, intensity, and head
movements influence the performance of the models for expression recognition and should be considered in the development
of recognition algorithms.
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1. Introduction
The book “The Expression of the Emotions in Man and
Animals” by Charles Darwin reports on the first studies
on human emotions [1] arguing that the emotions are a
universal language. These findings were later supported
by Ekman’s groundbreaking work on emotions and their
relation to facial expressions [2]. The human face is con-
sidered as one of the primary affect expression mediators,
and as such, it has been explored as the primary marker
of human affect. Generally, facial expressions result from
the contraction of a set of facial muscles, from which
affective states can be inferred [3]. Besides their relation
to the affective states, facial expressions account for a
large proportion of nonverbal communication [4].

Affective states can lead to different physiological and
behavioral responses [5]. Measuring these responses is
a key factor in understanding human behavior [6] and
how these behaviors affect one’s mental health. Mental
health monitoring is a growing scientific field striving to
help people in need. An important goal of the field is to
detect the first signs of mental health problems so that
they can be identified and acted upon to reduce risks,
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build resilience and establish supportive environments
[7].

Virtual reality (VR) has been a growing trend in the
past decade. It enables the simulation of ecologically vali-
dated scenarios, which are ideal for studying behaviour in
controllable conditions. Physiological measures captured
in such conditions provide a deeper insight into how an
individual responds to a given stimuli, making the VR
tools suitable for diagnosis, intervention, and monitoring
of mental health and wellbeing outcomes. Such solutions
for improved emotion tracking will positively impact the
lives of over one hundred million people in the EU alone
who experience mental health problems.

Automatic facial expression recognition has been an
active scientific subject since the early 1990s [8]. Re-
cent studies have considered EMG sensing for facial ex-
pressions and emotion recognition, and classification
methods have seen significant improvements in recent
years. Mithbavkar et al. [9] focused on the recognition
of emotions through facial expressions using data col-
lected in a musical environment. They trained several
neural networks to classify four emotions: joy, anger,
sadness, and pleasure, and achieved the highest accuracy
of 99.1% using a Nonlinear autoregressive exogenous net-
work (NARX). A comparison between an EMG-based fa-
cial expression detection model and an image processing
model was made by Kulke et al. [10]. Affectiva iMotions
software was compared with EMG measurements of the
zygomaticus major and corrugator supercilii muscles in
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identifying happy, angry, and neutral faces. They con-
cluded that the outputs from both systems were highly
correlated, showing that EMG-based model can identify
facial expressions produce results comparable to an im-
age processing-based model. Chen et al. [11] intended
to recognize facial emotions from sEMG data in a hu-
man–computer interaction scenario. They used a spe-
cially designed headband to record sEMG signals from
the frontalis and corrugator supercilii muscles of six par-
ticipants who were instructed to pose the facial expres-
sions of anger, fear, sadness, surprise, and disgust. They
achieved 95% accuracy using an Elman neural network
(ENN).

Our study aims to explore the usage of a novel VR
facial mask equipped with seven surface electromyog-
raphy (sEMG) sensors to monitor facial muscle activity
and classify five different facial expressions. Our ap-
proach is based on signal-processing and machine learn-
ing (ML) techniques to detect smiles, frowns, eyebrows
raise, squeezed eyes, and neutral facial expressions with
different intensities (high and low) and duration (short
and long). We chose these five facial expressions be-
cause of their relation to specific affective states: smiles
are related to positive affect and happiness; frowns are
related to negative affect, depression, and anxiety; eye-
brows raise is related to surprise, which can be positive
and negative in terms of affective valence; and squeezed
eyes is a facial expression generally related to negative
affective states like fear and disgust.

2. Data
The experiment was done on 30 participants aged 16 - 23
(20.8 ± 1.4), eighteen males and twelve females. All par-
ticipants were healthy and had no family history of facial
neuromuscular and nervous disorders or heart problems.
The data were recorded using the emteqPROtm mask
[7, 12]. It is a face-mounted mask that can be combined
with a VR head-mounted display, or it can be used as
an open-face mask. The EMG sensors in the mask are
positioned to overlap the zygomaticus muscles (which
spread from the cheekbones to the corners of the lips),
the frontalis muscles (which cover parts of the forehead
above the eyebrows), the orbicularis muscles (which are
close to the outside of the eyes), and the corrugator (a
small muscle between the eyebrows). The sensor mask
mounted on a VR device and the sensor positions are
depicted in Figure 1.

The participants were asked to perform two tasks (Task
A and Task B) that included five posed expressions: smile,
frown, eyebrows raise, squeezed eyes, and neutral expres-
sion. Task A contains the five posed expressions with
different durations (short and long) and intensities (low
and high), with three repetitions of each expression. Task

Figure 1: emteqPRO™multi-sensor face mask.

B includes the same posed expressions as those in Task A.
The main difference was the inclusion of head movement
in a specific direction (left, right, up, down) while doing
the expressions. Also, as a difference from task A, the ex-
pressions in task B were only of high intensity and long
duration. The data collection process was uninterrupted.
The participants had a neutral expression on their faces
between the posed expressions, making the neutral class
the most common in the dataset, with 55.6%, while the
rest of the classes comprised 11.1% each.

3. Methodology

3.1. Sensor Data Preprocessing and
Feature Extraction

During the data collection procedure, the sEMG data
were continuously recorded at a fixed rate of 1000 Hz.
These data underwent a data preparation process, includ-
ing data filtering, segmentation, and feature engineering.
To increase the data quality, we performed signal de-
noising and filtering. The EMG signals were initially
filtered with a Hampel filter to remove sudden peaks in
the signals that appear because of rapid movements. Ad-
ditionally, to reduce the noise caused by electromagnetic
interference, which has visible components at 50 Hz and
its harmonics, we utilized a frequency-based filtering
method based on spectrum interpolation [13]. A slid-
ing window technique was utilized for the sensor data
segmentation. The signals were segmented using a 0.5-
second window and a 0.1-second stride. Eventually, we
extracted 34 features per EMG channel, resulting in a total
of 238 features. The features included various amplitude-
based features (e.g., average amplitude change and mean
absolute value), amplitude derivatives, auto-regressive
coefficients, cepstral coefficients, frequency-based fea-
tures (e.g., main frequency), and statistical features (e.g.,
statistical moments).



Table 1
Evaluation on the Task A dataset.

Approach Accuracy F1-Macro
Default 84.90% 0.77

Standardization 87.62% 0.82
Normalization 85.04% 0.78

Random Undersampling 84.20% 0.76
OSS Undersampling 85.50% 0.80

SMOTE Oversampling 86.34% 0.80
Standardization + Random Undersampling 87.69% 0.83

Standardization + SMOTE 88.59% 0.84
Standardization + SMOTE + HMM 89.48% 0.86

3.2. Modeling
Due to the class imbalance, we experimented with three
different data resampling techniques to achieve a bal-
anced class distribution. These were: (i) Random Un-
dersampling – instances from the majority class are ran-
domly chosen and removed from the training dataset; (ii)
Synthetic Minority Oversampling Technique (SMOTE)
– an oversampling technique that creates a synthetic
example of the minority class based on the features of
K-nearest neighbors; and (iii) One-Sided Selection Under-
sampling (OSS) – an undersampling technique that com-
bines Tomek Links and the Condensed Nearest Neighbor
(CNN) Rule to remove ambiguous points on the class
boundary and to eliminate redundant examples from the
majority class that are far from the decision boundary.
For feature scaling, we implemented standardization and
normalization. Both techniques were done participant-
wise, i.e., for each participant data separately.

The data resampling and feature scaling techniques
were combined, and such processed data were used as
input to several ML algorithms, including Decision Tree
Classifier [14], Random Forest, and Extreme Gradient
Boost (XGBoost) [15]. Eventually, the best performing
classifiers were combined with a Hidden Markov Model
(HMM) [16].

The dataset was divided into three disjoint subsets: a
validation set (five randomly selected participants), a test
set (five randomly selected participants), and a training
set consisting of the remaining 20 participants’ data. The
validation set was used for tunning, and all the models
were evaluated on the test set. As performance metrics,
accuracy and F1-Macro scores were used.

4. Experimental Results
A) Task A – Long and short-duration expressions with
different intensity.

The results obtained when data from Task A were
used for training and testing are shown in Table 1. All
the results presented in the table were achieved with the

Random Forest algorithm, which proved to be the most
effective one out of the ML algorithms used in our exper-
iments (on the validation set). Depending on the scaling
and the over/undersampling technique, the accuracy val-
ues range from 84.2% to 89.48%, while F1-Macro score
values are between 0.75 and 0.86.

Regarding the feature scaling, both the standardization
and the normalization improved the model’s performance
compared to the default (no scaling and no additional
data sampling). The improvement was greater in the
case where feature standardization was used. We believe
there are two reasons for the improvement: (i) the scal-
ing was performed for each participant’s data separately,
thus it acts as an unsupervised personalization technique
reducing the inter-participants differences; (ii) besides
scaling the feature ranges (e.g., in the range -3 to 3), the
standardization also shifts the data distribution for each
participant separately. Whereas the normalization only
scales the feature ranges (e.g., 0 to 1). Thus, the addi-
tional distribution shift that the standardization causes
for each feature may be why standardization is better
than normalization.

Regarding the data subsampling technique, both OSS
undersampling and SMOTE oversampling performed bet-
ter than the random undersampling. The SMOTE over-
sampling technique was the best performing one, achiev-
ing an accuracy of 86.34% and an F1-score of 0.8. By
combining feature scaling (standardization) and SMOTE,
we achieved the highest results (an F1-score of 0.84). Fi-
nally, Hidden Markov Method was applied in combina-
tion with Standardization and SMOTE, achieving an F1-
Macro score of 0.86 and an accuracy of 89.48%.

To further inspect the best-performing model, we
present the confusion matrix in Figure 2. It indicates
that the model struggles to correctly predict the smiling
expressions. We speculate that this may be the case be-
cause smiling activates only the zygomatic face muscles.
A high intense smile is easily distinguishable from neu-
tral expressions as the zygomatic muscle activity is high.
However, the low-intensity smile leads to low activation
of the zygomatic muscles. A low-intensity smile resem-
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Table 2
Evaluation on the Task B dataset.

Approach Accuracy F1-Macro
Default 86.24% 0.81

Standardization 86.46% 0.82
Normalization 82.65% 0.76

Random Undersampling 83.51% 0.77
OSS Undersampling 84.86% 0.79

SMOTE Oversampling 86.20% 0.81
Standardization + Random Undersampling 85.88% 0.82

Standardization + SMOTE 85.47% 0.81

bles a neutral expression, and it doesn’t affect the sEMG
sensors enough to notice the difference between these
two expressions.

B) Task B – Long-duration expressions with high in-
tensity and head movements.

The results obtained when data from Task B were used
for training and testing are shown in Table 2. All the
results presented in the table were achieved with Extreme
Gradient Boost (XGBoost) with gbtree, which proved to
be the most effective one on the validation set.

The accuracy values range from 82.6% to 86.4%, and
the F1-Macro scores are between 0.76 and 0.82. Feature
scaling and resampling are not as critical preprocessing
steps as in Task A. The method with the highest accuracy
is the one where only participant-wise standardization
was performed. It achieved 86.46% accuracy and an F1-
Macro score of 0.82. However, the method that combines
standardization and random undersampling has the high-
est F1-Macro score of 0.82 and 85.88% accuracy. Although
this method’s accuracy is lower, we consider it the best
performing one since the F1-Macro score is more suitable
for evaluations on an unbalanced dataset.

Figure 3 presents the confusion matrix for the best-
performing model. We can see from the confusion matrix

Figure 2: Confusion Matrix of the best performing model for
Task A.

Figure 3: Confusion matrix of the best-performing model for
Task B.

that the model can differentiate between all the classes
with the neutral class, which was not the case in task A.
This is because, in Task B, only high-intensity expressions
with a long duration were examined. In this case, the
muscles were highly activated, making the expressions
more distinguishable from the neutral expression.

The problem with this model is that it struggles to de-
tect frowns and eyes squeezed. Both expressions activate
the same facial muscles: mainly the frontalis and corru-
gator muscles are activated, and this leads to wrongly
predicting these expressions.

Overall, it seems that the head movements had a minor
influence, i.e., the best- performing model achieved an F1-
score of 0.82, which is on par with the best-performing
model from Task A (Table 1), where the method without
HMM achieved and F1-score of 0.84. We excluded the
HMM-based method from this analysis and the following
one because it adds a layer of complexity to the training
process.

C) Task A and Task B combined – Long and short-
duration expressions with head movements.

Table 3 shows the performance of the methods for
six train-test combinations: (i) training on Task A data
and testing on Task A data; (ii) training on Task B data



Table 3
Accuracy and F1-Macro by combining Task A and Task B.

Approach Accuracy F1-Macro
Trained on task A, tested on Task A 88.59% 0.84
Trained on task B, tested on Task A 83.86% 0.78

Trained on AB, tested on Task A 85.48% 0.78
Trained on task B, tested on Task B 85.88% 0.82
Trained on task A, tested on Task B 83.61% 0.78

Trained on AB, tested on Task B 86.00% 0.80

and testing on Task A data; (iii) training on both Task A
and Task B data and testing on Task A data; (iv) training
on Task B data and testing on Task B data; (v) training
on Task A data and testing on Task B data; (vi) training
on both Task A and Task B data and testing on Task B
data. With this, we want to examine whether mixing no-
movement and movement data for training and testing
will substantially influence the method’s performance.
For evaluating methods’ performance on Task A and Task
B data, we used the best-performing methods from Table
1 and Table 2, respectively.

From Table 3, we can see that for Task A, the best
results are achieved when only no-movement data is used
in the training set (i.e., Task A is used), and the inclusion
of movement data (Task B data) reduces the method’s
accuracy by 3 percentage points and the F1-score drops
by 0.06. On the other hand, when Task B data are used for
testing, the inclusion of no-movement data (Task A data)
in the training set has a lower influence on the results
for Task B, as the F1-score drops by 0.02. By mixing the
training sets, we did not observe any improvements in
the results for both Task A and Task B data. These results
indicate that scenario specificity is important for the
model’s accuracy, i.e., if we expect movement during the
usage of the models, then it is better to include training
data that involves movement.

5. Conclusion
This study examined the relationship between sEMG
sensor data from facial muscles and posed facial expres-
sions using the novel emteqPROtm VR multi-sensor facial
mask. We analyzed sEMG data from 30 participants that
performed five facial expressions while wearing the de-
vice. The data collection scenario was specifically de-
signed to inspect several aspects of facial expression
recognition - duration (short vs. long), intensity (low vs.
high), and head movements. The collected data was then
used to develop models that recognize smiles, frowns,
eyebrows raise, squeezed eyes, and neutral facial expres-
sions. We explicitly inspected the influence of normal-
ization techniques and data oversampling and undersam-
pling techniques. On the test data of five unseen partici-

pants, the best-performing model achieved an accuracy
of 89.48% and an F1-Macro score of 0.86. The approach
is based on Random Forest in combination with stan-
dardization and oversampling (SMOTE) steps, and the
Hidden Markov Method as a prediction-smoothing tech-
nique [17]. The best-performing model evaluated on the
data that includes head movement achieved an F1-Macro
score of 0.82 (a decrease from 0.84). These results indi-
cate that there is an influence of the head movement on
the detection of facial expressions. The main weakness
of the models was observed in distinguishing between
frown and squeezed eyes. Both expressions activate fore-
head muscles closely placed to each other (corrugator and
frontalis muscles). In the future, we plan to investigate
feature selection, model personalization, and end-to-end
deep learning to overcome this weakness.

It should also be noted that in some cases, the differ-
ences in the results may have been due to the different
random steps in the processing steps and in the learning
ensembles that have built-in random steps. Nonetheless,
this does not diminish the main findings of the study:(i)
The novel VR-mask equipped with sEMG sensors in com-
bination with ML is suitable for recognizing facial expres-
sions (smile, frown, eyebrows raise, squeezed eyes, and
neutral); (ii) facial expressions that activate the same mus-
cles are the most challenging to differentiate; (iii) feature
scaling is an important step which enables for minimiz-
ing inter-participant feature differences; (iv) the results
regarding data oversampling or undersampling were in-
conclusive, as it improved the results in some cases (Table
1), but not in other cases (and Table 2); Finally, (v) expres-
sion duration, intensity, and head movements influence
the performance of the models for expression recogni-
tion and should be taken into account in the development
of facial expression recognition algorithms. These con-
clusions contribute to affect sensing in VR, which has
potential in symptom monitoring during VR-delivered
therapy for mental health disorders.
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