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Abstract  
Accurate assessment of the Lidar position has always been a fundamental task in any 
navigation system: localization, dynamic map construction, and path planning. In mobile 

robotics, it is usually essential for the robot to know where it is in a known or unknown 

environment. However, processing the large amount of data obtained from LiDAR 
requires a lot of time and large computing resources. Therefore, optimizing the Lidar 

localization problem to obtain a high-quality real-time solution is becoming increasingly 

relevant. The paper proposes an algorithm for optimizing the computational process of 
determining the Lidar position. The method is based on CUDA technology and uses 

graphics processors. This approach is evaluated in comparison with the use of OpenMP 

technology. Hence, based on the proposed algorithm, it was possible to obtain an 

acceleration of 19.8. It is four times higher than the acceleration obtained using OpenMP 
technology. At the same time, the error in determining the Lidar position was 0.001. 
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1. Introduction 

Autonomous localization and environment perception are essential for a mobile robot to perform 

high-level tasks. As for robot localization, odometry, and inertial sensors cannot avoid the problem of 

error accumulation. Therefore, exteroceptive sensors must be used to achieve effective localization 

and mapping. Among various external sensors, two-dimensional laser sensors can provide accurate 
and reliable environmental information with a wide viewing angle. They are widely used in 

perceptual tasks, including localization [1-2], mapping, and place recognition [3]. 

The problem of determining the Lidar position with optimal accuracy and in an acceptable time is 
relevant in various fields of application. Examples include Smart House (robot vacuum cleaners), 

vehicle route planning, dynamic map construction, collision avoidance, atmospheric research, 

cartography, economic efficiency management [4], etc. As known [5, 6], the Particle Filter algorithm 
solves the problem above. However, the number of reading iterations after each movement is 

significant if the Lidar moves many times in space. Accordingly, the execution time of this algorithm 

increases several times. That is, it is impossible to decide in real-time. One of the options for solving 

this problem is the development of a parallel algorithm [7] and its optimization using CUDA 
technology [8] and the graphics processors of the NVIDIA video card. Massively parallel hardware 

can perform significantly more operations per second than a CPU at a fairly similar cost, resulting in a 

performance increase of 50 or more in situations that allow it. CUDA is an SMT parallelism 
paradigm. It uses state-of-the-art GPU architecture to provide parallelism. A GPU contains (blocks 

(set of cores)) that operate on the same block-step instruction (this is similar to the SIMD model). But 
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the amount of shared memory and global memory in the GPU is limited. One of the advantages of 
CUDA is that a general-purpose language is available, rather than having to use pixel and vertex 

shaders to emulate general-purpose computers. 

The essence of the Lidar localization problem is that we may not be given its initial coordinate, but 

only points that characterize successive corners of our room. Also, with each step, the measurements 
of the Lidar to the room's walls (the Lidar rotates with a certain degree) and the vector of its 

movement after the performed actions are specified. In general terms, this algorithm is a successor of 

Monte Carlo methods [9, 10].  
Therefore, the aim of this work is to study and optimize the Particle Filter algorithm using CUDA 

technologies. 

2. Analysis of literary sources 

At the moment, there is a significant number of literary sources dedicated to our problem. A 
review of such sources is an important stage of research, as it allows you to familiarize yourself with 

the state of scientific research in this area and determine possible ways of further development and 

improvement of algorithms. 
Nowadays, various issues in robotics are increasingly being investigated [11-13]. One of the most 

interesting problem is determining the current Lidar position. In production and everyday life, this 

task can be widely used as a model in many fields, such as vehicle route planning, machine learning, 

and economic efficiency management. 
The article [14] is devoted to developing an obstacle detection algorithm based on 2D LiDAR 

sensor data. The authors proposed a parallelization method using thread-safe collections and an 

efficient multi-threaded DBSCAN algorithm. 
The article [15] provides a detailed analysis of the proposed parallelization algorithm for solving 

the Lidar localization problem using a genetic algorithm. The OpenMP parallel computing technology 

is used to optimize the computing process in order to speed it up and provide real-time results. Also, 
the computational complexity of the sequential algorithm is significantly reduced. Many numerical 

experiments were conducted using the multi-core architecture of modern computers. As a result, it 

was possible to speed up the computing process by approximately eight times and achieve an 

efficiency of 0.97. The notable difference in the execution time of the sequential and parallel 
algorithms allows increasing the number of Lidar measurements and iterations, which is relevant 

when modeling various robotics tasks. The obtained results can be significantly improved by choosing 

a computing system with more than eight cores.  
Mochurad et al. proposed a parallelization method to speed up an obstacle detection algorithm 

based on 2D LiDAR sensor data while processing big data [16]. The result is an algorithm that finds 

obstacles and objects with high accuracy and speed. So, Cluster Homogeneity = 86% and Cluster 

Completeness = 91%. The authors also investigated the relationship between the selected 
hyperparameters' values and the algorithm's efficiency. 

Articles [17-20] consider the comparison of different parallel programming frameworks, such as 

MPI, OpenMP, OpenCL, and CUDA. In particular, the article [16] studied parallel programming on 
computers with distributed and shared memory. The research is conducted using test cases that show 

the need for different approaches to parallel programming. Test cases are implemented in Chapel and 

Julia, and MPI and OpenMP are added to C. It is shown that both languages, Chapel and Julia, 
represent a viable alternative to Fortran and C/C++, supplemented by parallel programming 

frameworks. With their use, the programmer's efficiency is significantly improved, and the speed of 

the programs is not considerably affected.  

The authors in [21] consider the possibility of autonomous navigation, where the particle filter 
algorithm was applied to obtain the most accurate position of the car. Here, GPS and Lidar were used 

for localization. The proposed system provides autonomous control in an unfamiliar environment. It 

increases localization accuracy by solving the error accumulation problem in an unconstrained 
environment. The particle filter algorithm showed excellent accuracy, with a trajectory error of about 

0.094 cm.  



The authors of the article [22] show the use of this algorithm for better space orientation of a robot 
engaged in household chores. It was equipped with a 2D Lidar and an RGB camera for environmental 

perception. 

In [23], a new method of genetic algorithm parallelization for solving the Traveling Salesman 

Problem (TSP) using the CUDA algorithm is presented. The solution provides route information, 
excluding all services autonomous vehicles require in the cloud implementation of intelligent 

transportation systems. 

The authors of the article [24] presented an effective implementation of the extended Kalman filter 
for the simultaneous localization and mapping algorithm on a multiprocessor architecture. The overall 

accuracy of the algorithm depends on the number of reference points in the state vector and the 

matched observations. 
After conducting a detailed analysis of the problem considered in our work, it was noted that no 

one has optimized the Particle Filter algorithm using CUDA technologies. 

3. Methods and means of research 

In general, the problem of Lidar localization can be described as follows. A car in the room can 

move in any direction with a specific deviation and take measurements of the surrounding 

environment. Each subsequent measurement differs in angle from the previous one. It is crucial to 

determine the Lidar position in the room in a few steps and with optimal accuracy. 
Articles [25-298] have shown in detail how this algorithm works, where it can be applied, and how 

it can be improved by increasing the weight of particles by adding Kalman-filtered global navigation 

satellite system (GNSS) information [30]. 
Let's consider the algorithm in more detail. The Lidar successively performs two actions. It scans 

the space around itself and moves in space on a vector x, y with a certain error. 

It is also important whether the initial position of the Lidar is specified. If so, then the array of all 

particles can be filled with these position coordinates. If not, we need to generate some given number 

of particles that will be placed randomly in the room. This is done using a Ray Tracing algorithm. The 
idea of the algorithm is to count the number of intersections of the room walls with a ray emitted from 

a point horizontally to the right. If their number is even, then the point does not lie in this space. The 

point is suitable if the intersection number is odd (see Figure 1). 
 

 
a      b 

 

Figure 1: a) – example of a point that lies in the room but the number of intersections is odd;  
b) – example of a point that does not lie in the room, and the number of intersections is even 

 

First, we set the coordinates of the vertices of our room. After that, depending on whether the 

initial position is specified, we fill the array with random particles or particles with the initial position 

coordinates.  
The next step will be a Lidar scan of the surrounding space (see Figure 2). The scan takes place k 

times, starting the movement horizontally and to the right, and each measurement differs from the 

previous one by an angle that changes by 360/k degrees. This way, we get an array with the distances 

from the Lidar to the room's walls with a given ray launch angle. 



 
Figure 2: An example of the rays emitted by the Lidar, scanning the space around it 

 

Next, we calculate the weights for each particle. The calculation is as follows: 

1. Take the first particle from the array. 
2. Calculate the angle relative to the horizontal, the final coordinate of the end of the 

segment, which starts in the particle coordinates and has the ray length from the array. 

1 cosx x l   , 1 siny y l   , where   – ray angle, and l  – ray length. 

3. Calculate the perpendicular length lowered from the end of the segment to the nearest 

room wall. 
4. Add the square of the length of the perpendicular to the temporary variable. 

5. Repeat steps 2-4 for each ray in the array. 

6. The weight of the particle is calculated according to the normal distribution 
formula (1). 

 

𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 , 
(1) 

 

where   – mathematical expectation, 𝜎 – standard deviation that are set by Lidar parameters. 

7. Repeat steps 1-6 for each particle.  

The next step is to repopulate the particles based on their weights. This procedure is divided into 

four stages: 
The first stage is to add up all the values of particle weights. 

The second stage is to fill the new array of weights with values equal to 𝑁𝑒𝑤𝑊[𝑖] =
𝑊[𝑖]

𝑠
, where 

 𝑠 – sum of all values. Thus, we normalize them so that their sum is equal to 1. 

The third stage is to fill in an array that has a value 𝑝𝑟𝑒𝑓𝑊[𝑖] = 𝑁𝑒𝑤𝑊[𝑖] + 𝑝𝑟𝑒𝑓𝑊[𝑖 − 1]. In 

this way, we will get an array of weight intervals. 

The fourth stage is the generation of random value from 0 to 1. Then we need to determine which 

range in the weight array the number belongs to. The index of that range would correspond to the 
particle that should be created. 

The complexity of the algorithm described above can be calculated as O(n*(k+r)*q), where 

 n – the number of Lidar movement iterations; 

 k – the number of measurements at every step; 

 r – the number of walls in the room; 

 q – the number of generated particles. 

As a result, it grows very rapidly. One of the methods of optimizing this algorithm can be the 
parallelization of certain particles. For the most part, the most time is spent on the calculation of 

weights and repopulation, so these stages of the algorithm are parallelized. Thus, the complexity of 

the algorithm should be significantly reduced. 

To reduce the implementation time and increase the algorithm's efficiency, we will compare the 
algorithm execution time to a different number of processor threads using OpenMP technology. We 

will also make time measurements on the graphics processor using CUDA technology [31]. 



As a result, the #pragma omp parallel method was used. It tells the compiler that the code below 
uses inter-thread transmission and provides safe thread processing, if threads exchange information. 

The schedule(type[, chunk]) method was also used, specifying how the cycle iterations are distributed 

between threads. Synchronization in this case is implicit, and is performed in two situations: 

1. At the end of the parallel region. OpenMP relies on fork-join. When the program starts, one 
thread (main thread) is created. When we create a parallel section using #pragma omp 

parallel, several threads (fork) are created. These threads will work in parallel and, at the end 

of the parallel section, will be destroyed (join). So, at the end of the parallel section, we have 
synchronization and know precisely the status of all threads (they have finished their work). 

2. There is an implicit barrier at the end of some OpenMP designs, such as #pragma omp for. 

Thread can only continue to work once all the threads reach the barrier. It is essential to know 
exactly what work different threads have done. 

For CUDA technology, some weight calculation function is defined as __global__, which 

indicates that this code passage will be performed on the graphics processor. Additionally, 

calcweights() method will cause auxiliary functions, which will be defined as __device__. It means 
that only a graphics processor can cause and perform such functions. Numerous experiments are 

conducted on a graphics card with four multi-processor blocks that can perform 512 threads.   The 

function for determining the block size is cudaOccupancyMaxPotentialBlockSize(), which in a 
heuristic manner calculates the block size that reaches maximum occupancy. The thread group is 

called the CUDA block. Each CUDA block is performed by one multi-processor (MP) and cannot be 

transferred to other multi-processors in GPU. One multi-processor can perform several simultaneous 
CUDA blocks, depending on the resources required by CUDA blocks. Each core is performed on one 

device, and CUDA supports several cores on one device at a time. In this way, we call calcweights() 

function, passing gridSize and blockSize as parameters. Here blockSize is the number of threads on 

the block determined by the cudaOccupancyMaxPotentialBlockSize() function. A gridSize is the 
number of blocks we calculate by the formula (2). 

 

𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒 = (𝑁 + 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 − 1)/𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, (2) 
 
where N – the size of the array (in our case it is the number of particles we will generate). 

4. Numerous experiments 

This section will feature tables and figures showing the program's time, speed, and efficiency with 
the different number of threads. The input was taken from Algotester [32]. The program was tested 

for four different input variations [33], with varying room shapes, the number of walls, iterations of 

Lidar, and the number of measurements at every step. 
3000 (number of particles) was selected for the most accurate localization q. Table 1 presents the 

execution time of a sequential and proposed parallel algorithm based on OpenMP technology in a 

variation of the threads number (two, four, and eight) and the values obtained by the acceleration and 

efficiency of our parallelization without the distribution between threads. k/n/m – the input data 
described above. ts – the time of performing a sequential algorithm, tp1 – the time of execution of the 

parallel algorithm based on OpenMP technology, S – acceleration, and E – efficiency. Table 2 

presents the same results on the basis of CUDA technology and a graphics processor. Here tp2 – the 
time of the parallel algorithm based on CUDA technology. 

 

Table 1 
Results of program execution based on OpenMP technology 

k/n/m ts , ms 
2 threads 4 threads 8 threads 

tp1, ms S E tp1, ms S E tp1, ms S E 

36/6/4 273.9 139.4 1.96 0.98 106.3 2.57 0.64 90.8 3.021 0.37 



36/15/8 960.6 491.3 1.95 0.97 327.1 2.93 0.74 293.2 3.28 0.40 

100/15/8 2102.4 1055.4 1.99 0.99 735.2 2.85 0.71 541.8 3.88 0.48 

180/29/27 29414.8 15040.4 1.95 0.97 8231.9 3.57 0.89 5245 5.60 0.70 

 

Analyzing the results of Table 1, we see that when performing an algorithm with two threads, 
acceleration was obtained close to two, and efficiency also goes to one. Since numerous experiments 

were conducted on a four-core processor, we have received reliable results. Acceleration with four 

threads was approximately 3.5, and efficiency – 0.89. When using eight threads, it was possible to 
improve the acceleration and bring it closer to 5.6. However, the efficiency decreased significantly 

and was 0.7. All this is because the number of threads in the last two cases exceeds the number of 

cores in the multi-core computer system. The results can be significantly improved by choosing 

computers with more cores. Still, the results obtained should have the same trend between the number 
of cores and the variation of the threads number. 

 

Table 2 
Results of program execution based on СUDA technology 

k/n/m ts, ms 
Graphics processor 

tp2, ms tp2, ms 

36/6/4 273.9 63.1 4.340729 

36/15/8 960.6 94.8 10.13291 

100/15/8 2102.4 113.2 18.57244 

180/29/27 29414.8 1485.6 19.79995 

 
In Table 2, acceleration is close to 20. It is known that when using CUDA technology, the 

performance is not calculated. Therefore, the proposed parallel algorithm has improved about four 

times the acceleration based on CUDA technology compared to OpenMP technology. The results of 

Tables 1 and Table 2 for visual analysis are presented in Figure 1 and diagrams (see Figure 2 and 
Figure 3). 

Therefore, to objectively evaluate the results, you need to consider the computer's capabilities on 

which the experiments were conducted. In particular, in our case, the program was launched on the 
computer with the characteristics specified in Table 3. 

 

Table 3 
The configuration of the computer on which the numerical experiments were performed 

Processor Intel Core i5-8250 

Base frequency of the 
processo 

1.8 GHz 

RAM 32 GB 

Kernels 4 

Logical processors 8 

System type 64-bit) 

Video card type Discrete NVIDIA(940MX) 

 



 

 

Figure 1: Execution time of the sequential algorithm (1), parallel based on OpenMP technology for 
different number of threads (2, 4 and 8), and parallel based on CUDA technology (m) 

 

 

Figure 2: Acceleration obtained based on OpenMP technology for different number of threads (2, 4 
and 8) and based on CUDA technology (m) 

 



 

Figure 3: Efficiency obtained based on OpenMP technology for different number of threads (2, 4 and 
8) and based on CUDA technology (m) 

 
The OpenMP library was used to implement a parallel algorithm for determining the current Lidar 

position and CUDA technology to execute a specific part of the code on the graphics processor. After 

analyzing the results, the following conclusions can be made. The time with the small amount of input 

data is not significantly different. 
Acceleration becomes more noticeable with large input data. Looking at the results, it is noticeable 

that the time of the sequential algorithm and the time obtained by paralleling the algorithm is 

exceptionally distinct. As a result, it was achieved an efficiency of ~ 0.99 (when accelerating the 
algorithm using two threads) and an acceleration of ~ 19.8 (when performing the code on the graphics 

processor). The error of determining the position was 0.001. 

From the results, we can see that the speed of the algorithm parallelized on the GPU is higher than 

that of the usual sequential one. As the parametric complexity of the problem increased, the difference 
in execution time grew rapidly, due to the reduction of the total complexity of the algorithm (taking 

into account the synchronization time) and the parallel use of CUDA microkernels for computational 

operations, as expected. 

5. Conclusions 

Determining the current Lidar position is a task that requires taking into account many factors, 

and, therefore, requires a lot of time to execute the algorithm. In our work, this problem was 
addressed by parallelizing calculations on a graphics processor using CUDA technology, thanks to 

which we managed to consistently obtain significantly better execution time indicators (with an 

increase in the number of computational loads) than in the sequential implementation of the algorithm 
on a central processor. 

So, this paper proposes and investigates the parallel algorithm for determining the current Lidar 

position using CUDA technologies. The results of using OpenMP technology are also compared. As a 
result, it was possible to speed up the process about twice times and achieve an efficiency of 0.99. 

The algorithm is accelerated almost four times, and an efficiency of 0.98 was obtained. The 

acceleration reached approximately 19.8 by using CUDA technology for parallel programming. Better 



results can be achieved in the future based on the proposed parallel algorithm using more powerful 
computing systems. 

Prospects for the further development of this study are the application of the algorithm proposed in 

the work in the case of 3D Lidar [34, 35]. 
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