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Abstract  
With the development of technology, Unmanned Aerial Vehicles (UAVs) have become 
indispensable assistants in commercial activities and have gained popularity for personal 

use. They have found wide applications in many areas, such as photography and video 

shooting, logistics, military activities, geomorphology, etc. Also of particular relevance 
is the problem of identifying detected objects based on the information provided. The 

paper proposes an algorithm and designs an automated system for solving the problem of 

tracking and identifying drones using data from a radar station and a photo or video 
camera. Thus, a Kalman filter was implemented to localize "noisy" radar measurements 

and CNN for binary classification of input images. As a result, more than ten times 

closer to the true measurements than the "noisy" ones were achieved. Also, a 

corresponding model was trained for classification, with an accuracy of 92% according 
to the F1 measure. 
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1. Introduction 

The problem of effectively countering the illegal use of UAVs has become particularly relevant [1-

4]. After all, the drone manufacturing industry is actively developing, but there is no universal method 

of combat. The relative availability and ease of use of drones make them a convenient tool and 

potential illegal abuse. In many countries, particularly Ukraine [5], there are no clear requirements for 
purchasing and registering UAVs. In this regard, criminals can and do use the latter to transport 

contraband, illegal information gathering, surveillance, and terrorist acts. Hence the need for effective 

countermeasures. 
With the appearance of drones, the means of combating them appeared, as well as the UAVs 

themselves - first in the military and defense industry and later in the civilian sector. Several dozens 

of commercial solutions designed to counter the illegal use of drones have been proposed to date. 
Two main steps are distinguished in the fight against them. The first step is tracking. It consists of an 

identification step to determine the type of object detected (for example, a drone or a bird). If, as a 

result of the identification, the identified object carries a potential threat, then the UAV flight path is 

tracked, and the second step is taken - neutralization. There are three main approaches for 
neutralization: radio suppression, interception using UAVs, and various small arms [6]. Sometimes 

there is also a third step – tracking the operator. 

However, it should be understood that there is no perfect solution. After all, the UAV 
manufacturing industry is constantly developing, both hardware-wise and structurally. Also, the 

effectiveness of using specific means directly depends on the infrastructure and terrain relief of the 

protected area. 
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Today, there are a large number of UAV varieties. They differ both in terms of purpose and 
construction. However, there are still some similarities between them. Since this is an aircraft, it must 

have an engine (or several), the operation of which is accompanied by the release of noise and heat. 

The drone is controlled remotely using transfers of radio frequency signals.  

Modern location mechanisms are aimed at detecting the above features. There are four main types 
of drone monitoring equipment [6,7]: radar, optical, acoustic, and radio frequency. 

More than one of the above methods is often needed to track drones correctly. Birds can serve as 

an example of obstacles. Since it is a living organism, it emits heat. Also, when flying, the bird flaps 
its wings, which is accompanied by a sound. Which, in the case of optical-thermal and acoustic 

equipment, can be determined by the system as a UAV. No less critical are the topography and 

infrastructure of the area, which can make it difficult to use some methods. So, the city's noise will 
introduce many obstacles, practically making it impossible for the acoustic equipment to work 

properly. Therefore, complex systems using several sensors are used to avoid such ambiguities.  

Also, statistical analysis and artificial intelligence methods are widely used in modern solutions to 

improve the quality and automation of detection processes [8-10]. The main task is identifying 
detected objects based on the provided information. 

Therefore, our work aims to develop an algorithm to solve the problem of correctly identifying and 

tracking UAVs based on data received from radars and sensors. 
The object of the study is a software application for the correct tracking and identification of 

UAVs based on data from radars and sensors. 

The subject of research is methods and means of identification and tracking of drones. 

2. Analysis of literary sources 

In recent years, more and more research on this topic has appeared. Thus, in the article [11], an 

overview of the main methods of detecting and classifying drones using machine learning (ML) 

methods were carried out. Also, the authors considered the main means of probing and the advantages 

and disadvantages of using each of them. In particular, such as: 

 The problem of erroneous perception by radars of ground objects that are not drones (for 

example, birds). 

 The sensitivity of acoustic equipment to ambient noise, as well as the negative impact of wind 

and meteorological changes. 

 Optical systems are no less sensitive to meteorological factors, for example: dust, fog, rain. 

Changes in natural lighting during the day can also introduce inaccuracies into the work. 

 • The impossibility of detecting drones flying autonomously without any communication 

channels using the radio frequency method. 

The authors devoted the main part of the work to the review of identification methods. They 

distinguished two types of object identification: identification as a binary classification applied to 
determine which object is being observed (e.g., "drone" or "not a drone," "drone" or "bird"), and 

classification with constructional identification - hardware features of the object (determination of the 

type, parameters or model of the UAV). Although a large number of methods and approaches were 
considered in the work, their comparison is considered inappropriate. A quote from the text: "... most 

of the performed research is experimental, and the outcomes from different papers can hardly be 

compared. A general requirement-driven specification for the problem of drone detection and 

classification problem is still missing as well as reference datasets which would help evaluate 
different solutions". In summary, the authors highlight the absence of distance-based regression 

models and propose such an approach as a research area. 

In [12], a new approach to detecting drones based on data from radio frequency sensors is 
proposed. During the research, the authors concluded that the lower range of the signal (between the 

drone and the controller) is sufficient to be used as a feature vector for ML. However, the upper range 

also carries some information. This approach, combined with the XGBoost algorithm (an ensemble 

method based on decision trees) [13], allows you to significantly reduce the time spent on the 
calculation and obtain satisfactory accuracy. According to the results of the experiments, the use of 



XGBoost gave about an 8% increase in classification accuracy compared to DNN. In conclusion, it 
can be noted that this approach will be a good choice when creating rapid response systems. 

The next considered work [14] presents a CNN that uses a decision tree and an ensemble structure 

to obtain a complete characterization of a UAV. The result of the model is information about the 

orientation in space and design features of the drone. This approach made it possible to determine the 
parameters of the flight (such as the angle of inclination and course) and classify the body's different 

parts (engines, body, cameras). As a result of the conducted experiments, more than 90% accuracy 

was obtained, making it possible to use the model in working with real data. The authors propose to 
use the model in combination with existing object detection technologies, which will allow obtaining 

the full characteristics of the drone. 

Radar equipment is widely used to detect drones, but using radar measurements for classification 
is problematic. The study [15] proposed using spectrograms constructed from measurements obtained 

from radars to classify objects using a convolutional network further. The authors emphasize the need 

for a large amount of data to obtain satisfactory accuracy due to training. Therefore, a set of 

spectrogram images of drone and bird flights was created. The resulting images were used to train two 
models: GoogLeNet and CNN, of its architecture. According to the results of the experiments, 

accuracy was achieved – 99% and 94%, respectively. However, performance indicators for the latter 

were better. 
It can be said that two main stages are distinguished in combating the illegal use of drones - 

tracking and neutralization. There is a wide selection of equipment, but each has significant 

disadvantages. So, for example, radar measuring devices are considered the best solution for tracking. 
However, based on their information, it is impossible to unambiguously determine whether the 

detected object is a potential threat (for example, a bird may be detected). 

Over the past decade, significant progress has been made in image processing and computer 

vision. Today's technologies make it possible to detect objects in a video stream and image and 
classify them [16, 17]. These technologies can potentially be used in the given task. 

Therefore, the research task in this work is to develop an algorithm and design an automated 

system to solve the problem of tracking and identifying drones based on data receivers from radar and 
photo or video cameras. The developed software should process radar data and analyze images using 

artificial intelligence. 

3. Methods and means of research 

3.1. Input data 

The system developed in this paper uses data received from radar and camera. The information 

received from the radar may differ depending on the configuration features of the equipment. In the 
most trivial case, the data provided by the locator contains information about the speed, distance, and 

angle relative to the radar itself. For the possibility of further use in automated systems, this format 

requires calculations to determine the spatial coordinates of the observed objects. However, most 
modern radars implement this calculation mechanism with their hardware capabilities, so they return 

spatial geographic coordinates, speed, and accompanying information as output data, which is not 

considered within the scope of this study. 

The camera provides a digital image of the observed space. The data comes in the form of a file 
that contains a two-dimensional array of vectors. Each array element describes the image's 

corresponding pixel (color point). A pixel is represented as a vector whose elements correspond to a 

certain color space. The presented work uses the RGB (Red, Blue, Green) space, where each element 
of the three significant vectors represents the intensity of the corresponding color. 

Therefore, the input data are the spatial coordinates and speed of the observed object, which are 

received from the radar with a certain frequency (for example, every second), as well as the image 
received from the camera, which is presented in the form of a two-dimensional array of RGB vectors. 

3.2. Output data 



The data coming from the radar has some deviation from the "true." Therefore, for their further 
use, it is necessary to localize these trajectories to bring them closer to real indicators. 

Images are analyzed by AI methods to obtain useful information within the defined task. This 

study is a classification for object identification, i.e., the useful information is the determined type of 

the observed object. 
Therefore, the output data of the proposed system are localized spatial coordinates and information 

about the type of the observed object. 

3.3. Proposed algorithm 

As mentioned above, the input data sources are radar measurements and the image provided by the 
camera. Since this information arrives simultaneously and needs immediate processing, we consider 

these stages parallel in the proposed algorithm. 

The tracking procedure can be described as an iterative process. Probing by the locator occurs with 
a certain frequency, so we will consider each radar cycle an iteration. Data is sent from the radar to 

the system at each iteration (provided that an object is detected in the surveillance sector). They are 

transferred to the system component responsible for their processing, namely localization. In parallel 
with this, an image of the observed sector, which contains the detected object, is received from the 

camera. It is proposed to use the Kalman filter to solve the localization problem [18]. Object 

identification within this work's framework is reduced to a binary classification of the input image 

using convolutional neural networks (CNN) [19]. 
The recursive Kalman filter algorithm works in the "prediction-correction" cycle. The work begins 

with some assessment of the initial state 𝑥0, and error covariance matrices 𝑃0. The "prediction-

correction" format is applied cyclically at each stage of localization. The state vector is predicted from 
the dynamic state equation (1). 

 𝑥𝑡|𝑡−1 = 𝐹𝑡−1𝑥𝑡−1, (1) 

where, 𝑥𝑡|𝑡−1 – predicted state vector, 𝑥𝑡−1 – previous state estimation vector, 𝐹 – transition matrix 

between two states. It is worth noting that «t|t-1» is an abbreviated designation of the state at a 

discrete moment in time t, taking into account its previous state at a discrete moment in time t-1, that 
is, the system model adjusted in the previous step is used for prediction. 

Next, the error covariance matrix is calculated (2). 

 𝑃𝑡|𝑡−1 = 𝐹𝑡−1𝑃𝑡−1𝐹𝑡−1
𝑇 + 𝑄𝑡−1, (2) 

where, 𝑃𝑡|𝑡−1 – matrix of covariances of the predicted state error, 𝑃𝑡−1 – pre-estimated state error 

covariance matrix, and 𝑄 – process noise covariance matrix. Again, «t|t-1» indicates that this is the 

expected covariance matrix at  t based on the system model at  t-1. 

After obtaining the predicted values, the gain matrix 𝐾 is calculated in (3). 

 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)
−1, (3) 

where 𝐻 – transition matrix between state and measurement, and 𝑅 – measurement noise covariance. 

The Kalman filter calculates a gain matrix for each measurement that determines the effect of the 
input vector on the estimation of the system state. In other words, when a noisy measurement comes 

in, the transmission coefficient will trust its estimate more than the new inaccurate information. 

After calculation, the gain matrix 𝐾 is used to weight the measured and predicted values. Based on 

this, a new assessment of the state of the system is built in (4). 

 𝑥𝑡|𝑡 = 𝑥𝑡|𝑡−1 +𝐾𝑡(𝑧𝑡 − 𝐻𝑡𝑥𝑡|𝑡−1), (4) 

where 𝑧 – the input measurement at this point in time. 

Similarly, the state error covariance matrix is updated (see equation (5)). 

 𝑃𝑡|𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑡|𝑡−1, (5) 

where  𝐼 – identity matrix. 

In the presented work, CNN is used for binary classification of the detected object based on the 

input image. For practical use, CNN requires a preliminary training stage. The development of the 

classification module starts with the training of the model. Since this work solves the problem of 
binary classification of images, therefore, the dataset for training consists of two classes of images - 



drones and birds [20]. The selected set contains 826 images, of which 428 are drone images and 398 
are images. The images were premixed and divided into training and validation samples in the ratio of 

80% to 20%, respectively. Also, an annotation file was created for each of the samples, containing the 

names of the files and the classes to which the images belong. 

All input images are reduced to a given size (150x150), to save computing resources during further 
training. The principle of the scaling operation is similar to the blending layer, with an aggregation 

function applied to a certain neighborhood of pixels. The disadvantage is that this approach loses 

some information. 
Then, using the Python programming language and the Keras library, we created a CNN model, 

the architecture of which is shown in Figure 1. 

 
Figure 1: Structure of the model architecture CNN 

As you can see from Figure 1, the model consists of four folded layers (Conv2D), three unifying 

(MaxPooling2D), and two layers of perceptron (Dense). Also, at the intermediate stages, dropout 
regularization was added (Dropout). Dropout works by randomly disconnecting neurons and their 

respective connections. This regularization aims to prevent overtraining of the model, which is 

relevant in this case since the training set is quite small. 
Then the model is trained. The training process can be described as follows: a certain number of 

images are fed as input, and the network returns a prediction for each. Then the predictions are 

compared with the "true" values using a loss function. The loss function evaluates the correspondence 



of the obtained predictions to the true ones. Based on the results of the loss function, the model is 
adjusted. The process is repeated for the entire training set.  

The validation process is similar to training, but the model is not adjusted based on the loss 

function results. Validation is performed after each training epoch. 

4. Numerous experiments 

To generate a dataset that would simulate the measurements of the locator, we took the files of 

drone flight logs [21]. The flight logs contain time-sampled geographic coordinates of the drone, 
throughout the entire flight trajectory (see Figure 2). 

 

Figure 2: Three-dimensional visualization of the drone’s flight path 

The geolocation data of the logs are received at intervals of 0.2 seconds. To simulate radar 
measurements, records were selected at 1 second intervals. Then, "noise" was added to these data to 

simulate the radar measurement error. Noise, in this case, is a random number generated by a normal 

(Gaussian) distribution. For a random variable, the normal distribution is defined by the formula (6). 

 𝑝(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 , (6) 

where  𝜇 – arithmetic mean, 𝜎 – standard deviation. To generate noise: 𝜇 = 0, 𝜎 – permissible 

measurement error (since the radar equipment has a permissible measurement error specified in the 

documentation). On Figure 3 shows the generated data (blue dots) relative to the "true" data (red 

dashed line) in a certain sector. For convenience, only the longitude and latitude trajectory in a two-
dimensional coordinate system is shown. 



 

Figure 3: Flight path and radar measurements in a certain sector 

The above operation was performed for each flight log (3 in total). As a result, three files 

simulating radar measurements were obtained and will be used in further work for simulations and 

testing. 
On Figure 4 shows the localization result (green line) relative to the radar measurements(blue dots) 

and the “true” trajectory (red dotter line). 

 

Figure 4: Localization results relative to radar measurements and "true" trajectory 



Figure 4 is convenient for visualizing the results, but it is difficult to judge the filter's performance 
from the image. Therefore, for a more objective assessment, for each file with "noisy" radar 

measurements, we will find the root mean square error relative to the "true" trajectory. We will 

perform the same operation for the localized data, which will allow for further comparison in the 

"before-after" format. The results of the calculations are shown in Table 1. 

Table 1 
Results of calculating the root mean square error 

Flight log number Root mean square error 

«Noisy» measurements Localized measurements 

1 2.7× 10-8 6 × 10-9 
2 3.2× 10-8 5.1 × 10-9 
3 2.9 × 10-8 5.3× 10-9 

Table 1 shows that for localized data, the root mean square error is ten times lower than the error 

for "noisy" data. It should be noted that the measurements are presented in the form of geographic 

coordinates, and therefore so are the deviations. In this case, the root mean square error, when 

converted to the metric system, can be several meters. Therefore, the obtained localized data reflects a 
significant approximation to the true data, which can also be seen in Figure 4, where the green line 

describes the localized trajectory, and the red dashed line is the true trajectory. 

In this study, the model was trained for 90 epochs, resulting in a prediction accuracy of about 94%. 
Below, Figures 5 and 6 show plots of the loss function values against the accuracy estimates, 

respectively. Visualization of the dynamics of these indicators in relation to epochs allows us to assess 

the learning process. 

 

Figure 5: The value of the loss function at each of the epochs 

 



 
Figure 6: The value of the forecast estimate in each of the epochs 

 

Several metrics were used to evaluate accuracy, and the results for each of them are presented in 

Table 2. 

Table 2 
Estimates of class predictions by several metrics 

class 
Metric 

Precision Recall F1 

Dron 0.97 0.86 0.91 

Bird 0.88 0.98 0.93 

Figures 5 and 6 show plots of the loss and prediction function values at each epoch for the training 
and validation samples. Visualization of these curves is used to diagnose the learning process [22]. 

For example, from the graph of the loss function values, one can conclude how well the model is 

trained. In the case of undertraining or overtraining, the curves for the training and validation samples 
at the end of the training process are divergent (not converging - undertraining, diverging - 

overtraining), as can be seen from the above figures, in this case, the curves coincide, which indicates 

a normal course of the training process. 

Also, both figures show that the curves are "broken" throughout the training process. The reason 
for this is dropout regularization on the intermediate layers. However, as mentioned earlier, in this 

case, it is a necessity since the training data set is small. 

Next, let's analyze the metric scores for each class, which are presented in Table 2. The (Precision) 
score for the "drone" class is 97%, close to perfect. However, the (Recall) score is 86%. This 

difference may be due to inappropriate annotations or uninformative images in the training data set 

(e.g., images that do not contain the objects in question). In the case of the bird class, the situation is 
the opposite, with 88% accuracy and 98% completeness, which may indicate a lack of training data 

for this class. The absolute score for the F1 metric is 92%, which is satisfactory. 

5. Conclusions 

This paper proposes an algorithm to solve the problem of automated identification and tracking of 

drones using real-time data from radar and a camera. 



The article analyzes the existing problem and existing solutions in the field of drone tracking. 
Based on the review, a new conceptual model of drone tracking and identification is proposed, where 

the data sources are radar and a camera. Using the implemented Kalman filter, the trajectory tracked 

by the locator is localized by a limited number of parameters, namely, spatial coordinates. According 

to the results of the experiments, the output localized trajectory is more than ten times closer to the 
true one compared to the input "noisy" data. The detected object was also identified using the image 

provided by the camera. For this purpose, a CNN model for binary classification was developed. The 

model was trained on a small set of images of birds and drones. According to the experimental results, 
the model's accuracy is 92%.  

The developed system can serve as a starting point for creating a full-fledged tool to counteract the 

misuse of drones. The main directions for further research are: solving the problem of tracking and 
identifying several objects in the monitored sector simultaneously; modernization of the classifier to 

identify the type or model of the detected drone. 
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