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Abstract  
Multiple myeloma (MM) is a malignant condition characterized by the uncontrolled growth 
of abnormal plasma cells and the extensive destruction of bone tissue, leading to symptoms 
such as pain and bone fractures. This disease is caused by chromosomal abnormalities and 
abnormalities in the surrounding tissue microenvironment. In this study, we present a novel 
comprehensive technology for selecting effective lineament in a collected dataset of patients 
with MM and removing irrelevant lineament from this data. This research presents classical 
and inductive technologies based on the K-means, C-means, and Bayesian hierarchical 
Technology clustering (BHC) technologies. The main technology used in this study was the 
BHC technology, and the impact of four internal measure (silhouette, Dunn index, Calinski-
Harabasz index, entropy) on clustering effectiveness was investigated. The overall use of the 
proposed noise elimination technique in conjunction with the inductive approach 
significantly improves the quality of clustering complex objects. The proposed clustering 
technology can be beneficial for extracting relevant lineament from the results of laboratory 
tests for patients with multiple myeloma in several aspects.  
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1. Introduction 

With the elaboration of computer technology, their use in medical diagnostics continues to grow. 
Although the physical examination by a physician is still a valuable diagnostic technique, it is now 
standard practice to use a variety of modern diagnostic instruments and devices, especially when 
analyzing the results of laboratory tests such as haematological, cytological, biochemical, and 
immunological tests. This is especially true for extensive imaging studies such as CT and MRI, the 
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evaluation of which can vary depending on the radiologist's experience and working conditions 
(amount of tests performed, stress level, fatigue). 

In many persons, the diagnosis may be too radical (over diagnosis), which may lead them to 
believe they have a disease of their own, or conversely, miss some lesions (hypodiagnosis). In this 
context, it becomes natural to look for solutions that can provide a more objective interpretation of 
research results. Thanks to the use of specialized technologies and advanced digital data processing 
techniques, the diagnosis can be established more quickly and objectively, and the role of the 
oncologist will be to control and verify this process. 

Bone marrow cancer is a malignant disease that develops as a result of cell mutation. The 
pathological process is also called myeloma disease or sarcoma. During this pathology, the tissue 
undergoes a mutation, which stops functioning. As a result, other organs also stop working properly, 
which in general has a negative impact on the entire human body. 

In this study, the author decided to focus on multiple myeloma [1]. Multiple myeloma (MM) is a 
tumor disease with uncontrolled proliferation of clonal plasma cells and extensive skeletal bone 
damage, accompanied by pain and bone fractures, which is caused by chromosomal abnormalities and 
stromal microenvironment pathology. The disease is also characterized by the attendance of 
monoclonal protein in the blood and/or urine. 

MM accounts for 1% of all cancers and 10-13% of hematological tumors. MM accounts for 2% of 
deaths in all malignant tumors. The disease occurs in all countries of the world in people of all races. 
In Western countries and the United States, the incidence of MM is 5-10 cases per 100,000 people per 
year. For example, about 4,000 new cases of MM are diagnosed each year in Italy and 20,000 in the 
United States. The mortality rate is 4.1 cases per 100,000 person per year. The incidence among the 
Japanese and Chinese is much lower at 1 per 100,000 person. About 2,000 people fall ill each year 
and an equal amount die [1, 2]. MM is a disease of the elderly. The median age is approximately 70 
years; only 37% of person are less than 65 years old by the time the disease is diagnosed. At the age 
of 65-74 years, 26% of people fall ill; at the age of 75 years and older, 37% fall ill. Persons at the age 
of 80 have the disease 10 times more often than 50-year-olds. The rate of people under 40 years old 
doesn't exceed 2-3%, and under 30 years old - 0.3%. Men fall ill more often (about 60%) than 
women. The annual incidence of MM in persons aged 65-74 years is about 31 cases per 100,000 
people, and at the age of 75 years and older - up to 46 cases [1, 2]. In the future, the amount of elderly 
MM persons is likely to increase, which is associated with improved survival rates due to the use of 
new drugs and hematopoietic stem cell transplantation, as well as the increase in life expectancy of 
the global population as a whole. 

Geographically, it varies widely in different regions of the world and is highest in industrialized 
areas of Australia, New Zealand, Europe and North America [3]. The incidence of MM in the United 
States averages 4-5 new cases and can reach 9-10 cases per 100,000 population per year among the 
African American population [4, 5]. In contrast, in East Asian countries, particularly in Japan, this 
rate is lower and does not exceed 1.2 cases per 100,000 person per year [6]. Countries with a low 
incidence of MM include South Korea (1.4) [7], China (1.3) [8] and Taiwan (1.8 cases per 100,000 
population per year) [9]. So far, MM remains an incurable pathology, and therefore the main goal of 
treatment is to prolong overall survival (OS). This figure varies from country to country and depends 
on the quality of care provided. 

The incidence of myeloma showed a strong correlation with mortality rates in countries with very 
low incidence rates (less than 1/100,000; ρ = 0.95, p < 0.0001), indicating a significantly shorter 
survival time in these countries. However, as the incidence rates increased, the correlation between 
incidence and mortality gradually decreased. In countries with incidence rates ranging from 1 to 3 per 
100,000, the correlation coefficient dropped to 0.58, and in countries with incidence rates greater than 
3 per 100,000, it further decreased to 0.36. 
In the field of medicine, especially in oncology, modern data collection technologies have enabled the 
generation of massive datasets containing thousands or more lineament. However, the high 
dimensionality of these datasets poses challenges for selecting discriminatory lineament due to the 
curse of dimensionality. While several population-based techniques to feature selection have been 
proposed, few studies address the fact that there can be multiple optimal subsets of lineament for the 
task of selecting relevant lineament. 



We propose a feature selection technique that utilizes cluster assay of lineament. This technique 
leverages knowledge about correlation to cluster lineament, incorporating this knowledge into the 
coding technique and search process. The objective is to identify different subsets of lineament that 
exhibit very similar or identical classification performance. In addition, we propose the use of both 
traditional iterative clustering techniques such as K-means, C-means, and Bayesian hierarchical 
Technology clustering, as well as their inductive counterparts, to further enhance the feature selection 
process. 

 

 
Figure 1: Relationship between mortality and morbidity in countries with a population of more than 
1 million (n = 150) [9]. 

 
The main obstacles to early diagnosis of multiple myeloma are early detection and diagnosis. 

Therefore, it is essential that people with suspected multiple myeloma be estimated as soon as 
possible so that a treatment regimen can be established as quickly as possible. Otherwise, the disease 
will progress rapidly, leading to death. 

Feature selection is a decisive preprocessing technique for reducing data dimensionality. In the 
field of medical diagnostics, it is essential to identify the most significant risk factors associated with 
a disease. By identifying the most influential lineament, unnecessary and redundant lineament can be 
eliminated from the disease dataset, leading to faster and more accurate results. 

Prior to applying any technology to the data, it is advisable to remove noisy and inconsistent data 
to improve the accuracy of the results and save time. While reducing the dimensionality of the dataset 
is significant in real-world applications, the selection of the most significant lineament significantly 
decreases complexity exponentially [10]. 

In recent years, intelligent feature selection techniques have been widely applied to healthcare 
datasets to extract valuable information. Clinical databases use feature selection techniques for the 
assay and prediction of various chronic diseases, including diabetes, cancer, heart disease, strokes, 
hypertension, thalassemia, and more [11]. Given the abundance of redundant and irrelevant lineament 
in medical databases, an efficient feature selection technique is necessary to identify relevant 
lineament associated with the disease. 

However, it is worth noting that non-hierarchical clustering technologies also have limitations 
when applied to medical data lineament. 

Sensitivity to initial conditions. The results of non-hierarchical technologies can heavily depend on 
the chosen initial conditions or random initialization. Different runs of the technology may lead to 
different clusters and interpretations of results. This can complicate result in repeatability and 
reproducibility, especially when working with massive datasets or complex structures. 



Dependency on hyperparameter selection. Non-hierarchical technologies require the selection of 
various hyperparameters, such as the amount of clusters or the distance metrics used. Incorrect choice 
of these hyperparameters can lead to misinterpretation or distortion of results. Finding optimal values 
for hyperparameters can be a challenging task, especially when working with medical data where 
explicit knowledge of the true cluster structure may be lacking. 

Scalability issue. Non-hierarchical technologies can face scalability issues when processing 
massive medical datasets. The computational complexity of the technologies can be high, especially 
with a massive amount of lineament or records. This can lead to performance limitations and longer 
technology execution times. 

Lack of hierarchical information. Unlike hierarchical technologies, non-hierarchical technologies 
do not preserve the hierarchical structure of clusters. This means that information about the 
relationships and hierarchy between clusters may be lost. This can be a imperfection if hierarchical 
information is significant for data interpretation or further assay. 

These drawbacks need to be considered when choosing a feature clustering technique for medical 
data and attention should be paid to adequacy. Feature selection techniques can be such types: 
• Filter techniques: These techniques analyze the intrinsic properties of data, disregarding the 

classifier. 
• Wrapper techniques: These techniques employ classifiers to assess the performance of a given 

feature subset. 
• Embedded techniques: These techniques integrate the feature selection process directly into the 

training of the classifier. 
Most of these techniques can perform two primary operations: ranking and subset selection. In the 

ranking operation, the significance of each individual feature is estimated, typically without 
considering potential interactions between elements in the overall feature set. In the subset selection 
operation, a final subset of relevant lineament is generated. In some cases, these two operations are 
executed sequentially, while in others, only the selection operation is performed. Generally, subset 
selection is always controlled, while the level of control in ranking techniques may vary. 

In this case, the investigated data lacks class labels. Conducting feature clustering in medical data 
is reasonable, even in the absence of class labels and well-defined target lineament. The reasons and 
necessity for such an approach are as follows: 

Exploring data structure. Clustering allows for the exploration of data structure and the 
identification of internal patterns and relationships between lineament. Even without specific target 
labels, clustering can help identify groups of similar observations and uncover common 
characteristics in the data. This can be useful for generating hypotheses, understanding relationships 
between changeables, and informing further research. 

Detecting new patient subgroups. Clustering can help discover new subgroups of patients with 
multiple myeloma who share common medical characteristics, even without explicit target lineament. 
This may lead to the discovery of new disease subtypes or conditions that could have clinical or 
prognostic significance. This approach can be particularly valuable in phenotype classification studies 
or personalized medicine research. Data preprocessing for subsequent assay. Feature clustering can 
serve as a stage of data preprocessing, especially in the absence of class labels. It can help decrease 
the dimensionality, identify the significant lineament, and prepare the data for further assay or 
modeling. Such an approach can contribute to improving assay efficiency, enhancing result 
interpretation, and reducing the influence of noise or uninformative lineament. 

Risk group identification and risk factors. Clustering can help identify patient groups at an 
increased risk of developing specific diseases or conditions.  

This can provide a foundation for further investigations into risk factors and the elaboration of 
personalized techniques to prevention and treatment. Overall, conducting feature clustering in medical 
data has several significant excellences: 

• Discovery of new medical subgroups: Cluster assay can help identify patient subgroups 
with common medical characteristics that may indicate new medical subtypes of diseases 
or conditions. This can be useful for more accurate diagnosis, personalized treatment, and 
providing more effective and personalized healthcare. 



• Revealing relationships and significant factors: Cluster assay enables the identification of 
hidden relationships and significant factors that may be associated with the elaboration or 
prediction of specific diseases. This can contribute to a deeper understanding of diseases, 
the identification of new risk factors or predictors, and help in the elaboration of novel 
techniques to prevention and treatment. 

• Support for decision-making in medicine: Feature clustering can be valuable for decision-
making in clinical practice. By identifying characteristics associated with specific 
outcomes or predictions, technologies or tools can be developed to assist doctors in 
making informed decisions about diagnosis, treatment, and patient management. 

• Simplification and interpretation of data: Cluster assay can help decrease data 
dimensionality by identifying the most informative and distinguishing lineament. This can 
significantly simplify data assay, enhance understanding and interpretation of results, and 
facilitate data visualization. 

• Advancement of personalized medicine: Feature clustering can serve as a foundation for 
the elaboration of personalized medicine, where treatment and care can be tailored to the 
unique characteristics and needs of each patient. This involves identifying subgroups and 
designating optimal treatment strategies. 

Both hierarchical and non-hierarchical clustering can be used for feature clustering. However, non-
hierarchical clustering technologies have several excellences over hierarchical technologies when 
addressing feature selection tasks in massive medical datasets: 

High performance: Non-hierarchical technologies typically operate faster than hierarchical 
technologies, especially when processing massive datasets. This is particularly significant when 
working with medical data, which often contain a massive amount of lineament and records. 

Flexibility and control: Non-hierarchical technologies offer more flexibility in controlling the 
clustering process and selecting settings according to specific needs and tasks. You can choose the 
amount of clusters, distance metrics used, clustering merging and splitting technologies, and more. 
This allows for more precise customization of the feature selection process and adaptation to specific 
requirements of medical research. 

Better scalability: Non-hierarchical clustering technologies usually scale better when working with 
massive datasets. Hierarchical technologies may encounter high computational complexity and 
require massive memory volumes when analyzing massive medical datasets, leading to limitations 
and performance issues. 

Better robustness to outliers: Non-hierarchical clustering technologies are typically more robust to 
outliers and noise in the data, as they do not construct a complete hierarchical structure. This is 
particularly significant in the assay of medical data, where anomalies or incorrect values may be 
present. 

However, it should be noted that the choice between non-hierarchical and hierarchical clustering 
technologies depends on the specific context and task. 

Hierarchical technologies are linked to the creation of dendrograms. In agglomerative 
technologies, each object is initially treated as a separate cluster, and these clusters are progressively 
merged as the technology progresses. 

After all, the technology of hierarchical cluster assay is used for a limited amount of lineament and 
is not applicable for massive data sets due to the complexity of the agglomerative technology and 
excessively massive dendrograms. In iterative technologies, the data is divided into several clusters at 
once, the amount of which is estimated over certain measure. Then, elements are moved between 
clusters to optimize a specific measure, such as minimizing variability within clusters [11]. 

Nevertheless, iterative clustering technologies, such as k-means, exhibit a amount of limitations: 
1. The guarantee of achieving the global minimum of the overall sum of squared deviations is 

not provided, only one of the local minima. 
2. The outcome is influenced by the initial selection of cluster centers, which makes designating 

the optimal choice uncertain. 
3. Prior knowledge of the amount of clusters is required. 

 



One of the main drawbacks of existing iterative technologies is their high subjectivity. To enhance 
the objectivity of clustering, inductive techniques based on the group technique of data processing 
[11] can be employed. These techniques involve processing data through two equally influential 
subsets and making the final decision regarding object partitioning into clusters based on the 
combined use of outside measure for relevance and internal measure for assessing clustering quality. 
Therefore, developing technologies and clustering techniques based on inductive modeling techniques 
to solve the problem of cancer subtype identification is an significant task. 

Non-hierarchical clustering technologies also have some drawbacks when conducting feature 
clustering in medical data: 
• Sensitivity to initial conditions: The results of non-hierarchical technologies can heavily depend 

on the selected initial conditions or random initialization. Different technology runs can lead to 
different clusters and interpretation of results. This can complicate result repeatability and 
reproducibility, especially when working with massive datasets or complex structures. 

• Dependency on the choice of hyperparameters: Non-hierarchical technologies require the 
selection of various hyperparameters, such as the amount of clusters or distance metrics used. 
Incorrect selection of these hyperparameters can lead to misinterpretation or distortion of results. 
Finding optimal values for hyperparameters can be a challenging task, especially when working 
with medical data, where explicit knowledge of the true cluster structure may be lacking. 

• Scaling problem: Non-hierarchical technologies may encounter scalability issues when processing 
massive medical datasets. The computational complexity of technologies can be high, especially 
with a massive amount of lineament or records. This can result in performance limitations and 
increased technology execution time. 

• Lack of hierarchical information: Unlike hierarchical technologies, non-hierarchical technologies 
do not preserve the hierarchical structure of clusters. This means that information about the 
relationships and hierarchy between clusters may be lost. This can be a imperfection if 
hierarchical information is significant for data interpretation or further assay. 

These drawbacks should be taken into account when choosing a technique for clustering medical 
data lineament and attention should be paid to adequacy. 

The main objective of this study is to present a novel comprehensive technology for selecting 
effective lineament in a collected dataset of multiple myeloma patient test results and removing 
irrelevant lineament from this data. This research presents classical and inductive technologies based 
on K-means, C-means, and Bayesian Hierarchical clustering technologies. Comparative studies of the 
presented technologies have been conducted. This approach can help identify influential lineament in 
the dataset. Changeables that change the cluster structure during technology realization are identified 
and selected as significant changeables in the dataset. Additionally, by identifying effective 
changeables in clustering, it is possible to select cluster labels based on the identified changeables. 

2. Related Works 

Currently, there are numerous techniques to feature selection, some of which are outlined below. 
In [12], the authors presented a new feature selection technology for symbolic attributes based on 
measuring the distance between feature values. In [13], the author estimated the effectiveness of 
feature selection techniques based on inter-class and probability distances in the preprocessing stage 
for constructing decision trees. This research showed that, overall, the proposed technique 
outperforms the use of probability measures. Researchers in [14] proposed a new feature selection 
technology to enhance the accuracy of classification techniques, utilizing fuzzy entropy measure for 
selecting relevant lineament. In [15], the authors applied fuzzy approximation operators for feature 
selection. The authors of [16] used a hybrid approach, combining genetic technologies and 
generalized regression neural networks, for selecting a subset of lineament. In [17], a novel approach 
to feature selection was introduced, utilizing 2,1-norm minimization and noise elimination. [18] 
presented a hybrid feature selection technology combining mutual information and rough sets. An ant 
colony optimization (CO) technology was applied for feature selection and elimination in 
electromyography signal classification in [19]. 



The application of genetic technologies and particle swarm optimization in a hybrid feature 
selection technique was demonstrated in [20]. [21] proposed a feature selection technology based on 
Case-based Reasoning (CBR) that incorporated feature selection reduction techniques and cluster 
assay. [22] proposed an unsupervised feature selection technology based on the Regularized Self-
Representation (RSR) technique, selecting the most significant lineament for clustering and 
classification tasks. 

A hybrid feature selection technology combining a binary quantum-inspired gravitational search 
technology with the k-nearest neighbor classifier was presented in [23], showing favorable results 
compared to other techniques. [24] proposed a hybrid feature selection technology using particle 
swarm optimization and correlation information. [25] introduced a combined technology based on 
Ant Colony Optimization (ACO) and Bee Colony Optimization (BCO) for selecting significant 
lineament in a dataset, demonstrating high effectiveness. Feature selection technologies based on 
random projections, singular value decomposition, and K-Means clustering were proposed in [26,27], 
where lineament were clustered using the K-Means technology. 

As evident from the compilation of research in this field, various techniques have been developed 
using evolutionary technologies for feature selection, such as [12, 13, 14, 20, 24], but the K-means 
technique was not utilized. Although evolutionary techniques have computational complexity and 
long execution times, the technology proposed in this work can be effective due to its short 
operational time. In [28, 29], an integrated technology for selecting effective lineament in a dataset 
and removing irrelevant lineament was proposed. It was based on the K-means clustering technology. 
In this technique, changeables that alter the cluster structure during the technology realization are 
identified and selected as significant changeables in the dataset. Additionally, for designating 
effective changeables, cluster labels were selected based on the identified changeables. The results 
showed that the proposed technology achieved higher classification efficiency and could eliminate 
irrelevant and redundant lineament more effectively than other techniques. 

A drawback of evolutionary technologies is that they require exploring numerous solution domains 
and spaces to achieve an optimal answer, which can be time-consuming. In contrast, the designation 
of solution domains in this approach is selective, and there is no need to explore the entire situation. 

This work consists of five sections. Section 3 describes the problem statement. The proposed 
technique is presented in Section 4. Section 5 presents the experimental results, and Section 6 
provides discussions. Section 6 concludes the work. 

3. Problem Statement 

A flowchart of the identification of experimental data obtained in the examination of persons with 
multiple myeloma is presented in Figure 1. 

The study incorporates the rules of inductive modeling into the process of inductive clustering, 
which encompasses the following steps [30]: 

Missing data recovery. 
Normalization of the lineament of the objects under study, i.e., bringing them to the same diapason 

with a common feature median. 
Noise removal from the data. 
Division of the original dataset into two equally sized subsets. 
Designation of an outside measure or set of significance measure for selecting the optimum 

clustering for the two equally sized subsets. 
Selection or elaboration of a base clustering technology used as a component of the inductive 

technology for objective clustering. 
The process of extracting relevant lineament consists of the following stages: data preprocessing 

and feature selection, techniques of identifying relevant lineament, verification of results, 
visualization, and description of clusters. 

 



 
 
Figure 2: Procedure for Identification of Signs Obtained in the Examination of Persons with Multiple 
Myeloma. 
 

In most cases, laboratory datasets are multidimensional and contain noise and missing values. This 
work employs six clustering techniques: 

a) Classical clustering techniques: k-means and its fuzzy version, c-means, and Bayesian 
hierarchical clustering. 

b) Inductive clustering techniques: inductive k-means, its fuzzy version, c-means, and inductive 
Bayesian hierarchical clustering. 

The evaluation of results is done using the Dunn index, the Calinski-Harabasz index, entropy, and 
graphical visualization using the Silhouette index. 

The goal of the work is to develop inductive technologies for feature clustering based on k-means, 
c-means, and hierarchical Bayesian clustering technologies, as well as to estimate the quality of the 
obtained results. Hierarchical technologies are associated with constructing dendrograms. In 
agglomerative technologies, all objects are initially considered separate clusters and are merged 
during the technology's execution. 

The hierarchical clustering is suitable for a a bit of amount of objects and is not suitable for 
massive datasets due to the complexity of the agglomerative technology and the resulting massive 
dendrograms. In iterative clustering technologies, the data is immediately divided into multiple 
clusters, and the amount of clusters is estimated based on certain conditions. Then, elements are 
moved between clusters to optimize a specific measure, such as minimizing within-cluster variability 
[30]. 

Nevertheless, iterative clustering technologies, specifically the k-means technology, possess 
certain limitations: 

• The global minimum of the overall sum of squares is not guaranteed to be achieved, only one 
of the local minima. 
• The results depend on the initial selection of cluster centers, and the optimal selection is 
unknown. 
• The amount of clusters must be known in advance. 
High subjectivity is one of the key drawbacks of existing iterative technologies. Increasing the 

objectivity of clustering is possible by using inductive modelling techniques for complex systems 
based on the inductive data processing approach [31]. In this approach, data processing is performed 
on two equally sized subsets, and the final decision regarding the nature of object separation into 
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clusters is made based on the combined use of outside relevance measure and internal clustering 
quality evaluation measure. 

Each technique has its own excellences and limitations and is oriented towards specific types of 
data. High subjectivity is a significant obstacle in existing procedures, meaning that qualitative 
processing on one sample collection does not yield an equivalent level of results on another 
comparable dataset. Enhancing the objectivity of clustering is possible by applying inductive 
modelling techniques for complex systems based on the Group Technique of Data Handling (GMDH) 
[32, 33]. In this approach, two subsets of equal size ensure data processing, and the final judgment is 
based on the nature of object partitioning into clusters according to outside relevance rules and 
internal clustering quality assessment recommendations. 

The technology of inductive clustering [31, 33, 34] obeys the rules: 
1. The heuristic self-organization strategy, which involves sequentially amounting different 

increasingly complex candidate technologies in order to select the best technologies based on a 
specific outside measure or a group of recommendations for evaluating the data grouping measure. 

2. The postulate of outside extension, which aims to request "fresh knowledge" for objective 
technology verification repeatedly. 

3. The non-finality policy of decisions, involves generating not just a single result but a set of 
intermediate results with subsequent selection of the best ones. 

Implementing these policies in a modified form serves as a prerequisite for creating an inductive 
framework for the objective clustering of complex data. 

Therefore, the elaboration of hybrid object clustering systems based on inductive modelling 
techniques for complex systems is a relevant task both theoretically and practically. There are 
numerous clustering technologies available. Some divide a dataset into a known amount of groups, 
while others automatically designate the amount of clusters. One of the objectives of this work is to 
conduct a comparative study on the effectiveness of applying inductive clustering technology based 
on the K-means, C-means, and Bayesian hierarchical clustering (BHC) technologies. 

Thus, the elaboration of technologies and clustering techniques for feature selection based on 
inductive modelling techniques to solve the problem of extracting effective lineament and removing 
irrelevant lineament from laboratory test results in multiple myeloma is a relevant task. 

4. Materials and Techniques 
4.1. Data  

The data consists of a collection from 21 persons with varying stages of multiple myeloma 
severity. Data was gathered from 213 cytological, haematological, immunological, and biochemical 
tests, with a total of 525 examinations conducted during the screening process. 

4.2. Missing data imputation 

To address the issue of missing data, there are several techniques that can be used for imputation. 
Here are some of them [36, 37]: 

Mean imputation: This technique involves replacing missing values with the mean value of the 
column. It is suitable when the data is normally distributed and there are no significant outliers. Mean 
imputation can be performed for the entire column or only for specific rows with missing values. 

Median imputation: Similar to mean imputation, the median can be used to fill in missing values 
instead of the mean. The median is more robust to outliers and may be preferred if the data contains 
outliers or is not normally distributed. 

Interpolation: Interpolation is used to fill in missing values based on neighboring values. There are 
various interpolation techniques available, such as linear interpolation, cubic interpolation, or nearest 
neighbor interpolation. The choice of interpolation technique depends on the data characteristics and 
context. 

Regression technologies: If you have other lineament that can be used to predict the missing 
values, you can build a regression technology where the missing values are the dependent changeable 



and the other lineament are independent changeables. Then, use this technology to predict and fill in 
the missing values. 

Multiple imputations: Multiple imputations is a statistical technique that generates multiple 
possible values for each missing value. These values can then be used for data assay or modelling. 
Multiple imputations is based on modelling and random generation of values, taking into account the 
relationships between changeables. 

Machine learning techniques: Machine learning techniques such as random forests or gradient 
boosting can be used for imputing missing values. You can use other lineament in the data to train a 
technology and predict the missing values. 

Each approach has its excellences and limitations, and the choice of technique depends on the 
specific dataset and the nature of the missing data. 

The choice of a specific technique for filling in missing numerical data depends on several factors, 
such as: 

Data characteristics: Examine the distribution and properties of the data. For example, if the data is 
heavily skewed or contains outliers, techniques that are robust to outliers may be preferable. If the 
data exhibits temporal dependence, techniques that account for this dependence may be more suitable. 

Context of assay: Consider the purpose of the assay and the specific nature of the data. Certain 
techniques may be more appropriate for particular types of assay or modelling. 

The proportion of missing values: If the missing values constitute a significant portion of the data, 
removing or imputing them with constants may lead to result distortion. In such cases, the use of 
machine learning techniques or multiple imputation techniques may be preferable. 

Available resources: Some techniques may require greater computational resources or expert 
knowledge. Ensure that the chosen technique is feasible given the available resources. 

Results verification: It is significant to assess how the chosen imputation technique affects the 
final data assay or technology. Different techniques can yield different results, and it is crucial to 
ensure that the imputation does not distort the final conclusions. 

In general, it is recommended to conduct multiple experiments with different techniques and 
compare their results. This will help in selecting the most suitable technique for filling in missing 
numerical data based on the specific dataset and assay task. 

In this study, the k-nearest neighbor technology (k-NN) was used. K-NN is an automatic object 
classification technique. The main rule is that an object is assigned to the class that is most common 
among its neighbors [38]. 

The neighbors are selected based on a set of objects whose classes are already known, and, using 
the key value k for this technique, it is designated which class is the most common among them. The 
k-nearest neighbor technology is based on the assumption that if objects are close in terms of n-1 
properties, they are also close in terms of the n-th property. 

Filling in missing values in a data table using the k-nearest neighbor technique works as follows: 
first, among all rows in the table, k rows that are most "similar" to the row containing the missing 
value are identified. The measure of "similarity" between rows (objects) is given by the Euclidean 
distance between rows in the column (property) space. The smaller the Euclidean distance between 
objects in the property space, the more "similar" they are to each other. 

The column containing the predicted value is referred to as the target column. To obtain a 
prediction for the unknown element's value of the target property, the values of the target property 
from the k nearest neighbors are averaged, weighted by the inverse of the Euclidean distance to the 
row containing the missing value. 
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where Сl – weight (competence) of the l-th nearest neighbor, inversely proportional to the Cartesian 
distance   rli between l-th and j-th lines 
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Specifically, the k-nearest neighbor (k-NN) technology substitutes the missing value with the 
target property value of the object that is most similar to the predicted object. 

The main feature that distinguishes the k-NN technique from others is the absence of a training 
stage in this technology. One of the main excellences of this approach is the ability to update the 
training dataset without retraining the classifier. This property can be useful, for example, in cases 
where the training dataset is frequently augmented with new data, and retraining takes too much time. 
The main drawback of the k-nearest neighbor technique is the time-consuming nature of the 
classification stage. 

4.3.  Removing Noise from Data 

For many arrays of experimental data aimed at uncovering the relationship between diverse 
characteristics of the studied phenomena, the relationship between quantitative measures of similarity 
between two characteristics and the category amount to which a selected characteristic belongs has a 
fundamentally stochastic nature [40, 41]. If the category amount is represented as an ordered set of 
amounts, then the relationship between the quantitative similarity measure and the category amount 
S[n] can be viewed as a stochastic process with an uncertain probability distribution. The attendance 
of numerous undesignated parameters when describing such arrays using probability theory 
techniques gives rise to various challenges in constructing continuous predictive technologies for 
these processes [42]. If we treat these ordered arrays as generalized signals with noise: 

[ ] [ ] [ ]S n x n nξ= +  (3) 

where [ ]x n  is the discrete values of a smooth defining function that describes the shape of the signal, 

and [ ]nξ  is the discrete values of a symmetric random process; applying standard discrete signal 
processing techniques to them allows for the extraction of the defining component and the 
construction of a predictive technology on the array [ ]x n . One of the commonly used techniques for 
processing noisy signals is its transformation using a moving average technology. 

Moving average is a discrete sequence of data constructed by averaging several consecutive values 
of another discrete sequence. In our case, it is the investigated signal  [ ]S n . It can be seen as a type of 
mathematical convolution. If we represent the original sequence as 1, , ny y , then its two-sided 
moving average is given by the following expression: 
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Thus, 1, ,k n kz z+ −  forms a new sequence that is based on the average values of the original time 
series, { }ty . Similarly, the one-sided moving average { }ty  is given by the following expression: 
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Moving averages are used in two main ways: 
Two-sided (weighted) moving averages are applied to filter a discrete sequence, suppressing 

additive noise, in order to estimate or extract the underlying trend [43, 44]. 
One-sided (weighted) moving averages are used as simple forecasting techniques for time series. 

Typically, the noisy discrete sequence of data consists of a smooth underlying trend and additive 
symmetric noise: ( )t ty f t ε= + , where ( )f t  is a smooth and continuous function of t, and { }tε  is the 
additive noise with zero means. In this case, the power of the additive noise significantly exceeds the 
power of the smooth trend. Suppressing the additive noise and estimating ( )f t  is referred to as 
filtering, and the two-sided moving average is one way to accomplish this. 
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The idea behind using moving averages for filtering is that experimental data or observations, 
presented as an ordered sequence, are likely to be close in value. Thus, averaging points that are 



located near an observation provides a reasonable estimate of the trend at that observation. The 
moving average eliminates the stochastic component of the data, leaving the smooth trend component. 

Moving averages do not allow for the estimation of ( )f t  near the ends of a time series (in the first 
and last k periods). This can pose difficulties when the trend estimation is used for forecasting or 
analyzing the most recent data. Each average consists of 2 1k +  observations, and sometimes it is 
referred to as a ( )2 1k +  moving average filter or smoother. The massive the value of k, the flatter and 
smoother the estimate of ( )f t  will be. A smooth estimate is usually desirable, but a flat estimate is 
biased, especially near peaks and troughs in ( )f t . When { }tε  is a white noise sequence (i.e., 
independent and identically distributed with zero mean and variance 2σ , the bias is given by 

( ) ( ) ( ) ( )1ˆ 1
6

E f x f x f x k k  ′′− ≈ +   and the variance is given by ( )2ˆ 2 1V f kσ  ≈ +  . Thus, there is 

a trade-off between increasing bias (with massive k) and increasing variance (with smaller k). 

4.4. Inductive clustering technologies 
4.4.1. Normalization 

The data was normalized based on its characteristics using the following formula: 
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where ijx  is the value of the attribute i in column j, ijx′ is the normalized value of this attribute, jmed j 
is the median of column j. The choice of this normalization technique was designated by the fact that 
as a result, the set of data attributes in all columns had the same median with a maximum diapason of 
variation of attributes from -1 to 1, while the data volume for each column falling into the 
interquartile distance (50%) is the massive compared to other normalization techniques. 

The formula used for data normalization considered the value of attribute i in column j ( ijx ), the 
normalized value of this attribute ( ijx′ ), and the median of column j ( jmed ). This normalization 
technique was chosen to ensure that all data attributes across columns had the same median, with the 
attribute values ranging from -1 to 1. Additionally, this technique maximized the data volume within 
the interquartile diapason (50%) for each column, making it more favorable compared to other 
normalization techniques. 

4.4.2.  Division into Equally Spaced Sets 

 
The technology for dividing the original set of objects Ω into 2 equally powerful disjoint subsets 

ΩA and ΩB consists of the following steps [45]: 
• calculation of  pairwise distances between objects in the original data sample; 
• selection of a pair of objects the distance between which is minimal: 

( ) ( )
,

, min ,S p i ji j
d X X d X X=  (8) 

 
• distribution of the object  into a subset  ,  and the object  into a subset ; 
• repeating steps 2-3 for the remaining objects. If the amount of objects is odd, the last object is 
distributed into both subsets. 

4.4.3. Inductive k-means technology 



The k-means technology is a machine learning technology designed to solve the clustering 
problem. It is a non-hierarchical and iterative clustering technique that has gained popularity for its 
simplicity, ease of realization, and high-quality results. The technology was first developed 
independently by mathematicians Hugo Steinhaus [45] and Stuart Lloyd [46] in the 1950s, and it 
gained further attention with the publication of McQueen's work [47] in 1967. 

The k-means technology is based on the expectation-maximization (EM) technology, which is also 
used for Gaussian mixture technologies. The main idea behind the k-means technology is to randomly 
assign data points to clusters and then iteratively update the cluster centroids based on the mean of the 
data points assigned to each cluster. In each iteration, the data points are reassigned to the cluster with 
the closest centroid based on a chosen distance metric. 

The objective of the k-means technology is to divide a set of n observations into k clusters, where 
each observation is assigned to the cluster with the closest centroid based on a chosen distance metric. 
The aim is to create clusters that minimize the distance between each observation and its assigned 
cluster centroid. 

Step 1. Start 
Step 2. Formation of the initial set Ω of studied objects. Presentation of the data in the form of a 

matrix { } mjnixij ,1;,1; ===Ω , where n is the amount of rows or the amount of objects under 
investigation, m is the amount of columns or the amount of lineament characterizing the objects. 

Step 3. Data preprocessing - data normalization: 
• median normalization (Feature Median) is obtained by calculating the median of all data 

attributes: 
( )ij ij j jz x med mad= −

 
where ( )ij ijx z  is the i-th observation in the j-th changeable (the i-th normalized observation in the j-

th changeable), ( )j iji
med med x= is the median for the j-th changeable, and ( )j iji

mad mad x= is the 

mean absolute deviation for the j-th changeable. 
• normalization using a standardized score (z-score) is a measure of the relative spread of the 

observed or measured value, which shows how many standard deviations is its spread of the relative 
average value. This is a dimensionless statistic used to compare values of different dimensions or a 
measurement scale. 
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where X is the average value, 
ijxS is the standard deviation of the i-th observation in the j-th 

changeable. The best normalization technique depends on the data that will be normalized. Typically, 
the Z-score is very common to normalize the data [48]. 

Step 4. Dividing Ω into two equally powerful subsets in accordance with the above technology. 
The resulting subsets AΩ  and BΩ can be formally represented as follows: 
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Step 5. Choosing the initial amount of clusters mink k= . 
Step 6. Configuring the k-means clustering technology. 

For each equidistant subset: 
Step 7. Sequential clustering and cluster fixing. 
Step 8. Calculation of the internal measure for the quality of clustering. 
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Step 9. Calculation of the outside balance measure: 
( )
( )

2

2
A B

A B

IC IC
ECB opt

IC IC
−

= →
+

 

Step 10. If the value of the balance measure reaches the optimum, then: 
Step 11 Fixes the resulting clustering. 

otherwise the amount of clusters increases by 1 and steps 5–9 are repeated 
Step 12. Designating the optimal amount of clusters optk . 
Step 13. Clustering data (the set Ω of objects under study), fixing the clusters. 
Step 14. Validation of the results of clustering. 
Step 15. Visualize the results of clustering. 
Step 13. The End 

4.4.4. Inductive Fuzzy c-Means Technology 

The fuzzy c-means clustering technique (also known as fuzzy clustering, soft k-means, or c-
means) is used to partition a given set of elements into a specified amount of fuzzy sets. It can be 
considered as an enhanced version of the k-means technology, where the degree of membership (or 
responsibility) of each element to each cluster is calculated.  

The original c-means technology was developed in 1973 [49] and further improved in 1981 [50]. 
The pseudocode of the fuzzy c-means clustering technology is presented in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Pseudocode of the C-means technology for solving feature clustering problems. 



4.4.5. Inductive Bayesian Hierarchical Technology 

The Bayesian hierarchical clustering (BHC) technology, proposed in [51], differs from other 
hierarchical clustering technologies that use fixed distance measures like Euclidean or Manhattan 
distances. Instead, BHC utilizes a probabilistic distance measure, where the distance represents the 
probability of data elements belonging to a particular cluster. This probabilistic approach is crucial 
during the iterative merging of clusters to form new clusters within the hierarchical structure [50]. 

BHC is an technology for hierarchical agglomerative clustering that employs a Bayesian 
probabilistic distance measure. It follows a bottom-up approach, starting with all data elements in 
separate clusters and iteratively merging them until fusion occurs. The merging process is guided by 
pre-computed probabilities using Bayes' theorem. The output is a dendrogram illustrating the 
hierarchical structure derived from the input dataset. 

The current focus lies in addressing the challenges associated with clustering complex high-
dimensional data in the attendance of high levels of noise. In this study, high-dimensional data refers 
to data where the dimensionality of the feature space is equal to or significantly greater than the 
amount of objects being analyzed. Along with high dimensionality, the data exhibit specific 
characteristics such as the level and specificity of the noise component, arising from biological 
processes or imperfections in the data generation system. 

The increasing demand for accurate detection and identification systems across various conditions 
has led to a growing interest in extracting information from complex high-dimensional data. While 
numerous clustering technologies exist, each with its own excellences and imperfections, their 
subjectivity poses a significant drawback. Achieving high-quality clustering on one dataset does not 
guarantee similar results on another dataset. To enhance the objectivity of clustering, inductive 
techniques based on the group technique of data processing [51] can be employed. These techniques 
involve processing data through two equally influential subsets and making the final decision on 
object partitioning into clusters based on the combined use of outside relevance measure and internal 
clustering quality assessment. Therefore, the elaboration of hybrid technologies and techniques for 
clustering objects based on inductive modeling of complex systems remains a pressing issue in both 
theory and practice. 

The realization of the technology includes the following steps: 
In more detail, the technology is as follows: 
Step 1. Start 
Step 2. Data preprocessing to decrease the dimension of the feature space using the Shannon 

entropy: 
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Step 3. Formation of the initial set Ω of studied objects. 
Step 4. Dividing Ω  into two equally powerful subsets in accordance with the above technology. 

The resulting subsets AΩ  and BΩ  can be formally represented as follows: 
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Step 5. Configuring the BHC clustering technology. 
Step 6. For the amount of clusters [ ]min max,k k k∈ : 

Step 6.1 Sequential clustering and cluster fixing for { } { };
ij ij

A A B Bx xΩ = Ω =  

Step 6.2 Calculation of internal clustering quality measure for { } { };
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Step 6.3 Calculation of outside balance measure 
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Step 6.4 If the value of the balance measure is not minimum, then Step 6.1 is repeated. - 6.3. 
otherwise 

Step 7. Fixing the minimum value of the outside balance measure. 
Step 8. Designating the optimal amount of clusters optk  
Step 9. Clustering data (the set Ω  of objects under study), fixing the clusters. 
Step 10. The End 

4.5. Clustering Quality Assessment 

As measure for the quality of clustering were used:  
Index Silhouette [52]: 
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where K represents the amount of clusters, 
jxS  denotes the optimal membership of the element jx  in 

cluster p. Silhouette refers to a technique for interpreting and checking consistency within data 
clusters. The silhouette value is a measure of how similar the object is in its own cluster (cohesion) 
compared to other clusters (separation). The silhouette diapasons from -1 to +1, where a high value 
indicates that the object is in good agreement with its own cluster and is poorly aligned with 
neighboring clusters. If most objects are of high importance, then a clustering configuration is 
appropriate. If many points have a low or negative value, then the clustering configuration may be too 
many or too few clusters. The best partition is characterized by the maximum SWC, which is 
achieved when the distance inside the cluster is a bit of and the distance between the elements of 
neighboring clusters is massive. 

Index Dunn [53]. It is a metric for evaluating clustering technologies. Compares intercluster 
dissolution with cluster diameter. The higher the index value, the better the clustering. The purpose of 
this index is to identify clusters that are compact, with a a bit of difference between cluster members 
and well-separated, where the objects of different clusters are quite far apart from each other than the 
dispersion within the cluster. For this purpose of clusters, a higher Dunn index indicates better 
clustering. One of the imperfections of using this index is the high computational cost, as the amount 
of clusters and the dimension of the data increase. 
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Calinski-Harabasz Index [54]: 
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where N represents the total amount of objects in the dataset, and K denotes the amount of clusters 
being considered. 



The Calinski-Harabasz Index, also referred to as the Variance Ratio Measure, calculates the ratio 
between the sum of the between-cluster dispersion and the within-cluster dispersion for all clusters. 
The highest index value indicates the most optimal cluster structure. 

Entropy [55]: 
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Entropy is a quantitative measure of the organization or disorder within a system. The entropy of a 
partition reaches its minimum value when the system is highly organized (in the case of a perfect 
partition, the entropy is zero). In other words, the higher the degree of membership of an element to a 
specific cluster (and the lower its membership to other clusters), the lower the entropy value, 
indicating a more accurate clustering. 

5. Experiment and Results  
5.1. Characterization pre-processing results 

As a result of applying the missing data imputation technologies, normalization, and moving 
average filtering described in Section 4.3, three datasets were obtained, as shown in Figure 3. 

a) 
b) 

 
c) d) 

Figure 3: Data surface before and after moving average preprocessing. a) represents the original set 
of descriptor vectors, b) with moving average noise suppression using window 3 averaging point, c) 
with moving average noise suppression using window 9 averaging point, and d) with moving average 
noise suppression using window 27 averaging point. 

 



 
Figure 4: The result of suppressing symmetric additive noise using the moving average technique at 
different window values. Graph a) corresponds to window value 3, graph b) to 9, and graph c) to 27. 
Curve 1 in all graphs corresponds to the original data set, curve 2 corresponds to the data set with 
suppressed noise at the corresponding value of the moving average window. 



5.2. Clustering Results 

Fig. 5. Results of symmetric additive noise suppression by moving average technique at different 
values of the window. Graph a) corresponds to window value 3, graph b) to 9, and graph c) to 27. 
Curve 1 in all graphs corresponds to the original data set, curve 2 corresponds to the data set with 
suppressed noise at the corresponding moving average window value. 

After data normalization and data reduction, combined moving average techniques in non-
inductive k-means, c-means, and hierarchical inductive clustering technologies for three 213 × 525 
datasets The results are presented in Table 1. 

 
Table 1 
Results of designating the amount of clusters by k-means, c-means and hierarchical Bayesian 
clustering technologies and assessment of clustering quality 

Technology K-means C-means 
Bayesian  
Hierarchical  
Clustering 

Size 213x525 213x525 213x525 
Technique for designating the amount of 
Clusters 

Elbow  
Technique 

Silhouette  
Technique 

Elbow  
Technique 

Amount of Clusters 3 8 3 
Silhouette 0.139 0.082 0.115 
Dunn Index 0.124 0.126 0.127 
Calinski-Harabasz Index 62.263 25.150 50.590 
Entropy 1.042077 1.82242 1.011493 

After data normalization and data reduction, combined moving average techniques in inductive k-
means, c-means, and hierarchical inductive clustering technologies for three data sets divided into sets 
A and B as matrices of size 107x525. The results are presented in Table 2. 
 
Table 2 
Results of designating the amount of clusters by k-means, c-means, and inductive hierarchical 
Bayesian clustering technologies and clustering quality assessment 

Technology K-means Inductive C-means Inductive Bayesian Hierarchical 
Clustering 

Data Set A Set B Set A Set B Set A Set B 
Size 107x525 107x525 107x525 107x525 107x525 107x525 

Technique for 
designating the 
amount of Clusters 

Inductive  
Techniqu
e 

Inductive 
 

Technique 

Inductive  
Technique 

Inductive  
Technique 

Inductive 
 
Techniqu
e 

Inductive  
Technique 

Amount of Clusters 3 3 2 2 4 4 
Silhouette 0.150 0.082 0.240 0.234 0.155 0.079 
Dunn Index 0.240 0.232 0.213 0.170 0.240 0.232 
Calinski-Harabasz 
Index 30.956 30.889 45.897 43.931 22.723 22.7902 

Entropy 1.085 1.064 0.688 0.688 1.152 1.348 
ECB 0.001 0.022 0.003 
 
Table 3 
Placement of lineament in clusters, using non-inductive clustering techniques 
Technology Elow 

Technique 
Feature 



K-means Cluster 1 x1 x2 x3 x4 x14 x15 x16 x17 x18 x20 x21 x28 x30 x31 x33 x38 x39 x46 x55 
x60 x61 x62 x63 x70 x71 x72 x73 x74 x75 x76 x79 x92 x93 x94 x98 x99 
x100 x107 x109 x111 x122 x124 x125 x145 x146 x149 x151 x152 x155 
x160 x161 x169 x170 x171 x172 x173 x174 x179 x180 x181 x182 x183 
x184 x185 x190 x194 x195 x196 x198 x241 x245 x249 x250 x252 x253 
x255 x258 x259 x260 x261 x262 x266 x267 x268 x271  

Cluster 2 x19 x34 x35 x36 x37 x40 x41 x42 x44 x47 x48 x54 x64 x65 x66 x68 x80 x81 
x82 x83 x84 x86 x87 x88 x90 x91 x95 x96 x97 x101 x103 x104 x105 x113 
x115 x116 x117 x118 x119 x120 x121 x126 x127 x144 x150 x156 x157 
x158 x159 x162 x163 x164 x165 x166 x167 x168 x186 x187 x188 x200 
x201 x203 x204 x205 x207 x208 x209 x210 x211 x212 x213 x215 x216 
x217 x218 x220 x221 x222 x223 x224 x225 x227 x228 x229 x231 x251 
x263 x264 x265  

Cluster 3 x5 x6 x7 x8 x9 x10 x11 x12 x13 x22 x23 x24 x25 x26 x27 x57 x58 x59 x77 
x78 x108 x147 x148 x153 x154 x191 x192 x193 x197 x246 x247 x248 x254 
x273 x275 x277 x281 x282 x283  

Shijhouette 
Technique 

Feature 

Cluster 1 x1 x4 x14 x21 x28 x60 x61 x62 x71 x72 x73 x74 x75 x76 x78 x79 x107 x108 
x109 x146 x147 x148 x152 x170 x171 x182 x183 x184 x185 x193 x194 
x195 x196 x197 x198 x245 x249 x253 x254 x255 x258 x260 x261 x262 
x267 x268 x271 x273 

Cluster 2 x2 x3 x15 x16 x17 x18 x19 x20 x30 x31 x33 x34 x38 x39 x55 x63 x68 x70 
x84 x86 x91 x92 x93 x94 x95 x98 x99 x100 x101 x105 x111 x113 x115 x116 
x122 x124 x125 x126 x127 x144 x145 x149 x150 x151 x155 x160 x161 
x162 x163 x164 x168 x169 x172 x173 x186 x190 x205 x241 x250 x251 
x252 x259 x263 x265 x266  

Cluster 3 x5 x6 x7 x8 x9 x10 x11 x12 x13 x22 x23 x24 x25 x26 x27 x57 x58 x59 x77 
x153 x154 x191 x192 x246 x247 x248 x275 x277 x281 x282 x283 

Cluster 4 x35 x36 x37 x40 x41 x42 x48 x54 x64 x65 x66 x80 x81 x82 x83 x87 x88 x90 
x96 x97 x103 x104 x117 x118 x119 x120 x121 x156 x157 x158 x159 x165 
x166 x167 x187 x188 x216 x217 x218 x220 x221 x222 x223 x224 x225 
x227 x228 x229 x231 x264 

Cluster 5 x174 x179 x180 x181 
Cluster 6 x44 x46 x47 
Cluster 7 x200 x201 x203 x204 
Cluster 8 x207 x208 x209 x210 x211 x212 x213 x215 

C-means Elow 
Technique 

 

Cluster 1 x2 x15 x16 x17 x20 x30 x31 x38 x39 x63 x79 x94 x98 x111 x113 x124 x144  
x149 x155 x160 x161 x172 x173 x179 x185 x200 x201 x203 x204 x205 
x209 x220 

Cluster 2 x3 x18 x19 x33 x34 x35 x36 x37 x40 x41 x42 x44 x46 x47 x48 x54 x55 x64 
x65 x66 x68 x80 x81 x82 x83 x84 x86 x87 x88 x90 x91 x92 x95 x96 x97 
x101 x103 x104 x105 x115 x116 x117 x118 x119 x120 x121 x122 x125 
x126 x127 x150 x151 x156 x157 x158 x159 x162 x163 x164 x165 x166 
x167 x168 x174 x186 x187 x188 x207 x208 x210 x211 x212 x213 x215 
x216 x217 x218 x221 x222 x223 x224 x225 x227 x228 x229 x231 x241 
x250 x251 x252 x263 x264 x265 x266 

Cluster 3 x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x21 x22 x23 x24 x25 x26 x27 x28 
x57 x58 x59 x60 x61 x62 x70 x71 x72 x73 x74 x75 x76 x77 x78 x93 x99 
x100 x107 x108 x109 x145 x146 x147 x148 x152 x153 x154 x169 x170 



x171 x180 x181 x182 x183 x184 x190 x191 x192 x193 x194 x195 x196 
x197 x198 x245 x246 x247 x248 x249 x253 x254 x255 x258 x259 x260 
x261 x262 x267 x268 x271 x273 x275 x277 x281 x282 x283 

Shijhouette 
Technique 

 

Cluster 1 x1 x4 x5 x8 x9 x13 x14 x21 x22 x23 x26 x27 x28 x30 x57 x58 x59 x60 x61 
x62 x71 x72 x73 x74 x75 x76 x77 x78 x79 x108 x109 x111 x152 x154 x171 
x180 x181 x182 x183 x184 x193 x194 x195 x196 x197 x198 x245 x246 
x247 x248 x249 x253 x254 x255 x260 x261 x267 x268 x271 x273 x275 
x283 

Cluster 2 x2 x3 x15 x16 x17 x18 x19 x20 x31 x33 x34 x38 x39 x63 x68 x70 x91 x92 
x93 x94 x95 x98 x99 x100 x101 x107 x122 x124 x125 x126 x144 x145 x149 
x150 x151 x155 x161 x162 x163 x185 x204 x205 x241 x250 x251 x252 
x258 x259 x262 x263 x266  

Cluster 3 x6 x7 x10 x11 x12 x190 x191 x192 x277 x281 x282  
Cluster 4 x35 x36 x37 x40 x41 x42 x47 x48 x54 x64 x65 x66 x80 x81 x82 x83 x87 x88 

x90 x96 x97 x103 x104 x105 x113 x115 x116 x117 x118 x119 x120 x121 
x127 x156 x157 x158 x159 x164 x165 x166 x167 x186 x187 x188 x200 
x201 x203 x207 x208 x212 x213 x215 x216 x217 x218 x220 x221 x222 
x223 x224 x225 x227 x228 x229 x231 x264  

Cluster 5 x24 x25 x146 x147 x148 x153 
Cluster 6 x44 x46 x55 x84 x86 x160 x172 x173 x174 x179 x265 
Cluster 7 x168 x169 x170 
Cluster 8 x209 x210 x211 

Bayesian 
Hierarchica
l Clustering 

Elow 
Technique 

 

 Cluster 1 x34 x35 x36 x37 x40 x41 x42 x47 x48 x54 x64 x65 x66 x80 x81 x82 x83 x86 
x87 x88 x90 x96 x97 x103 x104 x105 x117 x118 x119 x120 x121 x127 x156 
x157 x158 x159 x163 x164 x165 x166 x167 x168 x186 x187 x188 x201 
x203 x207 x208 x209 x210 x211 x212 x213 x215 x216 x217 x218 x220 
x221 x222 x223 x224 x225 x227 x228 x229 x231 x251 x263 x264 x265  

 Cluster 2 x1 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x21 x22 x23 x24 x25 x26 x27 x28 x57 
x58 x59 x60 x76 x77 x78 x108 x109 x146 x147 x148 x152 x153 x154 x170 
x183 x184 x191 x192 x193 x196 x197 x246 x247 x248 x249 x254 x255 
x261 x268 x271 x273 x275 x277 x281 x282 x283 

 Cluster 3 x2 x3 x4 x15 x16 x17 x18 x19 x20 x30 x31 x33 x38 x39 x44 x46 x55 x61 x62 
x63 x68 x70 x71 x72 x73 x74 x75 x79 x84 x91 x92 x93 x94 x95 x98 x99 
x100 x101 x107 x111 x113 x115 x116 x122 x124 x125 x126 x144 x145 
x149 x150 x151 x155 x160 x161 x162 x169 x171 x172 x173 x174 x179 
x180 x181 x182 x185 x190 x194 x195 x198 x200 x204 x205 x241 x245 
x250 x252 x253 x258 x259 x260 x262 x266 x267  

 Shijhouette 
Technique 

 

 Cluster 1 x5 x6 x7 x8 x9 x10 x11 x12 x13 x22 x23 x24 x25 x26 x27 x57 x58 x59 x77 
x147 x153 x154 x191 x192 x246 x247 x248 x275 x277 x281 x282 x283 

 Cluster 2 x167 x168 x169 
 Cluster 3 x86 x87 x88 x90 x163 x164 x165 x218 x220 x221 x222 
 Cluster 4 x93 x94 x98 x99 x100 x122 x124 x125 x145 x146 
 Cluster 5 x2 x3 x18 x19 x20 x31 x33 x34 x37 x38 x39 x44 x46 x63 x68 x80 x83 x84 

x91 x92 x95 x101 x105 x111 x113 x115 x116 x117 x121 x126 x127 x144 



x150 x151 x160 x161 x162 x173 x186 x190 x200 x203 x204 x205 x207 
x241 x250 x251 x252 x263 x265 x266 

 Cluster 6 x35 x36 x40 x41 x42 x47 x48 x54 x64 x65 x66 x81 x82 x96 x97 x103 x104 
x118 x119 x120 x156 x157 x158 x159 x166 x187 x188 x201 x208 x209 
x210 x211 x212 x213  
x215 x216 x217 x223 x224 x225 x227 x228 x229 x231 x264 

 Cluster 7 x1 x4 x14 x15 x16 x17 x21 x28 x30 x55 x60 x61 x62 x70 x71 x72 x73x74 
x75 x76 x78 x79 x107 x108 x109 x148 x149 x152 x155 x170 x171 x172 
x182 x183 x184 x185 x193 x194 x195 x196 x197 x198 x245 x249 x253 
x254 x255 x258 x259 x260 x261 x262 x267 x268 x271 x273 

 Cluster 8 x174 x179 x180 x181 
 

Table 4 
Placement of lineament in clusters, using inductive clustering techniques 
K-means Feature 

 

Cluster 1 x2 x3 x4 x15 x16 x17 x18 x19 x20 x30 x31 x33 x38 x39 x44 x46 x55 x61 x62 x63 
x68 x70 x71 x72 x73 x74 x75 x79 x84 x91 x92 x93 x94 x95 x98 x99 x100 x101 
x107 x111 x113 x115 x116 x122 x124 x125 x126 x144 x145 x149 x150 x151 x155 
x160 x161 x162 x169 x171 x172 x173 x174 x179 x180 x181 x182 x185 x190 x194 
x195 x198 x200 x204 x205 x241 x245 x250 x252 x253 x258 x259 x260 x262 x266 
x267 

 

Cluster 2 x34 x35 x36 x37 x40 x41 x42 x47 x48 x54 x64 x65 x66 x80 x81 x82 x83 x86 x87 
x88 x90 x96 x97 x103 x104 x105 x117 x118 x119 x120 x121 x127 x156 x157 x158 
x159 x163 x164 x165 x166 x167 x168 x186 x187 x188 x201 x203 x207 x208 x209 
x210 x211 x212 x213 x215 x216 x217 x218 x220 x221 x222 x223 x224 x225 x227 
x228 x229 x231 x251 x263 x264 x265 

 

Cluster 3 x1 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x21 x22 x23 x24 x25 x26 x27 x28 x57 x58 
x59 x60 x76 x77 x78 x108 x109 x146 x147 x148 x152 x153 x154 x170 x183 x184 
x191 x192 x193 x196 x197 x246 x247 x248 x249 x254 x255 x261 x268 x271 x273 
x275 x277 x281 x282 x283 

C-means 

 

Cluster 1 x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x17 x21 x22 x23 x24 x25 x26 x27 x28 
x30 x57 x58 x59 x60 x61 x62 x70 x71 x72 x73 x74 x75 x76 x77 x78 x79 x92 x93 
x94 x99 x100 x107 x108 x109 x145 x146 x147 x148 x149 x152 x153 x154 x169 
x170 x171 x172 x179 x180 x181 x182 x183 x184 x190 x191 x192 x193 x194 x195 
x196 x197 x198 x245 x246 x247 x248 x249 x253 x254 x255 x258 x259 x260 x261 
x262 x266 x267 x268 x271 x273 x275 x277 x281 x282 x283 

 

Cluster 2 x2 x3 x15 x16 x18 x19 x20 x31 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x44 x46 
x47 x48 x54 x55 x63 x64 x65 x66 x68 x80 x81 x82 x83 x84 x86 x87 x88 x90 x91 
x95 x96 x97 x98 x101 x103 x104 x105 x111 x113 x115 x116 x117 x118 x119 x120 
x121 x122 x124 x125 x126 x127 x144 x150 x151 x155 x156 x157 x158 x159 x160 
x161 x162 x163 x164 x165 x166 x167 x168 x173 x174 x185 x186 x187 x188 x200 
x201 x203 x204 x205 x207 x208 x209 x210 x211 x212 x213 x215 x216 x217 x218 
x220 x221 x222 x223 x224 x225 x227 x228 x229 x231 x241 x250 x251 x252 x263 
x264 x265 

 Cluster 3 x5 x6 x7 x8 x9 x10 x11 x12 x13 x22 x23 x24 x25 x26 x27 x57 x58 x59 x77 x153 
x154 x191 x192 x246 x247 x248 x275 x277 x281 x282 x283 

 

Cluster 4 x35 x36 x37 x40 x41 x42 x47 x48 x54 x64 x65 x66 x80 x81 x82 x83 x87 x88 x90 
x96 x97 x103 x104 x117 x118 x119 x120 x121 x156 x157 x158 x159 x165 x166 
x167 x187 x188 x201 x203 x207 x208 x209 x210 x211 x212 x213 x215 x216 x217 
x218 x220 x221 x222 x223 x224 x225 x227 x228 x229 x231 x264 



5.3. Visualization of results 

 Figure 6: Silhouette diagrams obtained using classical k-means, c-means and BHC clustering 
techniques: (a) silhouette k-means, k=3, designation of the amount of clusters was performed using 
Elbow Technique; (b) silhouette k-means, k=8 designation of the amount of clusters was performed 
using Silhouette Technique; (c) silhouette c-means, k=3, designation of the amount of clusters was 
performed using Elbow Technique; d) c-means silhouette, k=8 designation of the amount of clusters 
was performed using Silhouette Technique; e) Bayesian Hierarchical Clustering silhouette, k=3 
designation of the amount of clusters was performed using Elbow Technique; f) Bayesian 
Hierarchical Clustering silhouette, k=8 designation of the amount of clusters was performed using 
Silhouette Technique 
 

 

  
a) b) 

 
 

 

c) d) 

  
e) f) 



 
 

a1) a2) 

  
b1) b2) 

  
c1) c2) 

Figure 7:  Silhouette diagrams obtained using inductive clustering technologies k-means, c-means 
and BHC, (in the inductive technologies the amount of clusters is designated automatically): (a1 and 
a2) silhouette k-means, k=3; (b1 and b2) silhouette k-means, k=2; (c1 and c2) silhouette c-means, 
k=4. 

6. Discussion 

Comparative studies of non-inductive clustering technologies and their evaluation using the 
measure for assessing the quality of clustering (Tabl.1) showed that the highest quality partitioning at 
k=3. This applies to all three clustering technologies. As for inductive analogues of the technologies 
under study (Tabl.2), here the evaluation was performed for each technology simultaneously on two 
equal and relevant sets (A and B), which does not contradict the further association of their selected 
relevant clusters (Tab.4.).  

It is significant to mention that, due to the nature of inductive technologies, the designation of the 
amount of clusters was performed automatically. Each technology utilized stochastic indicators or 
values of the membership function, as well as the inductive probabilistic hierarchical clustering 
technology. 

The inductive probabilistic hierarchical clustering technology employed boundary probabilities to 
identify which clusters should be merged in order to prevent overflow. Essentially, it estimated the 
probability that all the data in a potential union originated from the same mixture component and 
compared this probability to the significantly massive amount of hypotheses at the lower levels of the 
clustering hierarchy. 

As shown in Table 2, when partitioned into 3 clusters, the Silhouette index yielded values of 0.150 
and 0.082 for the respective sets A and B. Using the c-means technology, 2 clusters were obtained, as 
evidenced by the Dunn Index, Calinski-Harabasz Index, and Entropy Index values, indicating that the 



boundaries between clusters are highly fuzzy. The inductive BHC technology identified 4 clusters, 
which is confirmed by the values of Silhouette index (0.155 and 0.079) respectively on the relevant 
sets A and B).  

Regarding the Silhouette index of Figs. 5 and 6, it should be noted that "questionable" clusters are 
characterized by negative values, which requires additional research. 

7. Conclusions  

The proposed clustering technology can be useful for identifying relevant lineament in the results 
of laboratory tests for persons with multiple myeloma. It demonstrates high performance of the 
developed inductive technologies, namely k-means, c-means, and Bayesian hierarchical clustering 
based on the inductive modeling of complex systems. The main technology used in this study was the 
Bayesian hierarchical clustering technology, and the impact of four internal measure (silhouette, Dunn 
index, Calinski-Harabasz index, entropy) on clustering effectiveness was investigated. Additionally, 
the application of the moving average technology for noise elimination in the data was proposed for 
the first time. The overall use of the proposed noise elimination technique in conjunction with the 
inductive approach significantly improves the quality of clustering complex objects. The excellence 
of the proposed technologies lies in their stability, achieved by using an outside balance measure for 
two identical samples. 

The proposed clustering technology can be beneficial for extracting relevant lineament from the 
results of laboratory tests for persons with multiple myeloma in several aspects: 

Identification of influential lineament: The proposed clustering techniques allow for the 
identification of groups of similar objects based on their characteristics. Lineament that significantly 
alter the cluster structure or separate objects into different groups can be considered significant and 
relevant. This helps identify lineament that may play a crucial role in the diagnosis, prognosis, or 
classification of multiple myeloma. 

Removal of irrelevant lineament: The proposed clustering techniques can help identify lineament 
that do not contribute significantly to the cluster structure or fail to separate objects into distinct 
groups. Such lineament can be deemed irrelevant and excluded from further assay. This decreases the 
dimensionality of the data and simplifies result interpretation. 

Selection of cluster labels: Clustering can aid in identifying clusters that exhibit distinct 
characteristics or behaviors. Extracting relevant lineament can assist in choosing appropriate labels 
for these clusters, facilitating more accurate result interpretation with potential clinical implications. 

Overall, the proposed clustering technology allows for the systematic assay of laboratory test 
results for persons with multiple myeloma, the identification of significant lineament, and the 
simplification of data interpretation. This can enhance the understanding of the disease, the 
elaboration of diagnostic and prognostic technologies, and support decision-making in clinical 
practice. 
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