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Abstract  
In many fields, from finance to healthcare to engineering, there is a growing need to monitor 

and analyze large and complex multivariate time series. These time series often contain critical 

information that can be used to improve decision-making and optimize system performance. 

However, these time series can also be noisy and subject to various forms of interference, 

making it difficult to extract meaningful insights. One important challenge is identifying the 

moments when the underlying process changes, also known as changepoints. Detecting these 

changepoints in real-time is crucial for timely intervention and improved outcomes. In this 

paper, we explore the use of Fisher's linear discriminant and Petunin statistics for detecting 

changepoints in multivariate time series. We show how this approach can be applied to 

computer modeling and intelligent systems to improve the accuracy and efficiency of decision-

making in a wide range of fields. 
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1. Introduction 

Automatic systems and artificial intelligence can be used to recognize changepoints in 

multidimensional time series, providing valuable opportunities in various fields such as medicine, 

engineering, economics, and cybersecurity. This can help optimize the allocation of human resources, 

allowing them to focus on management and critical issues that affect people's lives. Nuclear power 

plants serve as an important example of the responsible use of computer modeling and intelligent 

systems. Safety is crucial in the design, use, economics, and licensing of such energy sources. To 

prevent and mitigate the consequences of accidents, it is essential to ensure the integrity and operability 

of vital elements within nuclear power plants. Designers have historically incorporated redundant and 

diverse safety features into these plants to provide reliability, ensuring that the health and safety of 

workers and the public can be protected with a high level of confidence even in abnormal and unplanned 

situations.  

To be practical, a method should possess several characteristics, including: 

1. High precision to minimize false negative and false positive outcomes. 

2. Robustness to withstand individual outlying data points that may skew the entire data series and 

generate false changepoints. 

3. Insensitivity to underlying distributions to maximize its applicability across different domains, 

scenarios, and objects. 

4. Low computational cost to enable real-time processing without excessive resource utilization or 

server overload. 

5. Optimal sensitivity that is neither too high to detect insignificant changes nor too low to miss 

critical events, such as nuclear reactor meltdowns or medical emergencies. 

This paper will introduce a novel method for detecting changepoints in multivariate time series, 

which is based on a metric developed in a previous study [1]. This new method has been shown to 
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outperform the Kolmogorov-Smirnov and Wilcoxon statistics, as demonstrated in a recent study [2]. 

The paper will also discuss the potential applications of this method in the field of computer modeling 

and intelligent systems, specifically in the area of medicine. Section 2.1 will describe the algorithm 

used to calculate the Petunin statistic and its properties, while section 2.2 will discuss the algorithm for 

constructing the Fisher linear discriminant. Section 2.3 will provide an overview of the current state of 

research on detecting changepoints in multivariate time series. Section 3.1 will present the results of 

various numerical experiments involving different distributions. 

Through a series of experiments and tests, we demonstrate the strength and effectiveness of our 

method, showing that it is capable of producing good results. Overall, we believe that our method 

represents a step forward in scientific research, offering a truly unique and innovative approach to 

solving some of the most challenging problems of our time. We hope that our work will inspire others 

to explore new and unconventional methods, leading to even more groundbreaking discoveries in the 

future. 

2. Theoretical part 

This chapter provides a comprehensive overview of the existing literature, as well as the statistical 

tools, namely Petunin’s statistic and Fisher's linear discriminant analysis, that will be used in this study. 

This paper presents novel theoretical results that combine Fisher's linear discriminant analysis and 

Petunin’s statistic for data analysis in our topic. This is the first study to use these two statistical tools 

in combination for analyzing data and our results demonstrate the unique benefits of this approach. 

2.1. Petunin’s statistics 

Yuriy Petunin, a mathematician from Ukraine, introduced the p-statistic, which measures the 

closeness between two samples. The p-statistic is employed to test the hypothesis that the distribution 

functions of two samples are identical. 

Let us consider two general populations 𝐺 and 𝐺′ and corresponding distribution functions 𝐹𝐺 and 

𝐹𝐺′.  

Let there be two samples 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛) ∈ 𝐺 and 𝑥′ = (𝑥1′, 𝑥2′, … 𝑥𝑚′) ∈ 𝐺′, and 𝑥(1), ≤ 𝑥(2) ≤

𝑥(3)  … ≤  𝑥(𝑛) and 𝑥(1)
′ ≤ 𝑥(2)

′ ≤ 𝑥(3)
′  … ≤  𝑥(𝑚)

′  - corresponding ordinal statistics and it is necessary 

to determine whether they belong to the same distributions. Suppose that 𝐹𝐺(𝑢) = 𝐹𝐺′(𝑢), then 

𝑃 (𝐴𝑖𝑗
(𝑘)

) = 𝑃 (𝑥𝑘
′ ∈ (𝑥(𝑖), 𝑥(𝑗))) = 𝑝𝑖𝑗

(𝑛)
= 

𝑗 −  𝑖

𝑛 + 1
  

If we have a sample 𝑥′ ∈ (𝑥(1)
′ , 𝑥(2)

′ , 𝑥(3)
′ , … , 𝑥(𝑚)

′ ), we can find the frequency ℎ𝑖𝑗 random event 𝐴𝑖𝑗 

and confidence intervals (Δ𝑖𝑗
(1)

, Δ𝑖𝑗
(2)

) for probability 𝑝𝑖𝑗 at a given level of significance 𝛽, i.e 

𝐵 = {𝑝𝑖𝑗 ∈ (Δ𝑖𝑗
(1)

, Δ𝑖𝑗
(2)

)} , 𝑝(𝐵) = 1 − 𝛽  
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Δ𝑖𝑗
(1)

=
ℎ𝑖𝑗

(𝑛)
𝑛 +

𝑔2

2 − 𝑔√ℎ𝑖𝑗
(𝑛)

(1 − ℎ𝑖𝑗
(𝑛)

)𝑛 +
𝑔2

4

𝑛 + 𝑔2
 

 

Δ𝑖𝑗
(2)

=
ℎ𝑖𝑗

(𝑛)
𝑛 +

𝑔2

2 + 𝑔√ℎ𝑖𝑗
(𝑛)

(1 − ℎ𝑖𝑗
(𝑛)

) 𝑛 +
𝑔2

4

𝑛 + 𝑔2

 

Assuming 𝜙(𝑔) = 1 −
𝛽

2
 (𝜙(𝑔) where 𝜙(𝑔) is the normal distribution density, we can determine 

the significance level of the confidence interval 𝐼𝑖𝑗
(𝑛,𝑚)

= (Δ𝑖𝑗
(1)

, Δ𝑖𝑗
(2)

), using the value of 𝑔. As per the 

3𝜎 rule [5], at 𝑔 = 3, the significance level of this interval is no more than 0.05. Let 𝑁 be the total 

number of confidence intervals 𝐼𝑖𝑗 = (Δij
(1)

, Δij
(2)

), where 𝑁 =
𝑛(𝑛−1)

2
. We define 𝐿 as the number of 



intervals 𝐼𝑖𝑗 that contain the probability 𝑝𝑖𝑗
(𝑛)

. The p-statistics, ℎ(𝑛) =
𝐿

𝑁
, is a measure of closeness 

𝜌(𝑥, 𝑥′) between samples 𝑥 and 𝑥′. By substituting the obtained value of ℎ into the formula for 

calculating confidence intervals, we obtain the confidence interval 𝐼 = (Δ(1), Δ(2)) to test the hypothesis 

𝐻 with an approximate significance level of 0.05 [1]. 

2.2. Fisher’s linear discriminant 

Fisher's linear discriminant and LDA (Linear discriminant analysis) are terms that are often used 

interchangeably, but Fisher's original paper [3] describes a discriminant that differs slightly from LDA. 

Fisher's method does not rely on some of the assumptions of LDA, such as classes with normal 

distributions or equal class covariances. 

Consider two classes of observations with means 𝜇0⃗⃗⃗⃗ , 𝜇1⃗⃗⃗⃗  and covariances Σ0, Σ1. If we use the linear 

combination of features �⃗⃗� ⋅ 𝑥 , the means of the resulting distribution will be �⃗⃗� ⋅ 𝜇𝑖⃗⃗  ⃗, and the variances 

will be �⃗⃗� 𝑇Σ𝑖�⃗⃗�  for 𝑖 = 0,1. Fisher defined the separation between these two distributions to be the ratio 

of the variance between the classes to the variance within the classes: 

𝑆 =
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 =

(�⃗⃗� ⋅ 𝜇𝑖⃗⃗  ⃗ − �⃗⃗� ⋅ 𝜇0⃗⃗⃗⃗ )2

�⃗⃗� 𝑇Σ1�⃗⃗� + �⃗⃗� 𝑇Σ0�⃗⃗� 
=

(�⃗⃗� ⋅ (𝜇𝑖⃗⃗  ⃗ − 𝜇0⃗⃗⃗⃗ ))
2

�⃗⃗� 𝑇(Σ0 + Σ1)�⃗⃗� 
 

The measure described here is a way to evaluate the effectiveness of class labelling by comparing 

the separation between two sets of observations to the variance within each set. The maximum 

separation is achieved when a certain linear combination of features is used, with the vector representing 

the normal to the discriminant hyperplane.  

�⃗⃗� ∝ (Σ0 + Σ1)
−1(𝜇𝑖⃗⃗  ⃗ − 𝜇0⃗⃗⃗⃗ ) 

In a two-dimensional problem, this hyperplane is represented by a line that is perpendicular to this 

vector. The data points are then projected onto this hyperplane, and a threshold is chosen based on 

analysis of the one-dimensional distribution of the projections. One possible way to set this threshold 

is by placing it between the projections of the means of the two sets of observations.  

𝑐 = �⃗⃗� ⋅
1

2
(𝜇0⃗⃗⃗⃗ + 𝜇1⃗⃗⃗⃗ ) =

1

2
𝜇1⃗⃗⃗⃗ 

𝑇
Σ1

−1𝜇1⃗⃗⃗⃗ −
1

2
𝜇0⃗⃗⃗⃗ 

𝑇
Σ0

−1𝜇0⃗⃗⃗⃗  

The value of the parameter c in the threshold condition �⃗⃗� ⋅ 𝑥 > 𝑐 can be explicitly determined in 

this case. It should be noted that Fisher's original discriminant differs slightly from LDA in terms of the 

assumptions it makes about the classes being normally distributed or having equal covariances. 

2.3. Related works 

There are numerous approaches to detection of changepoints in multidimensional time series of 

random values. A changepoint of a time series is such point where values of time series have different 

distribution that before and after that point. Methods for detection changepoints in multidimensional 

time series can be classified into online and offline algorithms. Online algorithms work on portion of 

data in time, but offline algorithms work on completed sets of data. Article [6] provided a 

comprehensive review of offline methods for changepoint detection. For online algorithms, we aim to 

consider a method that is independent of initial distributions. 

The article [7] proposes a novel approach for discriminant analysis, called Kernel Fisher 

Discriminant, which shows competitive performance compared to other classification techniques and 

has potential for further extensions in multi-class discriminants and generalization error bounds. 

Increasing of dimension can slow down computations. Article [8] discussed application of 

divergence measures to detect a changepoint in a time series. Changepoint detection can be performed 

in different ways, such as detection of a changepoint in time series or localization of its coordinates. 

Article [9] focused on detecting a changepoint, but their method has not high accuracy in localization. 

Article [10] proposed a Bayesian method with linear computational complexity, but its accuracy is 

insufficient. Article [11] developed an effective convex network clustering algorithm, but it is 

computationally complex. The article [12] proposes a change-point based control chart for monitoring 

sparse changes in high-dimensional mean vector in HDLSS scenarios, which is robust to correlation, 



non-normality, and heteroscedasticity and shows efficient detection of large sparse shifts with accurate 

estimation of the change-point and potential OC variables, as shown by experimentation and a real case 

study. 

To process online data, identify outliers without restricted assumptions about the data distribution, 

we will examine papers that consider our problem from the same point of view. Articles [13] and [14] 

developed a Bayesian method for exploring geographical data. Article [15] considered algorithms for 

exponential models only, while article [16] requires information about type of distribution to increase 

the accuracy of their method. Article [17] made assumptions on distribution to decrease computational 

complexity. Article [18] also required prior assumptions about the data. Pre-processing the data can 

increase the precision of changepoint detection in multivariate time series [19]. Articles [20] and [21] 

proposed Bayesian methods for segmenting multivariate time series with implicit examination of a 

dependency structure.  

In the study by [22], an algorithm was examined for streaming data, which relied on a massive 

matrix that was contingent on the size of the original data space. Comparable techniques were explored 

in a different research paper by Romano and others in [23].  

The Petuninʼs statistics is a measure of distance between two distributions, which can be used to 

detect a changepoint in a time series. The proposed algorithm is based on this statistic and has the 

following properties: 

1. Stability: The algorithm is designed to be stable over time, meaning that it can accurately detect 

changepoints even when underlying distribution of data changes over time. 

2. High accuracy: The Petuninʼs statistics is a robust measure of distance between distributions. 

It allows accurate detection of changepoints even in the presence of outliers or other noise in data. 

3. Speed: The algorithm is designed to be computationally efficient, allowing for real-time 

processing of streaming data. 

4. Independence from basic distributions: The algorithm does not require any assumptions or prior 

knowledge about the underlying distribution of the data, making it applicable to a wide range of time 

series data. 

In summary, the proposed algorithm based on Petuninʼs statistic offers a stable, accurate, and 

computationally efficient method for detecting changepoints in time series data, without requiring any 

specific assumptions about the underlying distribution of data. 

3. Practice part 

In this chapter, we present a method for detecting changepoints in time series data and conduct 

several numerical experiments to evaluate its performance with different distributions. 

Our method is based on a combination of statistical tools, including Petunin’s statistic and Fisher's 

linear discriminant analysis. By using these tools in combination, we can identify changepoints in time 

series data with high accuracy. 

The purpose of our experiments is to demonstrate the accuracy of the following algorithm for a 

stationary time series, which should find the first changepoint and test the homogeneity hypothesis. 

At the beginning we take 𝑤𝑖𝑑𝑡ℎ and designate the elements 𝑥1, … , 𝑥𝑤𝑖𝑑𝑡ℎ - starting ones, with which 

we will continue to work using the sliding window method. When we have a sample 

(𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑤𝑖𝑑𝑡ℎ), we do the following with it: 

 Building a linear Fisher discriminant for samples (𝑥1, 𝑥2, … , 𝑥𝑤𝑖𝑑𝑡ℎ) and 

(𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑤𝑖𝑑𝑡ℎ) and find the projections on the line. 

 Rotate the resulting straight line so that only one coordinate remains, and make the rest the 

same. Getting projections (𝑝1, 𝑝2, … , 𝑝𝑤𝑖𝑑𝑡ℎ) and (𝑝𝑖+1, 𝑝𝑖+2, … , 𝑝𝑖+𝑤𝑖𝑑𝑡ℎ) 
 Calculate the Petunin’s statistics 𝑝𝑠𝑡𝑎𝑡 for the resulting sets of projections 

 If 𝑝𝑠𝑡𝑎𝑡 ≥ 0.95, then we say that the new sample has the same distribution as the original one, 

otherwise we say that the other and shift the initial sample to position (𝑝𝑖+𝑤𝑖𝑑𝑡ℎ+1, … , 𝑝𝑖+2⋅𝑤𝑖𝑑𝑡ℎ). 
 Shifting our window one position to the right and start the algorithm from the beginning. We 

do this until all the data is gone.  

If sample after element 𝑥𝑛 become inhomogeneous, then the point 𝑥𝑛+1 regarded as a changepoint. 



To demonstrate how the algorithm works, we take a series of length 𝑁 = 400 and divide it into 4 

equal intervals with different distributions. Then we run our algorithm 100 times and average the values 

of Petunin's statistics (P statistics), after which we display the obtained values in two colors: blue is not 

less than 0.95, that is, for those samples that have the same distribution as the original and red less than 

0.95 - having a different distribution. 

For each experiment, we calculated five measures of error: mean absolute error (MAE), mean 

squared error (MSE), mean squared deviation (MSD), root mean squared error (RMSE), and normalized 

root mean squared error (NRMSE). To demonstrate the effectiveness of the described algorithm, we 

will rely on the latter value. As is well known, if NRSME > 0.5 the results can be considered as random. 

If a NRMSE is close to 0, then the results are considered good. 

We aim to conduct a numerical experiment that involves analyzing several time series with jumps 

of varying distributions. In the first scenario, we will analyze a time series consisting of nearly non-

overlapping uniform distributions and test the hypothesis of a shift in this series. In the second scenario, 

we will analyze a time series with jumps of uniform distributions initially exhibiting significant overlap, 

followed by mild overlap, and ultimately no overlap, with the purpose of testing the hypothesis of a 

shift. Additionally, we will examine time series with jumps of normal distributions, where distinct 

means exhibit minimal overlap, to test the hypothesis of a shift. In the fourth scenario, we will examine 

time series with jumps that comprise normal distributions with identical means but gradually differing 

variances, aiming to test the scale hypothesis. Finally, in the fifth scenario, we will analyze a time series 

with jumps of normal distributions with the same means but differing variances, testing the scale 

hypothesis on this series. 

3.1. Nearly non-overlapping uniform distributions with different means 

We will analyze time series with jumps that consists of nearly non-overlapping uniform 

distributions. The aim is to test the hypothesis of a shift in this series. 

 
Table 1 
Time intervals and uniform distributions with different means 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 U(65;75) U(96.5;97.5) U(36.4;36.7) 
100-199 U(100;110) U(97.0;99.0) U(38.0;39.0) 
200-299 U(65;75) U(96.5, 97.5) U(36.4;36.7) 
300-399 U(70,90) U(97.5;99.0) U(37.0;37.5) 

 
 

 
Figure 1: Time series composed of samples from nearly non-overlapping uniform distributions with 
varying means and their respective changepoints. 



 
Figure 2: Time series composed of samples derived from nearly non-overlapping uniform distributions 
that have distinct means and corresponding changepoints, as denoted by blue crosses using the 
algorithm. 
 
Table 2 
Measures of error for nearly non-overlapping uniform distributions that have distinct means. 

Error measure Value 

MAE 44.74 
MSE 2002.73 
MSD 
RMSE 

NRMSE 

20.73 
42.41 
0.21 

 
Table 1 and Figure 1 illustrate that the intended changepoints are 100, 200 and 300. In Figure 2, we saw 

that the almost all found changepoints are close to the actual ones, while the measures of error are 

presented in Table 2. 

3.2. Uniform distributions with distinct means that display significant 
overlap at the outset, followed by mild overlap, and ultimately no overlap 

We will analyze time series with jumps that consists of uniform distributions initially exhibiting 

significant overlap, followed by mild overlap, and ultimately no overlap. The purpose is to test the 

hypothesis of a shift in this series. 

 

Table 3 
Time intervals and uniform distributions with distinct means that initially display significant overlap, 
followed by mild overlap, and ultimately no overlap 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 U(60;70) U(96.0;97.0) U(36.4;36.7) 
100-199 U(63;73) U(96.3;97.3) U(36.5;36.8) 
200-299 U(70;80) U(97.0, 98.0) U(36.7;37.0) 
300-399 U(85,95) U(99.0;99.9) U(37.5;37.8) 



 
Figure 3: Time series composed of samples derived from uniform distributions that exhibit distinct 
means, initially showing significant overlap, followed by mild overlap, and ultimately no overlap with 
respective changepoints. 
 

 
Figure 4: Time series composed of samples derived from uniform distributions that exhibit distinct 
means, initially showing significant overlap, followed by mild overlap, and ultimately no overlap and 
corresponding changepoints, as denoted by blue crosses using the algorithm. 
 
Table 4 

Measures of error for uniform distributions with distinct means that exhibit significant overlap initially, 
followed by mild overlap, and ultimately no overlap. 

Error measure Value 

MAE 44.68 
MSE 2071.37 
MSD 
RMSE 

NRMSE 

20.67 
43.24 
0.21 



 
Figure 3 and Table 3 show that the desired changepoints are 100, 200, and 300. Figure 4 demonstrates 

that the almost all detected changepoints are close to the actual ones, and the corresponding error 

measures are displayed in Table 4. 

3.3. Normal distributions with distinct means that exhibit minimal overlap  

We will analyze time series with jumps composed of normal distributions with distinct means that 

exhibit minimal overlap. The aim is to test the hypothesis of a shift in this series. 

 

Table 5 
Time intervals and normal distributions with distinct means that exhibit minimal overlap. 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 N(70;2) N(96.0;0.15) N(36.5;0.05) 
100-199 N(105;2) N(96.3;0.33) N(38.5;0.15) 
200-299 N(70;2) N(97.0, 0.15) N(36.5;0.05) 
300-399 N(80,4) N(99.0;0.25) N(37.3;0.98) 

 

 
Figure 5: Time series composed of samples derived from normal distributions that exhibit distinct 
means and almost no overlap. 
 

 
Figure 6: Time series composed of samples derived from normal distributions that exhibit distinct 
means and almost no overlap and corresponding changepoints, as denoted by blue crosses using the 
algorithm 



Table 6 
Measures of error for normal distributions with distinct means that exhibit minimal overlap. 

Error measure Value 

MAE 43.67 
MSE 2077.24 
MSD 
RMSE 

NRMSE 

22.14 
42.81 
0.21 

 

Table 5 and Figure 5 indicate that the intended changepoints are 100, 200, and 300. In Figure 6, we 

observe that the almost all detected changepoints are in close proximity to the true ones, and Table 6 

displays the corresponding error measures. 

3.4. Normal distributions with identical means, but whose variances begin 
to differ gradually 

We will examine time series with jumps that comprises normal distributions with identical means, but 

with gradually differing variances. The objective is to test the scale hypothesis on this series. 

 
Table 7 
Time intervals and normal distributions with same means, but whose variances gradually begin to 
differ. 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 N(70;1) N(97.0;0.10) N(36.55;0.05) 
100-199 N(70;2) N(97.0;0.15) N(36.55;0.10) 
200-299 N(70;3) N(97.0,0.20) N(36.55;0.15) 
300-399 N(70;5) N(97.0,0.30) N(36.55;0.20) 

 

 
Figure 7: Time series consisting of samples from normal distributions with the same means, but with 
variances that gradually begin to differ 
 



 
Figure 8: Time series composed of samples derived from normal distributions with identical means, 
but whose variances begin to differ gradually and corresponding changepoints, as denoted by blue 
crosses using the algorithm 
 
Table 8 
Error measures for normal distributions with the same means, but with variances that gradually begin 
to differ 

Error measure Value 

MAE 47.75 
MSE 2468.69 
MSD 
RMSE 

NRMSE 

19.96 
46.73  
0.23 

 

Table 7 and Figure 7 indicate that the intended changepoints are 100, 200, and 300. In Figure 8, we 

observe that the almost all detected changepoints are in close proximity to the true ones, and Table 8 

displays the corresponding error measures. 

3.5. Normal distributions with the same means, but with variances that 
differ more strongly 

Let's consider time series with jumps, which is composed of normal distributions with the same 

means, but with variances that differ more strongly. On this time series, we will be able to test the scale 

hypothesis. 

 

Table 9 
Time intervals and normal distributions with the same means, but with variances that differ more 
strongly 

Time interval Distribution 𝑇1 Distribution 𝑇2 Distribution 𝑇3 

0-99 N(70;1) N(97.0;0.10) N(36.55;0.05) 
100-199 N(70;5) N(97.0;0.50) N(36.55;0.25) 
200-299 N(70;7) N(97.0,1.00) N(36.55;0.5) 
300-399 N(70;10) N(97.0,1.50) N(36.55;0.75) 

 



As can be seen from Table 9 and Figure 9, the desired changepoint is 100. In Figure 10, we see that the 

p-statistic takes values greater than 0.95 only in the first interval and the measures of error we can see 

in Table 10. 

 

 
Figure 9: Time series consisting of samples from normal distributions with the same means, but with 
variances that differ more strongly 
 

 
Figure 10: Time series composed of samples derived from normal distributions with the same means, 
but with variances that differ more strongly and corresponding changepoints, as denoted by blue 
crosses using the algorithm 
 
Indeed, it is worth noting that hypotheses about scale are generally more challenging to test than those 

about shift. However, our algorithm is designed to detect changepoints even in scenarios where the 

scale hypothesis is being tested, allowing for a comprehensive analysis of the time series. By 

identifying these points, we can gain valuable insights into the behavior of the series and validate or 

reject our hypotheses.  



Table 10 
Error measures for normal distributions with the same means, but with variances that differ more 
strongly 

Error measure Value 

MAE 43.49 
MSE 2166.74 
MSD 
RMSE 

NRMSE 

20.34 
43.19 
0.22 

 

Table 9 and Figure 9 indicate that the intended changepoints are 100, 200, and 300. In Figure 10, we 

observe that the almost all detected changepoints are in close proximity to the true ones, and Table 10 

displays the corresponding error measures. 

4. Conclusion 

In conclusion, our study has presented a novel algorithm for detecting changepoints in time series data 

that combines Fisher's linear discriminant and Petunin's statistics. Our numerical experiments have 

shown that this algorithm can accurately and quickly detect changes in a wide range of distribution 

functions. 

 

Additionally, our algorithm has several advantages over existing changepoint detection methods. 

Firstly, our algorithm does not require any assumptions about the distribution of the data, making it 

more flexible and applicable to a wider range of scenarios. Secondly, the computational complexity of 

our algorithm is relatively low, which makes it efficient and scalable to larger datasets. Finally, our 

algorithm provides interpretable results, which can help researchers and practitioners to better 

understand the nature of changes in the time series data. 

 

The implications of our results are significant, as our algorithm could have practical applications in 

monitoring the health status of COVID-19 patients in clinics. By accurately detecting changes in vital 

signs or symptoms, medical professionals could intervene earlier and improve patient outcomes. 

Furthermore, we have evaluated the performance of our algorithm using NRMSE, which measures the 

accuracy of the detected changepoints. Our NRMSE values demonstrate that our algorithm works 

accurately. 

 

However, we acknowledge that there are limitations to our study, such as using simulated data in our 

experiments. Therefore, the performance of our algorithm may differ when applied to real-world data. 

Nevertheless, our algorithm provides a valuable contribution to the field of changepoint detection, and 

we plan to evaluate its performance on real-world data in future research. 

 

We hope that our combination of Fisher's linear discriminant and Petunin's statistics will inspire further 

research in this area and contribute to improving the accuracy and efficiency of changepoint detection 

algorithms. Overall, our study provides a promising foundation for future research in this field. 
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