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Abstract  
Ensuring the security of online communication is paramount, and this can be achieved by 

implementing robust data protection measures such as encryption and electronic signatures. To 

further enhance the cryptographic strength of these measures, the symmetric block algorithm 

AES, combined with elliptic cryptography, can be utilized. Moreover, using ECDSA offers a 

level of security comparable to RSA but with the added benefit of a shorter key length, thereby 

improving overall efficiency.  

This paper comprehensively presents the algorithms employed within the information security 

system, providing a detailed account of their implementation.  
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1. Introduction 

People rely heavily on technology and digital communications, which has led to an increasing need 

for secure information exchange. 

Cryptography plays an essential role in ensuring the secure exchange of information. Encrypting 

data using cryptographic algorithms protects information from unauthorized access, interception, and 

modification. Cryptography also enables the assurance of data integrity and authenticity through the 

use of digital signatures and hash functions.  

To achieve this, appropriate software is employed to elevate the level of data security. These 

software programs encompass cryptographic information security tools, which involve creating 

certificates or keys, encrypting and decrypting messages or files, and generating and verifying qualified 

digital signatures to maintain the integrity and authenticity of documents. 

2. Analysis of cryptographic mechanisms 

The article titled "Comparative analysis of block key encryption algorithms" examines the 

comparative characteristics of block encryption algorithms (DES, 3-DES, AES, IDEA, Blowfish) based 

on criteria such as architecture, scalability, security, flexibility, and resistance to attacks. Based on the 

study, the AES and Blowfish algorithms outperform other algorithms in most aspects. For instance, 

DES and 3-DES exhibit lower security levels. IDEA, on the other hand, lacks flexibility and resistance 

to attacks.  
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While Blowfish demonstrates relatively high security and performance indicators, it suffers from 

longer decryption time and weaker cryptanalysis resistance. AES, being a universal solution, 

compensates for its disadvantages with its overall advantages. Consequently, AES will be used in 

further research [1-3] 

AES (or Rijndael) emerged as a robust replacement for DES during a competition conducted by the 

National Institute of Standards and Technology (NIST). Rijndael, the algorithm developed by Daemen 

and Rijmen, was recognized as the best and subsequently declared the new AES. NIST selected Rijndael 

due to its simplicity, high performance, fast execution, compactness, and straightforward mathematical 

structure. AES is a symmetric block cipher with a block size of 128 bits [4] 

In the AES algorithm, the length of the input block, the output block and the State is 128 bits. For 

the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256 bits. The principle of the rounds 

is illustrated in Figure 1. [5] The AES algorithm employs a round function comprising four distinct 

byte-oriented transformations, shown in Figure 2: 

1. SubBytes: nonlinear byte substitution using a substitution table (S-box); 

2. ShiftRows: cyclically shifts the rows of the State array by a different number of bytes; 

3. MixColumns: mixes data in each column of the state array; 

4. AddRoundKey: adds a round key to the state using a simple bitwise XOR operation. 

 

 
Figure 1: AES operating principle 

 

 
Figure 2: AES conversion 

 

AES is a widely accepted standard in US government organizations, which attests to its high security 

and protection levels. However, the cryptographic strength of AES also relies on the complexity of the 

encryption key. Hence, in future research, we will consider enhancing the cryptographic strength of 

keys using elliptic cryptography. 



3. Elliptic-curve cryptography 

Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic 

structure of elliptic curves over finite fields. ECC allows smaller keys than non-EC cryptography (based 

on plain Galois fields) to provide equivalent security. Elliptic curves are applicable for key agreement, 

digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption 

by combining the key agreement with a symmetric encryption scheme. [6]  

The security of elliptic curve cryptography relies on the ability to compute multiplication by a point 

and the inability to compute the multiplicand given the starting and ending points of the product. The 

size of the elliptic curve, which is determined by the total number of discrete integer pairs satisfying 

the curve equation, determines the complexity of the problem. The main advantage offered by elliptic 

curve-based cryptography is a smaller key size, resulting in reduced storage and transmission 

requirements. [7] This means that an elliptic curve group can provide an equivalent level of security 

compared to an RSA-based system with a larger modulus and, consequently, a larger key size. For 

instance, a 256-bit elliptic curve public key should offer. A comparison of the cryptographic strength 

of these algorithms was considered in character 4. Elliptic curve scalar multiplication is the operation 

of successively adding a point along an elliptic curve to itself repeatedly. It is used in elliptic curve 

cryptography (ECC) to produce a one-way function. (Figure 3).[8] 

Given a curve, 𝐸, defined by some equation in a finite field (𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏), point 

multiplication is defined as the repeated addition of a point along that curve. Denote as 𝑛𝑃 = 𝑃 + 𝑃 +
𝑃 + ⋯ + 𝑃 for some scalar (integer) 𝑛 and a point 𝑃 = (𝑥, 𝑦) that lies on the curve, 𝐸. This type of 

curve is known as a Weierstrass curve. The security of modern ECC depends on the intractability of 

determining n from 𝑄 = 𝑛𝑃 given known values of 𝑄 and 𝑃 if 𝑛 is large (known as the elliptic curve 

discrete logarithm problem by analogy to other cryptographic systems). This is because the addition of 

two points on an elliptic curve (or the addition of one point to itself) yields a third point on the elliptic 

curve whose location has no immediately obvious relationship to the locations of the first two, and 

repeating this many times over yields a point 𝑛𝑃  that may be essentially anywhere. Reversing this 

process, i.e., given 𝑄 = 𝑛𝑃 and 𝑃, and determining 𝑛, can only be done by trying out all possible 𝑛 - 

an computationally intractable effort if 𝑛 is large. 

  
Figure 3: Elliptic curve scalar multiplication 



Create keys based on elliptical curves. Elliptic curve domain parameters over 𝐹𝑝 are a sextuple:  

𝑇 = (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ) 
consisting of an integer p specifying the finite field 𝐹𝑝, two elements 𝑎, 𝑏 ∈ 𝐹𝑝, specifying an elliptic 

curve 𝐸(𝐹𝑝), defined by the equation: 

𝐸: 𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏(𝑚𝑜𝑑𝑝), 
a base point 𝐺 = (𝑥𝐺 , 𝑦𝐺) on 𝐸(𝐹𝑝), a prime 𝑛 which is the order of 𝐺, and an integer ℎ which is the 

cofactor ℎ = 𝐸 (𝐹𝑝) 𝑛⁄ .  

Elliptic curve domain parameters over 𝐹𝑝 precisely specify an elliptic curve and base point. This is 

necessary to precisely define public-key cryptographic schemes based on ECC.[9,10] 

Accordingly, upon completing the algorithm, a pair of keys should be obtained: a private key 𝑑 (a 

randomly selected integer from the interval [1, 𝑛 − 1]) and a public key on the elliptic curve  𝑄 =
(𝑥𝑄, 𝑦𝑄), represented by the point 𝑄 = 𝑑𝐺.( Figure 4) 

 

 
Figure 4: Create keys based on elliptical curves. 

 

Points on an elliptic curve follow three standard rules: addition, doubling, and negation. 

1. Negation of points 
Rule to add two points with the same x-coordinates when the points are either distinct or have y-

coordinate 0: 
(𝑥, 𝑦) + (𝑥, −𝑦) = 𝑂 

- i.e. the negative of the point (𝑥, 𝑦) is −(𝑥, 𝑦) = (𝑥, −𝑦). [6] 

The point negation algorithm is depicted in Figure 5. 

 
Figure 5: The point of negation 



 

2. Addition of points 

Rule to add two points with different x-coordinates: Let (𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑃) and (𝑥2, 𝑦2) ∈ 𝐸(𝐹𝑃) be 

two points such that 𝑥1 ≠ 𝑥2. Then (𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥3, 𝑦3), where: 

 

𝜆 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

(𝑚𝑜𝑑𝑝) 

 
𝑥3 = 𝜆2 − 𝑥1 − 𝑥2(𝑚𝑜𝑑𝑝) 

 
𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1(𝑚𝑜𝑑𝑝) 

3. Doubling a point 

If the points 𝑃 and 𝑄 have the same coordinates, the addition process is slightly modified. Since 

there is no well-defined straight line through 𝑃, the operation is closed using the limit case, which 

involves considering the tangent to the curve 𝐸, at point 𝑃. 

The calculation of this tangent is similar to the previous method, using the derivatives 

(𝑑𝐸 𝑑𝑥⁄ ) (𝑑𝐸 𝑑𝑦⁄ )⁄ :  

𝜆 =
3𝑥𝑝

2 + 𝑎

2𝑦𝑝
, 

where 𝑎 is derived from the defining equation of the curve 𝐸 mentioned earlier. 

The algorithm for adding and doubling the points of an elliptic curve is depicted in Figure 6. 

 
Figure 6: Adding and doubling points on an elliptic curve 

4. Digital signaturе 

A digital signature is a mathematical technique utilized to verify the authenticity and integrity of a 

digital document, message, or software. It serves as the digital counterpart of a handwritten signature 

or stamped seal, providing enhanced security measures. Digital signatures address issues of tampering 

and impersonation in digital communications. 

Electronic digital signatures are commonly employed to sign important electronic documents, and 

utmost care is taken to protect the confidentiality of sensitive data, which is an inherent attribute of 



every document. Therefore, improving the signature algorithm becomes a crucial aspect of electronic 

signatures. The utilization of elliptic curve-based cryptography is gaining traction due to the 

development of more efficient asymmetric cryptographic algorithms. 

The practical requirements drive the advancement of asymmetric cryptography, presenting new 

challenges in information security and cryptographic algorithm design. [11] 

The Elliptic Curve Digital Signature Algorithm (ECDSA) is an asymmetric public key algorithm 

specifically designed for creating digital signatures. While sharing a similar structure with DSA, 

ECDSA is defined over a group of points on an elliptic curve, rather than a ring of integers. [12] Like 

other asymmetric algorithms, ECDSA operates in a way that makes it easy to compute in one direction 

but significantly difficult to reverse. In the case of ECDSA, a number on the curve is multiplied by 

another number to generate a point on the curve. Even if the initial point is known, finding the resulting 

point is challenging. 

The strength of the encryption algorithm relies on the discrete logarithm problem within a group of 

points on an elliptic curve. Unlike the discrete logarithm problem in a simple setting or the factorization 

problem in integers, there is no subexponential algorithm available for solving the discrete logarithm in 

a group of points on an elliptic curve. This characteristic leads to significantly higher "per-bit key 

security" in algorithms that employ elliptic curves. [13] 

Comparison of ECDSA with RSA 

RSA is one of the most widely used algorithms for creating digital signatures, relying on the 

computational complexity of factoring large integers.  

Considering the popularity of RSA, an analysis is conducted to assess the efficiency and 

cryptographic strength of these algorithms. The security level of a symmetric key algorithm is directly 

linked to the chosen key size, meaning that larger keys offer greater security. However, the security 

level of an asymmetric key algorithm is lower than the key size employed. Notably, there is a 

considerable difference between the key size and the security level of various asymmetric key 

algorithms. Table 1 provides a comparison of security levels for different RSA and ECDSA key sizes. 

[6] 

 

Table 1  
Comparison of key length concerning cryptographic strength 

Cryptographic strength (in 
bits) 

RSA public key length (bits) ECDSA public key length (bits) 

80 1024 160 
112 2048 224 
128 3072 256 
192 7680 384 
256 15360 512 

 

Compared to RSA, ECDSA offers increased security against modern cracking methods due to its 

inherent complexity. Despite providing an equivalent level of security, ECDSA employs shorter key 

lengths. Consequently, longer ECDSA keys require significantly more time to be cracked through brute 

force attacks. 

Another advantage of ECDSA over RSA is performance and scalability. Because ECC provides 

optimal security with a shorter key length, it requires less computing power. This is useful for devices 

with limited memory and processing power. 

Elliptic curve cryptography proves to be an effective approach to ensuring data integrity and 

confidentiality. It demonstrates resistance against attacks from quantum computers and exhibits higher 

processing speeds compared to traditional encryption methods. It also provides greater security when 

dealing with large amounts of data. [14} 

The implementation of ECDSA involves three primary functions: key generation (previously 

discussed), creation of digital signatures, and verification of digital signatures. [15-17] 

Digital signature generation 

To sign a message m, an entity A does the following:  



1) Select a random or pseudorandom integer  𝑘 ∈ [1, 𝑛 − 1].  

2) Compute𝑘 ∗ 𝑔 = (𝑥, 𝑦) and 𝑟 = 𝑥𝑚𝑜𝑑𝑛. If 𝑟 ≡ 0𝑚𝑜𝑑𝑛, then go to the step 1. 

3) Compute 𝑘−1𝑚𝑜𝑑𝑛 and 𝑠 = 𝑘−1(ℎ𝑎𝑠ℎ + 𝑑 ∗ 𝑟)𝑚𝑜𝑑𝑛, where hash is a value of the hash 

function of the message m to be signed. If  𝑠 = 0, then the value 𝑠−1𝑚𝑜𝑑𝑛   does not exist, so go to 

the step 1. 

4) The result of the signing process is two integers 𝑟 and 𝑠 - a digital signature. The document 

signing algorithm is shown in Figure 7.  

 
Figure 7: Document signing algorithm 

 

Digital signature verification. In order to verify the signature of sender A on a message, recipient 

B must do the following [13]: 

• Get a copy of the public key Q of the sender A. 

• Verify that 𝑟 and 𝑠 are integer in the interval [1, 𝑛 − 1] and compute hash value. 

• Compute 𝑢1 = 𝑠−1ℎ𝑎𝑠ℎ 𝑚𝑜𝑑 𝑛  and  𝑢2 = 𝑠−1𝑟 𝑚𝑜𝑑 𝑛. 

• Compute 𝑢1𝑔 + 𝑢2𝑄 = (𝑥, 𝑦).  

• Accept the signature if and only if 𝑥 𝑚𝑜𝑑 𝑛 = 𝑟 𝑚𝑜𝑑 𝑛.  

The signature verification process is depicted in Figure 8. 

 

 
Figure 8: Signature verification algorithm 



5. Software implementation of cryptographic mechanisms 

Based on the research data, the objective was to implement an enhanced AES encryption algorithm 

using elliptic cryptography key generation and an algorithm for signing and the ECDSA algorithm for 

signing and verifying electronic digital signatures. To achieve this, software was developed in the 

Python programming language.  

Interface for creating certificates. The application's main window is illustrated in Figure 9. To 

create a certificate (a pair of elliptic curve keys), users can click on the "Create keys" button, which 

prompts a window to appear (Figure 10). In this window, users can enter their email and name, and 

additional settings allow them to choose the elliptic curve for key generation and the AES mode for 

subsequent encryption. 

 

 
Figure 9: The main window of the application 

 

Implementation of the key generation algorithm based on elliptic cryptography. The 

implementation includes the ECCKeyGenerator class, which facilitates the generation of elliptic curve 

cryptographic keys. This class encompasses various methods, such as generating a public-private key 

pair, checking for a point on the curve, negating a point, adding two points, and scalar multiplication of 

an elliptic curve point.  

Here is a description of each method: 

• - __init__(self, private_key=None): Initializes a new instance of the 

ECCKeyGenerator class with an additional private key and an elliptic curve. If the private key is 

not provided, a random number is generated in the range of the curve order. 

• - gen_keypair(self): Generates a public-private key pair using the instance's private key 

and the curve generator point. The algorithm for this process is depicted in Figure 4. 

• - extended_gcd(k, p): Implements the extended Euclidean algorithm to calculate the 

greatest common divisor of k and p and the modular inverse of k to p. This method is utilized in the 

addition and scalar multiplication operations. 



• - is_on_curve(self, point): Verifies if a given point lies on an elliptic curve. 

• - point_neg(self, point): Negates a point on the curve by changing the sign of its y 

coordinate. Figure 5 

• - add_point(self, point1, point2): Adds two points on the curve using the elliptic 

curve addition formulas. If either point is None, it returns the other point. If the x-coordinates of the 

points are the same, but their y-coordinates its, it returns None. Otherwise, it calculates the slope of 

the line between the points, determines the x and y coordinates of the resulting sum point, and returns 

them (see Figure 6). 

• - scalar_mult(self, k, point): Performs scalar multiplication of a point on the curve 

by repeatedly adding the point to itself k times using the binary expansion k. This method takes two 

arguments: k (the scalar) and point (a point on the elliptic curve).  

• If the scalar is zero or the point is None, it returns None. If the scalar is negative, the method 

recursively calls itself with the absolute value of the scalar and the negation of the point. The 

generated result is then included in a loop that performs a binary decomposition of the scalar. In 

each iteration, it checks the lowest bit of the scalar, and if it is 1, it adds it to the result using the 

add_point() method. It then doubles the addition by adding it and shifting the scalar bits to the 

right. This process continues until the scalar becomes zero, and the result is a point representing the 

public key (Figure 3). 

In this window to create a certificate, you must enter mandatory data such as name and postal 

address. There is also a button for additional settings (Figure 13), where you can choose an elliptic 

curve for creating keys and, accordingly, the AES operation mode for encryption. 

If you do not change additional settings, then by default the curve will be secp265k1, and the AES 

operating mode will be CBC. 

 
Figure 10: Additional certificate settings 
 

Figure 11 demonstrates an example of a created certificate in an unencrypted format. 

 

 
Figure 11: Certificate in unencrypted form 

 

Implementation of AES. During the encryption process, a new AES object is created with the 

provided key, mode, and initialization vector values as function arguments. The input data is encoded, 

and the AES object is used to encrypt the encoded data, resulting in a ciphertext. 

During decryption, the ciphertext is decoded, and a new AES object is created using the key, mode, 

and initialization vector values. A portion of the data is decrypted using the AES object and the specified 

block size. The decrypted text is returned as the output of the function. 

The encryption and decryption algorithm operates by encrypting files and text using the generated 

keys. The process is illustrated in Figure 12. 



 
Figure 12: Algorithm for creating certificates and, accordingly, encrypting and decrypting data 

 

Interface for encrypting and decrypting files. Once the users have created a certificate, they can 

proceed to encrypt data. To encrypt a file, they need to follow these steps: 

1. In the program's main window, select the previously created certificate by clicking on it. This 

step is illustrated in Figure 13. 

2. After selecting the certificate, the "Encrypt" button becomes active. Click on the "Encrypt" 

button. 

3. Choose the file that needs to be encrypted. 

4. Upon successful encryption of the file, a message confirming the encryption process will be 

displayed, as shown in Figure 14. 

After the file has been encrypted, it is possible to view the encrypted file. The encrypted file appears 

as a set of values and symbols, as depicted in Figure 15. It is important to note that the original file 

selected for encryption is not deleted or modified in any way. Instead, the program creates a new file 

with the encrypted information and adds the ".enc" extension to the file name. This ensures that both 

the original file and the encrypted version coexist separately. 

 

 
Figure 13: Selecting a certificate for encryption 



 

 
Figure 14: Successfully encrypted file 

 

 
Figure 15: Encrypted file 

 

The encryption algorithm is shown in Figure 12. 

The decryption process follows similar steps to the encryption process and can be summarized as 

follows: 

1. Select the previously created certificate that was used to encrypt the file and click on it in the 

main window. 

2. Click on the "Decrypt" button.  

3. Choose the encrypted file that you want to decrypt. 

4. Upon successful decryption, you will receive a message confirming the decryption process. 

 It is important to note that using an incorrect certificate to decrypt a file may result in a failed 

encryption attempt, as indicated by the notification shown in Figure 16. Conversely, when the 

decryption process is successful, a corresponding message will confirm this. The decrypted file will be 

saved in the same location as the original encrypted document, as depicted in Figure 17. 

 

 
Figure 16: Failure message 

 

 
Figure 17: message about successful decryption 

 

The decryption algorithm is shown in Figure 12. 

Implementation of ECDSA. The implementation of ECDSA involves three main functions: 

hash_message(), sign_message(), and verify_signature(). These functions are used to 

obtain the message hash, create a signature, and verify the signature, respectively. It is assumed that the 

keys used in the code have been generated earlier. 

The hash_message() function takes a message as input and uses the SHA-512 algorithm to hash 

the message, resulting in a 64-byte hash (512 bits). This hash is then converted to an integer e using the 

int.from_bytes() function with the parameter 'big', which reads the bytes in a large byte order 

(most significant bytes first) The resulting integer e is then reduced by a bitwise shift, shifting it by the 



difference between the bit length of e and the bit length of the curve parameter n (the curve modulus). 

The resulting number becomes the message hash value. 

The sign_message() function implements the process of signing a message using elliptic 

cryptography. It first hashes the message using the hash_message() function, resulting in the message 

hash value. The function then enters a loop that continues until valid values of r and s are generated. In 

each iteration, a random value k is generated and used to calculate the coordinates (x, y) of a point on 

the elliptic curve using the scalar_mult() function. The r value is calculated as x modulo n, and the 

s value is calculated using a formula specified in Figure 7. 

The output of this function is the values of r and s, which can be sent along with the message as the 

signature. 

The verify_signature() function verifies the authenticity of a signature. It first calculates the 

message hash using the hash_message() function. Then, it extracts the values of r and s from the 

signature. The function calculates w, which is the multiplicative inverse of s modulo n, and also 

calculates intermediate values u1 and u2 used in the verification calculation. Using the the 

scalar_mult() and add_point() functions, the function calculates the (x, y) points on the elliptic 

curve, derived from the public key g and the intermediate values u1 and u2. The function compares the 

calculated value of x with the value of r from the signature. If they match, the function returns 

"signatures match", indicating that the signature is valid. Otherwise, the function returns "invalid 

signature". The algorithm is illustrated in Figure 8. 

Interface for signing and verifying documents. The ELLICE application allows users to securely 

sign and verify documents electronically using the ECDSA algorithm, as detailed in Section 4. To 

generate an electronic signature, users can easily follow the instructions provided within the app's 

interface: 

1. Create a certificate and select it 

2. Click the "Sign" button  

3. Select a document to sign 

4. Receive a message confirming the successful signing of the document. 

The signing process is shown in Figures 18-20. 

 

 
Figure 18: File to sign 

 

 
Figure 19: Selecting a file to sign 

 



 
Figure 20: Message about the successful signing of the document 

 

After signing, a signature file can be generated and used to verify the integrity of the document. This 

signature file should be transmitted along with the document and checked upon receipt. The structure 

and content of the signature file can be referred to in Figure 21. 

 

 
Figure 21: Signature file 

 

The ECDSA algorithm is used to create a signature using the "sign" function and the 

"hash_message" function. The private key is utilized for signature creation, while the public key is 

required for verification. Therefore, it is crucial to prioritize the protection of the private key. 

To verify a signed document, follow these steps: 

• Select a certificate 

• Click the "Verify" button  

• Choose the document that contains the signature.  

• After verification, a success message will display the signer's name. If the document has been 

modified, the signature will be deemed invalid. 
The electronic signature verification process is illustrated in Figures 22-25. 

 

 
Figure 22: Selecting the signature file to verify the signature 



 
Figure 23: Receive a message about the signature match, which means that the file has not been 
modified 

 

 
Figure 24: Change the text in the signed document. 

 

 
Figure 25: notified that the signatures do not match. 
 

6. Conclusion 

In this article, we have explored the key aspects of ensuring data confidentiality and integrity by 

utilizing cryptographic mechanisms. Specifically, we have discussed the process of key generation 

using elliptic cryptography, presented an enhanced AES encryption algorithm, and outlined the ECDSA 

algorithm for digital signature creation. To practically implement these algorithms, a dedicated software 

application has been developed. 
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