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Abstract  

A new application of a stochastic game model for solving the problem of self-organization of 
the Hamiltonian graph cycle is proposed. To do this, game agents are placed at the vertices of 

an undirected graph, the pure strategies of which are options for choosing one of the incident 
edges. All agents’ random choice of strategies forms a set of local paths that begin at each 
vertex of the graph. Current player payouts are defined as loss-making functions that depend 

on the strategies of neighboring players who control adjacent vertices of the graph. These 
functions are formed from a penalty for choosing opposing strategies by neighboring players 
and a penalty for strategies that have shortened the length of the local path.  

Computer simulation of a stochastic game provided a pattern of self-organization of agents' 
strategies in the form of several local cycles or a global Hamiltonian cycle into the graph, 

depending on the ways in which the current losses of players are formed. 
The study results can be used in practice for game solutions of NP-complete problems, 
transport, and communication problems, building authentication protocols in distributed 

information systems, and for collective decision-making under uncertainty. 

Keywords  
Self-organization, Behavioral pattern, graph, Hamiltonian cycle, stochastic agent game, 
Markov recurrent method.  

1.  Introduction 

The rational functioning of natural and artificially distributed systems is possible due to the 

coordinated work of their active elements or agents. In such systems, the agent has a local behavior 

strategy determined by the survival and reproduction criteria in a changing environment. In the absence 

of coordination, the agents' actions will be chaotic, and their populations have no chance of survival. 

Coordination of agents' actions should be aimed at forming a global strategy for the behaviors of the 

system as a whole – achieving a certain balance of local goals of the system of agents, the deviation 

from which becomes disadvantageous to individual agents or groups of agents [1, 2]. 

Coordination can be centralized (vertical) or decentralized (horizontal). Vertical coordination has 

one center or hierarchically subordinate centers, and horizontal coordination is realized through the 

coordination of actions directly between all agents or within small groups of agents. Hierarchical 

centralized coordination requires a high level of the social organization of agents. In centralized 

systems, information flows flow rapidly, mostly from top to bottom, entropy and reaction time in such 

systems are minimal, but the cost of maintaining existence can be high. Decentralized coordination does 

not require a high level of the social organization of agents and is more democratic since information 

flows are mainly formed at the grassroots levels of the system, costs are minimized, but the entropy and 

time to produce a coordinated response will be much higher than in centralized systems. Decentralized 

coordination is a more natural form of coexistence of agents during their organizational evolution [3, 

4]. 

Decentralized coordination of agents' actions is formed during their direct local interaction and 

multi-round exchange of information among themselves. The result of purposeful decentralized 

coordination is the unauthorized achievement of global coordination or the self-organization of agents, 

which manifests itself as established behavioral patterns in the horror of the entire decentralized system. 



Self-organization is a purposeful spatiotemporal process of creating, ordering, or improving the 

structure and functions of a complex open dynamic system due to its internal factors without organizing 

external influence. The necessary conditions for the self-organization of complex systems are 

multivariance, alternativeness, and randomness of agents' actions, guided by the process of self-learning 

and adaptation to uncertainties [5–7]. 

The structure of self-organization is a regular (nonchaotic) distribution of structural elements of a 

system or their states in time and space, which allows a holistic description of the system without 

characterizing all its constituent elements. Patterns are manifested at the macro level and are a 

consequence of local interactions of elements at the micro level [8].  

Behavioral patterns determine the form of orderly actions of agents that arise from chaos through a 

process of coordination. The behavioral pattern is a systemic, globally coordinated behavior of a group 

of agents, which arises based on their local interaction during multi-step adaptive learning [9, 10]. 

The structural model of a decentralized system is conveniently represented as a graph, the vertices 

of which denote agents, and the edges determine the possibility of observing the internal states of 

neighboring agents and the local exchange of information between them. Then, depending on the 

strategies of agents' behavior, self-organization patterns can manifest themselves in the form of 

combinatorial entities within the graph – skeleton trees, painted vertices, Eulerian or Hamiltonian 

cycles, etc. [11, 12]. 

In practice, those combinatorial formations on graphs whose construction problem belongs to the 

class of NP-complete have been used, that is, it does not allow finding an exact solution by full 

enumeration of variants for large-order graphs in an acceptable polynomial time [13,14]. One such 

problem is the search for Hamiltonians on the cycle of the graph. A Hamiltonian cycle in a graph is a 

continuous path that passes through all vertices of a graph only once. For example, the travelling 

salesman problem (the Travelling Salesman Problem) is to find the minimal Hamiltonian cycle in the 

loaded graph [14, 15].  

Not every graph has a Hamiltonian cycle. Unlike Euler cycles, no reliable conditions are known as 

to whether a given graph has a Hamiltonian cycle. In some cases, they are guided by statements about 

the dependence of the existence of Hamiltonian cycles on the powers of vertices of the graph [14, 16].  

Precise or approximate (heuristic) methods can be used to search for Hamiltonian cycles. Although 

heuristic methods do not guarantee an optimal solution, they translate the problem into a polynomial 

complexity class, optimizing the enumeration of possible options.  

This class also includes the strode of a stochastic game described in this article for the self-

organization of the Hamiltonian cycle of an undirected graph. Its possible advantage is that thanks to 

self-learning and adaptation to uncertainties, it can find the Hamiltonian cycle in deterministic and 

random graphs. The disadvantages include a relatively small, power order of the rate of convergence, 

due to a priori uncertainty of a distributed system. 

2.  Practical applications of Hamiltonian cycles 

Hamiltonian graph cycles are widely used in various fields [17]. They are used to solve various 

variants of the travelling salesman problem for optimal routing [18–22], modelling assemblies and 

genomes according to its selected fragments [23], identification by fingerprints [24], communication 

management [25], construction of cryptographic authentication protocols with zero knowledge 

disclosure [26] and others. 

Zero-knowledge disclosure is an interactive method by which one party (provides evidence) can 

prove to another party (verifying evidence) that it knows some meaning (statement, object, or secret 

key) without telling the party. This method was first proposed in 1985 by authors S. Goldwasser, S. 

Micali, and C. Rackoff  in “The Complexity of Knowledge of interactive evidence systems”. 

Zero-knowledge proof has the following properties:  

1. Completeness: if the statement 𝑥 is true, then A will convince B of this. 

2. Correctness: if the statement 𝑥 is false, even a dishonest A cannot convince, except for 𝑥 a very 

small probability. 

3. Zero Disclosure: If a statement 𝑥 is true, then anyone even dishonest A will know nothing, 

except the fact, that the statement 𝑥 is true. 



Let a graph consisting of n-vertices numbered 1, 2 , .., 𝑛 and it has a Hamiltonian cycle. Then, 

enumerating all permutations in a symmetric group, we can be found in the Hamiltonian cycle. Since 

then, such a method of complete enumeration of options can hardly be realized in a reasonable time. It 

is known that from luck finding the Hamiltonian cycle in a graph is NP-complete. 

3. Overview of methods for finding Hamiltonian graph cycles 

The search for the Hamiltonian cycle is a special case of the travelling salesman problem, which 

finds the shortest Hamiltonian path of the loaded graph. 

Combinatorial nodes of the search for Hamiltonian cycles of the graph are divided into those that 

provide exact solutions, and heuristics, which give approximate solutions [27, 28].  

The methods of the first group are based on a complete enumeration of options or on deterministic 

calculations and can be applied to problems of relatively small dimensions. Heuristic methods use some 

improvements, and intuitive guesses to reduce the number of enumerated options. Some of them are 

probabilistic methods that rely on a random selection of options with the ability to select and memorize 

better solutions. Heuristic methods provide an approximate optimal solution to the problem in an 

acceptable polynomial time. 

The formulation of the travelling salesman problem as a linear programming problem was first 

performed by N. Deo and S. L. Hakimi in 1965. 

Let [𝑐𝑖,𝑗 > 0|𝑖, 𝑗 = 1. . 𝑛]  be a matrix of weights (or distances) of edges of order graph 𝑛, and 

[𝑥𝑖,𝑗 |𝑖, 𝑗 = 1. . 𝑛] be a matrix of displacements between vertices of the graph. The element 𝑥𝑖,𝑗 = 1, if 

an edge between vertices 𝑖 and 𝑗 (𝑖 ≠ 𝑗) is included in the Hamiltonian path, and 𝑥𝑖,𝑗 = 0 – otherwise. 

The traveling salesman’s tasks can be formulated as follows. 

The objective function that minimizes the length of the Hamiltonian cycle is: 

 

𝑓(𝑥) = ∑ ∑ 𝑐𝑖,𝑗𝑥𝑖,𝑗 → 𝑚𝑖𝑛
𝑥

𝑛
𝑗=1

𝑛
𝑖=1 .                                                         (1) 

System of restrictions: 
∑ 𝑥𝑖,𝑗 = 1𝑛

𝑖=1  (1 ≤ 𝑗 ≤ 𝑛)  there can be only one entrance to each vertex;  

∑ 𝑥𝑖,𝑗 = 1𝑛
𝑗=1  (1 ≤ 𝑖 ≤ 𝑛)  there can be only one exit from each vertex;  

∑ ∑ 𝑥𝑖,𝑗 ≥ 1𝑗∉𝑆𝑖∈𝑆  (𝑆 ≠ ∅, 𝑆 ⊂ {1, . . . , 𝑛}) is the exclusion of isolated cycles that together cover all 

vertices of the graph, there must be only one (Hamiltonian) cycle; for any subset of vertices  𝑆, there 

exists at least one arc that leads to other vertices of the graph.  

𝑥𝑖,𝑗 ∈ {0,1} (1 ≤ 𝑖, 𝑗 ≤ 𝑛) is the desired matrix, the elements of which denote the Hamiltonian path. 

The formalization of the problem (1), although it provides an exact solution by integer programming 

methods, for example, by the method of branches and boundaries, is cumbersome, contains many 

variables and constraints, and requires many calculations. A number of other methods can be used to 

accurately solve the traveling salesman problem, for example, dynamic programming, Lagrange 

multipliers, the modified method of branches and boundaries (Little's method), clipping planes 

(Danzing's-Falkerson-Johnson method). 

Heuristic methods provide a solution close to optimal for large-dimensional problems within 

acceptable time limits. These include methods of nearest neighbor, greedy, insertion, local optimization 

of k-opt to improve the initial solution, Lin-Kernighan, decomposition, and cross-linking [29], elastic 

network, artificial neural networks, genetic, ant, and others. 

Similar exact and approximate methods are used to solve the problem of finding Hamiltonian cycles 

of an unloaded graph.  

Accurate methods include brute force, backtracking, algebraic method, Roberts-Flores method, 

linear programming, integer programming (Gomori, branch and boundary method), dynamic 

programming and others. 

Since the problem of determining Hamiltonian cycles is NP-complete, the application of the brute 

force method can only be used for small-order graphs. 



To speed up the enumeration of options, you can use the backtracking method (search with return), 

which excludes from consideration a significant number of options by one check, building a decision 

tree and traversing it in depth [30].  

First, select an arbitrary vertex of the graph, for example, the first and one of the edges incidents to 

it, along which we proceed to the next vertex. We remember the vertices passed. Suppose that the k -

th vertex of the loop has already been found. If is equal to the number 𝑛 of vertices of the graph and 

there is an edge that connects the 𝑘 -th vertex to the first, then the loop is found. If there are edges 

extending from the 𝑘 -th vertex to the still unviewed vertices, then we include one of them in the solution 

and continue the search from it. If such edges do not exist, then go back one step to the (𝑘 − 1)-th vertex 

and continue the search. So, all the vertices of the Hamiltonian cycle will be found.  

In [31] a new method and corresponding polynomial algorithm for solving the problem of finding 

the Hamiltonian cycle of a graph are proposed. Based on a given graph, another graph of the shortest 

paths is constructed. To construct a graph of shortest paths, Dijkstra's algorithm is used. The search for 

the Hamiltonian cycle in the graph is reduced to the search for a closed path in the shortest path graph. 

The enumeration space for solutions to a problem consists of solutions that are constructed from each 

vertex of the graph in the shortest path graph. 

An algebraic method based on multiple symbolic multiplications of a modified adjacency matrix 𝐵 

of order 𝑛 (single elements of an adjacency matrix are replaced by the literal notation of graph vertices) 

by a matrix of sums of internal (without extreme vertices) products of notation of vertices of nonzero 

chains between vertices of a graph: 𝑃𝑖+1 = 𝐵 ⋅ 𝑃𝑖  [11]. Multiplication is performed until a matrix 1nP −  
containing all Hamiltonian chains between all pairs of vertices is computed. Hamiltonian cycles are 

obtained from those chains whose edges 𝑃𝑛−1 or vertices are connected by arcs. The disadvantage of 

this method is that for large orders of the graph, each element of the matrix 𝑃𝑖 will consist of many 

constituents’ sub-elements, which require large amounts of memory to store. 

Unlike the algebraic method, which ensures obtaining all existing Hamiltonian cycles of a graph, 

the Roberts-Flores enumeration method works with only one path, which is extended until a 

Hamiltonian cycle is found, or it turns out that this path cannot lead to a Hamiltonian cycle [11]. After 

that, the path is modified in some systematic way and the cycle search continues for it. By reducing the 

number of computations required, this method is efficient for large graphs. 

For practical applications, heuristic methods for finding Hamiltonian cycles are more effective, 

which reduces the complete enumeration of options. These include the nearest neighbor, greedy, 

annealing simulations, banned search, Hopfield's artificial neural network, evolutionary, genetic, ant 

colony, and others. 

In the context of self-organization, those heuristic methods that have the property of self-learning 

are important. Among these, it is worth noting the methods of neural networks, genetics, ant colony, 

and stochastic play, which have polynomial complexity. 

The problem of finding the Hamiltonian cycle can be solved using the Hopfield neural network, 

which implements learning without a teacher [32]. To do this, the conditions of problem (1) must be 

translated into parameters of connections between neurons. 

For the Hopfield network to determine the Hamiltonian cycle, the following requirements must be 

imposed:  

1. The neural network should consist of 𝑁 = 𝑛 × 𝑛 neurons, which can be considered as square 

matrix of 𝑛 rows and 𝑛 columns, where 𝑛 is the order of the graph. 

2. There are connections between all pairs (𝑘, 𝑙) of neurons to which weightings are attributed  𝑊𝑘,𝑙. 

3. Not all grid weights can be negative at the same time. 

4. The active neuron in each column specifies the corresponding vertex of the graph (or another 

route city for the traveling salesman problem). 

5. The network response must contain only one active neuron in each row and each column. For this, 

the network weights must be constructed so that each neuron interferes with the activation of other 

neurons in its row and in its column. 

6. To minimize the path length, it is necessary that the neuron in the 𝑗 -th column the more actively 

interferes with the activation of neurons in the (𝑗 + 1) -th and (𝑗 − 1) -th columns, the greater the 

distance between them (required to solve the traveling salesman problem). 



All these conditions are satisfied by the following formula for calculating the weight between the 

neuron corresponding to the x -city (row) at the 𝑖 -th position (column) and the neuron corresponding 

to the y -city (row) at the j -th position (column):  

𝑊𝑘,𝑙 = 𝑊𝑥𝑖,𝑦𝑗 = −𝐴𝛿𝑥𝑦(1 − 𝛿𝑖𝑗) − 𝐵𝛿𝑖𝑗(1 − 𝛿𝑥𝑦) − 𝐶𝑑(𝑥, 𝑦)(𝛿𝑖,𝑗+1 + 𝛿𝑖,𝑗−1) + 𝐷, 

where  𝑘 = (𝑥, 𝑖),  𝑙 = (𝑦, 𝑗) are the coordinates of the connections between the neurons of the matrix;  

𝐴, 𝐵, 𝐶, 𝐷 are some constants; 𝑑(𝑥, 𝑦) is the  distance between cities 𝑥 and 𝑦; 𝛿𝑥𝑦  is the Kronecker 

symbol taking the value 1 if  𝑥 = 𝑦 and the value 0 is otherwise.  As it is easy to see, the first term is 

equal A−  for all connections in the same line (𝑥 = 𝑦), except the connection of the neuron with itself 

(at 𝑖 = 𝑗). The second term is equal B−  for all relationships in the same column (𝑖 = 𝑗), except the 

relation to itself (𝑥 = 𝑦). The third term is proportional to the distance between cities x  and y  if these 

cities are adjacent in the route (𝑖 = 𝑗 − 1 or  𝑖 = 𝑗 + 1). 

Starting from the initial random state, the Hopfield network can provide a suboptimal solution to the 

problem (for the traveling salesman problem, the resulting cycle may differ from the optimal one). The 

experiment can be conducted several times and choose the best solution. 

Heuristic nodes based on genetic algorithms and models are the evolutionary process of natural 

reflection, inheritance, and mutation. Each Hamiltonian cycle is treated as a chromosome. At the initial 

stage, there is a set of such chromosomes (the initial population), and at each subsequent cycle, a new 

one is produced from the existing population by pairwise crossing and mutations [27, 33].  

A simplified genetic algorithm consists of the following steps: 

1. Creation of an initial population with 𝑁 chromosomes of length  𝑛 + 1, where 𝑛 is the order of 

the graph. 

2. Calculation of fitness functions (route lengths) 𝑆𝑖 (𝑖 = 1 … 𝑁) for all individuals of the population. 

3. Realization of the original selection of the parents of chromosomes (with the best value of  𝑆𝑖), 

they’re pairwise crossing, random mutation, and the formation of a new generation of chromosomes. 

4. If at least one Hamiltonian path is found, then go to step 5, otherwise return to step 2. 

5. Choose the best solution found to the problem (for a loaded graph in the traveling salesman 

problem). 

The genetic algorithm allows you to get more than one solution in a single application and select the 

best one. You can run several runs of the algorithm and calculate the average value of the best results. 

As the graph order increases, the probability of obtaining an optimal solution decrease. 

The ant algorithm is based on the behavior of an ant colony and simulates the evaporation of ovation 

of pheromones.  Ants find their way between an anthill and a food source by the smell of pheromones 

they leave behind. The more ants use the same path, the higher the concentration of pheromones on it. 

This “ant logic” allows you to choose a shorter path between the end points of the route [27, 34]. 

For each ant, the transition from point 𝑖 to point 𝑗 is determined by its memory 𝑀 (the list of points 

that can still be visited), the visibility 𝜇𝑖,𝑗 between points (the presence of an edge 𝑒𝑖,𝑗 in the graph), 

and the pheromone trail  𝜏𝑖,𝑗. The selection of the next vertex of the graph is carried out with probability. 

𝑝 = 𝜒(𝑗 ∈ 𝑀) ⋅
𝜇𝑖,𝑗

𝛼 𝜏𝑖,𝑗
𝛽

∑ 𝜇𝑖,𝑘
𝛼 𝜏𝑖,𝑘

𝛽
𝑘∈𝑀

 , 

where  𝜒(𝑗) ∈ {0,1} is the indicator function of the event; 𝛼, 𝛽 are the weight parameters. 

For the considered neural, ant, and genetic algorithms, it is problematic to choose the initial values 

of the parameters that will ensure their convergence to the optimal solution. 

Even though the described heuristic methods provide the search for an approximate optimal 

Hamiltonian cycle, their methodological value is in demonstrating different implementations of self-

learning of active systems for solving NP-complete problems without the need to use classical 

algorithms. Such methods implement “soft” calculations that do not require traditional programming 

and can be easily adapted to solve other problems. The stochastic game method also has similar 

properties. 

In this article, we propose a new application of the stochastic game method [35] for the self-

organization of Hamiltonian cycles of an unloaded graph. 



4. The purpose of the work 

The aim of the work is to solve the stochastic game problem of self-organization of strategies for 

constructing a Hamiltonian cycle of an unloaded undirected graph. Comprehension of the goal is 

provided using the adaptive method in solving a stochastic game, proper adjustment of its parameters, 

planning a computer experiment, developing a software model and a stochastic game, analyzing the 

results and making recommendations for their practical application.  

5. Formulation of the game problem of finding Hamiltonian cycles  

Let the undirected graph 𝐺 = (𝑉, 𝐸) be given by a finite set of vertices V  and edges E .The graph 

is ordered, that is, it’s edges is numbered in ascending order, for example, clockwise. We assume that 

the graph is simple (has no loops and multiple edges) and is connected (does not contain isolated 

vertices). Furthermore, given the possibility of covering the cycle of all vertices without loss of 

generality, it can be assumed that the minimum degree of vertices of a deterministic graph is greater 

than 1 (graph without leaves). 

At each vertex of the graph, we place the game agent  𝐴𝑖, who can choose one of the incident vertices 

of  𝑖 ∈ 𝑉 edges belonging to the local set 𝐸𝑖 ⊆ 𝐸. To do this, each agent with a number 𝑖 ∈ 𝑉  has 𝑁𝑖 ≥

2 pure strategies 𝑋𝑖 = (𝑥𝑖[1], 𝑥𝑖[2], … , 𝑥𝑖[𝑁𝑖]), where 𝑥𝑖 ∈ 𝐸𝑖 is the edge number and the 𝑁𝑖 value is 

determined by the power of the corresponding vertex. Hereinafter, superscript is not a power of a 

number, except for symbols with a minus sign. 

The variants of the possible choice can be given by an oriented graph of players' strategies. Let the 

arcs coming out of the vertex with the number 𝑖, denote the strategies of the i -th player regarding the 

choice of one of the neighboring players, and those arcs that enter the 𝑖 -th vertex denote the dependence 

of the winnings or losses of the 𝑖 -th player on the strategies of neighboring players. The correspondence 

of given undirected graph and formed on its basis-oriented graph of strategies is shown in Figure 1. 
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Figure 1: Correspondence of graphs 

 

The choice of pure strategies is made by the players independently and synchronously at discrete 

moments in time 𝑛 = 1,2, …. The choice made is estimated by the current loss 𝜁𝑛
𝑖 , which is formed 

depending on how much the agent's action led to an approach to the target solution of  𝑛 = 1,2, … the 

problem.  
To do this, each game agent 𝑖 ∈ 𝑉 makes an independent choice of one of 𝑁𝑖 own pure strategies 

𝑥𝑛
𝑖 = 𝑥𝑖 ∈ 𝑋𝑖  according to conditional probabilities. 

𝑝𝑛
𝑖 (𝑗) = 𝑃{𝑥𝑛

𝑖 = 𝑥𝑖(𝑗)|𝑥𝑡
𝑖 , 𝜁𝑡

𝑖(𝑡 = 1,2, … , 𝑛 − 1)},  𝑗 = 1. . 𝑁𝑖 , 

where  {𝑥𝑡
𝑖|𝑡 = 1,2, … , 𝑛 − 1}  is the background of the strategies chosen by the player with the 

number 𝑖;  {𝜁𝑡
𝑖|𝑡 = 1,2, … , 𝑛 − 1} is the background of the losses received for this.  

The probability set  𝑝𝑛
𝑖 = (𝑝𝑛

𝑖 (1), 𝑝𝑛
𝑖 (2), … , 𝑝𝑛

𝑖 (𝑁𝑖)) ∀𝑖 ∈ 𝑉 specifies the vectors of mixed 

strategies of players who take values 𝑝𝑛
𝑖 ∈ 𝑆𝑁𝑖  on 𝑁𝑖-dimensional unit simplexes:  



𝑆𝑁𝑖 = {𝑝 |∑ 𝑝(𝑗)
𝑁𝑖
𝑗=1 = 1;  𝑝(𝑗) ≥ 0  (𝑗 = 1. . 𝑁𝑖)}. 

To select pure strategies  {𝑥𝑛
𝑖 }, a random mechanism is used, built on a discrete dynamic distribution, 

which is given by vectors of mixed strategies 𝑝𝑛
𝑖 : 

𝑥𝑛
𝑖 = {𝑥𝑖(𝑙)|𝑙 = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑙
∑ 𝑝𝑛

𝑖 [𝑘] > 𝜔 (𝑘, 𝑙 = 1. . 𝑁𝑖)𝑙
𝑘=1 },                            (2) 

where 𝜔 ∈ [0, 1] is a real random variable with uniform distribution.  

After completing the selection of pure strategies by all players, they receive random current losses 

𝜁𝑛
𝑖 = 𝜁𝑛

𝑖 (𝑥𝑛
𝑉𝑖), whose values are a function of the combined strategies 𝑥𝑉𝑖 ∈ 𝑋𝑉𝑖 = ×

𝑗∈𝐷𝑖
𝑋𝑗  of 

neighboring players from subsets 𝑉𝑖 ⊆ 𝑉 (𝑉𝑖 ≠ ∅) ∀𝑖 ∈ 𝑉. It is assumed that current losses have a 

constant mathematical expectation and a limited second point, which are not known to agents a priori.  

Depending on the selected criteria and initial parameters of the game method, several autonomous 

loops or one global loop may occur in the graph.  

To create autonomous disjoint cycles of a graph, the condition must be satisfied that the choice of 

an edge in the direction of the 𝑖 -th agent (∀𝑖 ∈ 𝑉) can be carried out only by  one of its neighbors  agent 

from the set 𝑉𝑖. 

Let 𝑘𝑛
𝑖 = ∑ 𝜒(𝑥𝑛

𝑗
→ 𝑥𝑛

𝑖 )𝑗∈𝑉𝑖
 be the current number of neighboring agents whose strategies are 

directed to the vertex of the graph where the 𝑖 -th agent is located (in the direction of the 𝑖 -th agent). 

The heterogeneity of directing strategies within a local subset 
iV  is considered by the difference penalty:  

𝜉𝑛
𝑖 [1] = 𝐶𝑖

−1 ∑ |𝑘𝑛
𝑖 − 𝑘𝑛

𝑗
|𝑗∈𝑉𝑖
,                                                        (3) 

where  𝜉𝑛
𝑖 [1] ∈ 𝑅+

1   is a real number;  𝐶𝑖 = |𝑉𝑖| is the number of agents of the local subset 𝑉𝑖 . 

This criterion provides the possibility of forming cycles of movement of agents on the graph. 

To form a Hamiltonian cycle, each agent must choose a strategy (incident to its vertex edge) to 

maximize the length of the local path emanating from the agent-controlled vertex of the graph. Let 𝑟𝑛
𝑖  

be a set of vertices (or sequence of numbers of vertices)  that defines such a path with a root vertex with 

a number 𝑖, formed at the current time n  by the strategies (directions of movement) 𝑥𝑛
𝑖  of players. The 

path  𝑟𝑛
𝑖   consists of the values 𝑚 ≔ 𝑥𝑛

𝑚 determined by the players' pure strategies 𝑥𝑛
𝑚. The recurrent 

procedure for determining the current path that starts at the vertex with number 𝑖, will be: 

𝑟𝑛
𝑖(𝑡) = 𝑟𝑛

𝑖(𝑡 − 1) ⋃ {𝑚| 𝑚 ≔ 𝑥𝑛
𝑚}

{𝑚}∩𝑟𝑛
𝑖 (𝑡−1)≠∅

𝑚=𝑖 , ∀𝑖 ∈ 𝑉,                                      (4) 

where  𝑟𝑛
𝑖(0) = ∅. 

The notation of the operation of combining sets into (4) should be read so that this operation is 

performed repeatedly, starting with the value 𝑚 = 𝑖 until the element  𝑟𝑛
𝑖   reappears during the formation 

of the path 𝑚 ∈ 𝑟𝑛
𝑖(𝑡 − 1). For a connected graph with vertex powers greater than 1, this condition will 

always hold – following the players' strategies from the 𝑖 -th vertex (∀𝑖 ∈ 𝑉), entry into a local loop or 

a global Hamiltonian cycle will occur. The minimal local loop covers two edge-connected vertices of 

the graph and is formed by the opposite strategies of two neighboring players. The maximum cycle 

covers all vertices of the graph and is one of the Hamiltonian cycles. 

The deviation of the length of the local path from the maximum possible is considered by the penalty: 

𝜉𝑛
𝑖 [2] = 𝐶−1 (𝐶 − 𝑆(𝑟𝑛

𝑖)),                                                      (5) 

where 𝜉𝑛
𝑖 [2] ∈ 𝑅+

1  is a real number; 𝐶 = |𝑉| is a number of game agents; 𝑆(𝑟𝑛
𝑖) = |𝑟𝑛

𝑖| is the length of 

the local path (the number of vertices of the graph on the way to entering the cycle), starting at the 𝑖 -

th vertex (0 ≤ 𝑆(𝑟𝑛
𝑖) ≤ 𝐶). 

This criterion approximates the length of the path 𝑟𝑛
𝑖 , leaving the vertex 𝑖, to the number of vertices 

𝑉 of the graph  𝐺  (to the length of the Hamiltonian cycle).  

Penalties (3) and (5) can be used individually or comprehensively. The total current losses of players 

are calculated after the selection of moving options 𝑥𝑛
𝑖   ∀𝑖 ∈ 𝑉  is completed: 



𝜁𝑛
𝑖 = 𝜆𝜉𝑛

𝑖 [1] + (1 − 𝜆)𝜉𝑛
𝑖 [2],                                                  (6) 

where 𝜆 ∈ [0,1] is the weighting factor that determines the share of penalty criteria in the formation of 

agents' losses.  

Due to the random selection of pure strategies, current losses 𝜁𝑛
𝑖   ∀𝑖 ∈ 𝑉 are random variables with 

a priori unknown stochastic characteristics. To formulate criteria for player behavior, time-averaged 

losses are used:  

𝛧𝑛
𝑖 =

1

𝑛
∑ 𝜁𝑡

𝑖𝑛
𝑡=1 , 𝑛 = 1,2, … , ∀𝑖 ∈ 𝑉 .                                          (7) 

Strategies of players should be aimed at minimizing their own functions of average losses (7): 

𝑙𝑖𝑚
𝑛→∞

Ζ𝑛
𝑖 → 𝑚𝑖𝑛

𝑥𝑛
𝑖

  ∀𝑖 ∈ 𝑉.                                                       (8) 

The stochastic game of finding a Hamiltonian cycle is that each player 𝑖 ∈ 𝑉  must learn to choose 

pure strategies {𝑥𝑛
𝑖 } (2) at points in time  𝑛 = 1,2, … based on the observation of locally determined 

current losses {𝜁𝑛
𝑖 }  (6) so as to ensure that the system of criteria (8) is met.  

The method of forming a sequence of strategies {𝑥𝑛
𝑖 } ∀𝑖 ∈ 𝑉 (𝑛 = 1,2, …) of stochastic game will 

determine the fulfillment of one of the conditions of collective optimality, for example, Nash, Pareto or 

another [36].  

The learning process of a stochastic game, which leads to self-organization of strategies for moving 

game agents, is evaluated by the following characteristics. 

1. The system function of average losses, which is the averaging of   individual functions of average 

losses of players (7): 

𝛧𝑛 = 𝐶−1 ∑ 𝛧𝑛
𝑖

𝑖∈𝑉  .                                                                   (9) 

2. The strategy coordination coefficient, which is the relative number of coordinated strategies of 

the players: 

𝐾𝑛 = (𝑛𝐶)−1 ∑ ∑ 𝜒(|𝜁
𝑡
𝑖 | ≤ 𝛿)𝑖∈𝑉

𝑛
𝑡=1 ,                                             (10) 

where 𝜒(∗) ∈ {0,1} is the indicator function of the event: if the condition holds, then 𝜒(∗) = 1, 

otherwise – 𝜒(∗) = 0; 0 < 𝛿 << 1 is a small positive real number.  

The self-organization of the Hamiltonian cycle will be indicated by a decrease in the function 𝛧𝑛 ≥
0 of system losses and an increase in the coordination coefficient 𝐾𝑛 ∈ [0,1] of agents' strategies. 

6. Method for solving a stochastic game. 

Formation of sequences {𝑥𝑛
𝑖 } with the desired properties will be performed using the recurrent 

method in changing the vectors of mixed strategies [37, 38]: 

𝑝𝑛+1
𝑖 = 𝜋𝜀𝑛+1

𝑁𝑖 {𝑝𝑛
𝑖 − 𝛾𝑛𝑅(𝑝𝑛

𝑖 , 𝑥𝑛
𝑖 , 𝜁𝑛

𝑖 )},                                             (11) 

where 𝜋𝜀𝑛+1

𝑁𝑖  is a projector on unit  -simplex 𝑆𝜀
𝑁𝑖 ⊆ 𝑆𝑁𝑖 [37]; 𝛾𝑛 is a monotonically descending 

sequence of  positive values, which regulates the step size of the method; 𝑅 is a method step; 𝜀𝑛 is a 

monotonically decreasing sequence of  positive quantities that regulates the rate of expansion of 𝜀 -

simplex. 

The change in the elements of the vector of mixed strategies is constructed in such a way that when 

choosing a strategy 𝑥𝑛
𝑖 (𝑗), the element 𝑝𝑛

𝑖 (𝑗) decreases in proportion to the amount of the current loss 

𝜁𝑛
𝑖 . The other elements of the vector of mixed strategies do not change or grow proportionally of  𝜁𝑛

𝑖 . 

After recalculating the vectors of mixed strategies, they are normalized by the method of projection on 

the unit  -simplex. As a result, smaller displacements of the vectors of mixed states on the unit  -

simplex. 

For theses in the recurrent method, we use the results of the theory of stochastic approximation [38]. 

For this, suppose that the mathematical expectation of random losses 𝑀{𝜁𝑛
𝑖 (𝑥)} = 𝑙𝑖(𝑥) is constant for 

all  𝑥 ∈ 𝑋 = ⊗
𝑖∈𝑉

𝑋𝑖 . Then the average loss function of the matrix game is calculated as: 



𝐿𝑖(𝑝𝐷𝑖) = ∑ 𝑙𝑖(𝑥𝑉𝑖) ∏ 𝑝𝑗(𝑥𝑗)𝑗∈𝑉𝑖;𝑥𝑗∈𝑥𝑉𝑖𝑥𝑉𝑖∈𝑋𝐷𝑖                                       (12) 

where 𝑝𝑉𝑖 ∈ 𝑆𝑉𝑖 = ∏ 𝑆𝑁𝑗
𝑗∈𝑉𝑖

; 𝑝𝑖 ∈ 𝑆𝑁𝑖 . 

The goal of the players is to minimize their average loss functions for mixed strategies 𝑝𝑖: 

𝐿𝑖(𝑝𝑉𝑖) → 𝑚𝑖𝑛
𝑝𝑖

.   

Let the expectation of the motion vector of method (11) be the gradient of the mean loss function 

(12): 

𝑀{𝑅(𝑝𝑛
𝑖 , 𝑥𝑛

𝑖 , 𝜁𝑛
𝑖 )} = 𝛻𝑝𝑖𝐿𝑖(𝑝𝑉𝑖). 

Considering that 

𝛻𝑝𝑖𝐿𝑖 = 𝑀 {
𝜁𝑛

𝑖

𝑒𝛵(𝑥𝑛
𝑖 )𝑝𝑛

𝑖 𝑒(𝑥𝑛
𝑖 )|𝑝𝑛

𝑖 = 𝑝𝑖}, 

where 𝑒(𝑥𝑛
𝑖 ) is the unit vector–indicator of choice of pure strategy 𝑥𝑛

𝑖 ∈ 𝑋𝑖, based on stochastic 

approximation we obtain a gradient method for solving the game problem: 

 

𝑝𝑛+1
𝑖 = 𝜋𝜀𝑛+1

𝑁𝑖 {𝑝𝑛
𝑖 − 𝛾𝑛

𝜁𝑛
𝑖 𝑒(𝑥𝑛

𝑖 )

𝑒т(𝑥𝑛
𝑖 )𝑝𝑛

𝑖 }.                                     (13) 

The parameter 𝛾𝑛 reduces the step size of the method to achieve optimal collective solutions of the 

game: ‖𝑝𝑛
𝑖 − 𝑝∗

𝑖‖ → 0, and the parameter n  extends the  -simplex: 𝑆𝜀𝑛+1

𝑁𝑖 → 𝑆𝑁𝑖. 

The values of these parameters can be calculated as follows:  

𝛾𝑛 = 𝛾𝑛−𝛼,  𝜀𝑛 = 𝜀𝑛−𝛽,                                                    (14) 

where  𝛾 > 0, 𝛼 ∈ (0,1], 𝜀 > 0, 𝛽 > 0. 

The convergence of stochastic game strategies to collective-optimal values 𝑝∗
𝑖  is determined by the 

ratios of parameters n  and n  (14), which must meet the fundamental conditions of the stochastic 

approximation [37, 38].  

As shown in [39], to ensure the root mean square (rms) convergence of the game method (13) to the 

Nash point in the positive environment, the following relations must be fulfilled: 

0 < 𝛽 < 𝛼 < 1.                                                             (15) 

The theoretical order of the asymptotic rate of convergence of method (13) is 𝑛−𝜃, where 𝜃 =

𝑚𝑖𝑛{ 𝛽, 𝛼 − 𝛽, 1 − 𝛼} is the order parameter. The maximum value of parameter 𝜃 =
1

2
  is reached for 

𝛼 − 𝛽 =
1

2
. 

The stochastic game begins with untrained mixed agent strategies: 𝑝0
𝑖 = (

1

𝑁𝑖
, … ,

1

𝑁𝑖
) ∀𝑖 ∈ 𝑉. In 

moments of time 𝑛 = 1, 2, … mixed strategies are dynamically rearranged according to (13) for adaptive 

selection of pure strategies.  

One step of repeating stochastic play is that at a point in time  𝑛  each player 𝑖 ∈ 𝑉 chooses a pure 

strategy 𝑥𝑛
𝑖  (2) and by time 𝑛+1 receives a current loss  𝜁𝑛

𝑖  (6), which is used to calculate the new mixed 

strategy 𝑝𝑛+1
𝑖  (13). 

The stochastic agent game implements adaptive learning by trial and error, which requires a 

significant number of trials to find the desired solution. The learning process can be significantly 

accelerated by using a computer implementation of a stochastic game with the appropriate adjustment 

of its parameters. 

7. A game algorithm for finding the Hamiltonian cycle of a graph. 

Step 1. Set initial values for parameters: 

𝐶 = |𝑉| – the number of players, which is equal to the number of vertices of the graph; 

𝑀𝐶×𝐶 – a matrix of adjacencies of the graph; 

𝑁𝑖 – the number of pure strategies of the 𝑖 -th player, which is equal to the power of the 𝑖 -th vertex 

of the graph; 



𝑋𝑖 = (𝑥𝑖[1], 𝑥𝑖[2], … , 𝑥𝑖[𝑁𝑖]), 𝑖 = 1. . 𝐶 – vectors of players' pure strategies, where is the number 

of the edge incident to the vertex of the graph; 

𝑝0
𝑖 = (

1

𝑁𝑖
, … ,

1

𝑁𝑖
), 𝑖 = 1. . 𝐶 – initial mixed player strategies. 

𝛾 > 0 – a parameter of the learning step; 

𝛼 ∈ (0,1] – an order of the learning step; 

𝜀 – a parameter of 𝜀 -simplex; 

𝛽 > 0 – an order of the expansion rate of 𝜀 -simplex; 

𝜆 ∈ [0,1] – a weighting factor that determines the share of penalty criteria in the formation of player 

losses. 

𝑛 = 0 – an initial time moment; 

𝑛𝑚𝑎𝑥 – a maximum number of the method steps. 

Step 2. Select action options 𝑥𝑛
𝑖 ∈ 𝑋𝑖 , 𝑖 = 1. . 𝐶 according to (2). 

Step 3. Get the value of current losses 𝜁𝑛
𝑖  according to (6). 

Step 4. Calculate the parameter values  𝛾𝑛, 𝜀𝑛 according to (14). 

Step 5. Calculate the elements of the mixed strategy vectors  𝑝𝑛
𝑖 , 𝑖 = 1. . 𝐶 according to (13). 

Step 6. Calculate the self-organization characteristics of the stochastic game 𝑍𝑛 according to (9) and 

𝐾𝑛 according to (10). 

Step 7. Set the next time moment 𝑛: = 𝑛 + 1. 

Step 8. If  𝑛 < 𝑛𝑚𝑎𝑥, then go to step 2, otherwise the algorithm stops. 

8. Results of a computer experiment 

First, consider an undirected full-connected graph 𝐺 = (𝑉, 𝐸) without loops. In the program, the 

graph is conveniently specified either by the matrix of adjacencies or by the incident matrix. In each 

vertex of the graph, we place one agent. In this case, the count will control 𝐶 = |𝑉| the agents. In a 

repetitive stochastic game, one of the agents can knockout and rat one of the incident edges of the graph. 

Linked by strategies with the combined choice of several agents, forms a local path. The task of the 

game is the adaptive fusion of local paths of agents into one global Hamiltonian cycle. 

To solve a stochastic game, we use the stochastic game method (13) with the following parameters: 

𝜆 = 0.5, 𝛾 = 1, 𝜀 =
0.999

𝑁𝑖
, 𝛼 = 0.5, 𝛽 = 0.25. In addition to the values of parameters satisfying 

condition (15), for a stochastic game to converge, it is necessary that the graph has a Hamiltonian cycle. 

The number of vertices of the graph and the powers of its vertices will significantly affect the order 

of the rate of convergence of the graph and the rate of convergence of the game method. The functions 

of average player losses 𝛧𝑛 (9) and strategy coordination ratio 𝐾𝑛 (10) characterize the course of a 

stochastic game of agent movement. Graphs of these functions for different values of order 𝐶 = |𝑉| 
(number of vertices) of a full-connected graph are shown in Figure 2 on a logarithmic scale.  The image 

is bounded by the coordinates of the rectangular output area of the graphs. 
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Figure 2: Self-organization indicators of a stochastic game for different values of the order of the full 
graph  



A decrease in the average loss function 𝛧𝑛 indicates that the target conditions (6) of the convergence 

of the stochastic game are met. The approximation of the value of the coordination coefficient 𝐾𝑛 to 1 

(that is, to logarithmic zero) indicates the self-organization of the players' strategies. For the given 

parameters of the game method, increasing the order C of a full-connected graph leads to a significant 

increase in the number of learning steps of the stochastic game. Thus, for 𝐶 = 5, the rapid growth of 

the coordination coefficient begins at about 𝑛 = 103 steps of learning the stochastic game, for 𝐶 = 10 

it takes a little more than 𝑛 = 104 steps, and for 𝐶 = 15 it takes about 𝑛 = 105 steps. 

In addition to the order of a Hamiltonian graph, the convergence time of a stochastic game will also 

be determined by its connectivity and the parameters of the game method. Reducing the connectivity 

of the graph accelerates the self-organization of cycles. 

Depending on the selected criteria and initial parameters of the game method, several autonomous 

loops or one global loop may appear in the graph. 

If the parameter 𝜆 of the complex penalty (6) takes values close to 1, then the dominant influence 

on the course of the game will be the penalty criterion (3), which minimizes the selection of each vertex 

of the graph by neighboring players. The application of this criterion can lead to the formation of several 

separate (autonomous) cycles in the graph, as shown in Figure 3. For the parameter values given above, 

we obtain solutions of a stochastic game in pure strategies. The stochastic game provides a multivariate 

solution from the problem of constructing graph cycles. 
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Figure 3: Self-organized isolated cycles of graphs  

 

In Figure 3 a shows two possible variants of self-organizing isolated loops for a full-connected 

graph. An edge (2, 3) is a degenerate variant of a loop (minimal loop) where agent 2 has chosen vertex 

3 and agent 3 has chosen vertex 2. Figures 3b – 3d shows variants of isolated cycles for inferior graphs 

of different structures. 

To determine the Hamiltonian cycle, you must set the parameter close to 0. Then criterion (5) will 

have a predominant effect on the course of the game 𝜆, which maximizes the lengths of local paths and 

leads to their asymptotic fusion in time into one global, Hamiltonian cycle.  



Variants of Hamiltonian cycles, as a result of self-organization of the stochastic game, are shown in 

Figure 4 for different graphs.  The game problem has a multivariate solution in pure strategies. 
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Figure 3: Self-organized Hamiltonian graph cycles  

 

From the obtained results the simple interaction of agents within local subsets in the course of 

learning a stochastic game leads to a complex, coordinated behavior of the system, resulting in self-

organizing patterns in the form of several autonomous or one Hamilton in the cycle of the graph. In the 

process of learning, the stochastic game moves from the initial chaotic choice of agents' strategies to 

their purposeful choice in the form of cycles.  

Complicate the problem by expanding it to random graphs [40]. We apply the game method (13) to 

find the Hamiltonian cycle of a random graph. To do this, we assign to each vertex (or game agents) 

the probability 𝑞𝑖 of failure.  Restorative failure of the vertex leads to the temporary loss of all its 

incident ribs. The agent corresponding to such a vertex skips the current move of the stochastic game, 

and neighboring players do not consider his choice strategy (since it is absent) to calculate their own 

current losses. 

Criterion (3) is calculated only for those players (or vertices of the graph) and adjacent to them who 

have not failed for the current step of the game. Criterion (5) for determining the length of the local 

path, in addition to the condition of entering the cycle, additionally considers the condition of reaching 

the player who refused and was the first to happen on the way. 

Several implementations of player strategies for a random full-connected graph are shown in Figure 

5. In addition to vertex failures, it is similarly possible to introduce failures of the edges of the graph.  

In case of failures, a temporary violation of the connectivity of the graph is allowed. Dashed lines with 

arrows indicate strategies that participants in the game can choose when forming a path towards the 

rejected players. Used as a limiting condition for calculating current penalties (5).  

In Figure 6 the graphs of the coefficient 𝐾𝑛 of coordination of players' strategies in the course  of 

game self-organization of Hamilton cycles of a random graph, which is an implementation of a full-

connected graph with |𝑉| = 5 vertices, are given. The weighting factor of criteria (3) and (5) in 



convolution (6) is  𝜆 = 0.5. The failure probabilities 𝑞𝑖 = 𝑞∀𝑖 ∈ 𝑉 are given the same for all vertices 

of the graph. 

The graphs in Figure 6 are obtained for the following values of failure probabilities 𝑞 ∈
{0; 0.05; 0.1; 0.15; 0.2}. For higher probability failures, the convergence time of the game method 

increases significantly. 
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Figure 5: Implementations of a random graph of player strategies 
 

 
Figure 6: The dependence of the coordination coefficient on the probability of failure of vertices of a 
random graph 

 

As can be seen in Figure 6, inmove players lead to an increase in the number of searches for their 

steps necessary for self-organization of the Hamilton cycle. This is due to the fact that the game method 

must additionally adapt to random implementations of a given graph. 

To isolate the Hamiltonian cycle of a random graph foreach vertex, the conditional expectation of 

the edge number chosen by the corresponding agent at the current time is determined rounded to an 

integer value: 

�̄�𝑛
𝑖 = 𝑖𝑛𝑡(∑ 𝑝𝑛

𝑖 𝑥𝑛
𝑖𝑁𝑖

𝑖=1 |𝑥𝑡
𝑖, 𝜁𝑡

𝑖(𝑡 = 1,2, … , 𝑛 − 1)). 



During the adaptive game, at the n→  limit values of the mathematical expectations, the edge 

numbers are sent to one of the deterministic Hamiltonian cycles of the graph, for example, shown in 

Figure 4a. 

The stochastic game method cannot compete in efficiency with the well-known meta odes of 

constructing Hamiltonian cycles and determinates graphs. It has other advantages and purposes – it can 

find Hamiltonian cycles of random graphs under conditions of uncertainty (the probability of failure of 

vertices of a graph is not known a priori). On the other hand, the method of stochastic play is a good 

illustration of self-organization Hamiltonian cycle based on the collection and processing of local data 

without exchanging information between all players. The solution of a stochastic game manifests itself 

in the form of a global pattern of self-organization of player strategies, which is one of the Hamiltonian 

cycles of the graph. The slow (power) convergence of the game is explained by its stochastic nature 

and the lack of information among players about the full structure of the graph or its random 

implementations. A stochastic game simulates the evolutionary process of self-organization of the 

Hamiltonian cycle through self-training of game agents.  

Consequently, the self-organization of the considered stochastic game consists in the formation of 

patterns of strategies of game agents in the form of Hamiltonian cycles that arise in a deterministic or 

random graph in the process of learning the recurrent method (13) based on local interaction between 

agents, which leads to global coordination of the entire distributed system. 

9. Conclusions 

1. The complex problem of self-organization of Hamiltonian cycles of undirected graph based on 

model of stochastic game is solved. 

2. Global Hamiltonian cycles arise because of purposeful locally conditioned choice of conflict-free 

strategies during adaptive learning of a stochastic game. 

3. Self-organization of Hamiltonian cycles of a graph is possible if the constraints on the parameters 

of the game method are derived from the general conditions of stochastic approximation. 

4. The considered game method provides a power order of the speed of convergence, requires a 

significant number of learning steps, since it works in conditions of incomplete a priori information. 

5. Increasing the graph order leads to the deployment of the search process over a longer period and 

requires proper configuration of the parameters of the stochastic game. 

6. The method of stochastic play as a method of random tests with adaptive data processing requires 

more game steps than known deterministic methods, but it can work with random graphs with a 

priori unknown distributions. 

7. Compared to deterministic graphs, the search for Hamiltonian cycles in random graphs requires 

more steps of the game method, since at each step of the game another implementation of the 

connections between vertices of the graph is possible. 

8. The stochastic game method of self-organization of Hamiltonian cycles can be used to build 

cryptographic protocols for exchanging keys, in systems of proof with non-disclosure of knowledge, 

for solving distributed flow and transport problems and collective decision-making under 

uncertainty.  

9. A promising study in this direction is the game simulation of self-organization of Sensory 

networks, ring oscillation of signals in neural networks for the application of results in artificial 

intelligence systems. 
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