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Abstract 
Predicting random number sequences has significant implications for cryptography and secure 

communication systems. In this paper, a hybrid deep learning model was proposed, it combines 

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and RNNs to 

predict pseudo-random number generator (PRNG) and quantum random number generator (QRNG) 

sequences. Proposed model was compared with traditional CNNs, LSTMs, and RNNs models. Given 

results showed that the hybrid model outperforms the other models, providing better prediction 

accuracy for PRNG and QRNG sequences. 

 

Keywords1 
Random numbers, RNN, CNN, LSTM, GRU, Hybrid model, Secure communication, PRNG, QRNG 

1. Introduction 

Random number generation is a crucial component of many applications, including cryptography, secure 

communication systems, simulations, and probabilistic algorithms. Pseudo-random number generators 

(PRNGs) and quantum random number generators (QRNGs) are two main types of random number generators, 

with QRNGs providing better security due to their inherent unpredictability [1]. However, predicting PRNG 

and QRNG sequences remains an essential task to assess their security and reliability. Deep learning techniques, 

such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and RNNs, 

have been extensively used in various time series prediction tasks [2]. In this paper, was proposed a hybrid 

deep learning model that combines CNNs, LSTMs, and RNNs to predict PRNG and QRNG sequences. The 

model is trained and evaluated on a dataset containing both PRNG and QRNG sequences. 

2. Related Works 

Several studies have explored the use of deep learning techniques for predicting random number sequences. 

For instance, the use of CNNs and LSTMs has been reported in predicting PRNG sequences [3]. In another 

study, RNNs have been employed to predict QRNG sequences [4]. However, there is limited research on hybrid 

deep learning models that combine multiple neural network architectures to predict PRNG and QRNG 

sequences. 

3. Goal of the Research 

The primary goal of this research is to investigate the effectiveness of various deep learning architectures, 

including MLP, CNN, LSTM, and RNNs models, for the task of predicting the next value in a sequence of 

random numbers generated by a combination of PRNG and QRNG sources. By exploring different neural 
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network architectures, was aimed to identify the most suitable model for this problem, considering aspects such 

as predictive accuracy, model complexity, and training time. Another objective is to assess whether the trained 

models can achieve better prediction results than a random baseline, indicating that they have learned 

meaningful patterns in the data. To ensure a fair comparison, will be used appropriate evaluation metrics, such 

as Mean Squared Error (MSE) and Mean Absolute Error (MAE), to quantify the performance of each model 

and compare it against a random prediction benchmark. Finally, was aimed to provide insights into the practical 

implications of using deep learning models to predict random number sequences generated from quantum 

sources, as well as discussing potential future research directions in this field. By understanding the strengths 

and limitations of various models for this task, authors hope to contribute to the development of more advanced 

techniques for analysing and predicting random number sequences in different contexts. 

4. Methodology 

The dataset used in this study consists of PRNG and QRNG sequences generated using various algorithms, 

such as the Mersenne Twister, Linear Congruential Generator, and a commercial QRNG device [5]. The dataset 

is divided into training, validation, and test sets, ensuring a balanced representation of PRNG and QRNG 

sequences in each set. 

5. Model Architecture 

The proposed hybrid deep learning model combines the strengths of CNNs, LSTMs, and RNNs to predict 

PRNG and QRNG sequences. The model consists of a CNN layer for feature extraction, followed by an LSTM 

layer to capture temporal dependencies, and a RNNs layer for capturing long-range dependencies. The final 

output is a single linear activation unit that produces the predicted value. The model is trained using the Adam 

optimizer and mean squared error (MSE) as the loss function [6]. 

6. Results Analysis 

The first step in analysing the model's performance was to visually inspect the predicted values against the 

true values. This was achieved by plotting the first 100 true values and the corresponding predicted values on 

the same graph. This visualization allows us to assess the overall fit of the model to the data and identify any 

noticeable discrepancies between the predicted and true values. 

6.1 Similarity Assessment 

To quantify the similarity between the true values and the predicted values, was calculated the Pearson 

correlation coefficient. This metric measures the linear relationship between two datasets, with a value close to 

1 indicating a strong positive relationship. A pre-defined threshold of 0.9 was used to determine whether the 

predicted values were considered close to the true values. Based on the computed correlation coefficient, was 

concluded whether the model's predictions were close to the true values or not. 

6.2 Model Performance Comparison 

To assess the effectiveness of the model, its performance was compared against a random prediction 

baseline. This was done by generating random predictions within the same range as the true values and 

calculating the Mean Squared Error (MSE) for both the model's predictions and the random predictions. By 

comparing these MSE values, we were able to determine whether the GRU model's predictions were better 

than random ones. The results from the visual inspection, similarity assessment, and model performance 

comparison provide a comprehensive analysis of the model's performance in predicting the next value in a 



sequence of random numbers. These findings contribute to our understanding of the model's effectiveness for 

this specific task and offer insights into potential improvements or alternative approaches. 

7. Experiments and Results 

The hybrid model is trained on the dataset and its performance is compared with traditional RNNs, CNNs, 

and LSTMs. The models are evaluated using the Pearson correlation coefficient and mean squared error (MSE) 

to assess the similarity between the true and predicted values. 

7.1 Simple RNN 

The simple RNN is the most basic form of a recurrent neural network, characterized by its single hidden 

layer that takes input from the previous time step and feeds it back into the network for the next time step (Fig. 1).  

 

 

Figure 1: Simple RNN architecture 
 

Despite its simplicity, the performance of simple RNNs in predicting PRNG and QRNG sequences is limited 

due to their inability to capture long-range dependencies as a result of the vanishing gradient problem (Fig. 2). 

 

 

Figure 2: Simple RNN performance 

7.2 Gated Recurrent Unit (GRU) 

The GRU is an advanced RNN architecture that addresses the vanishing gradient problem observed in 

simple RNNs. With the introduction of gating mechanisms, GRUs can learn when to update the hidden state 

and when to maintain the existing state, allowing them to capture longer-range dependencies more 

effectively (Fig. 3).  



 

Figure 3: Gated Recurrent Unit architecture 
 

When applied to PRNG and QRNG sequence prediction, GRUs demonstrate improved performance 

compared to simple RNNs (Fig. 4). 
 

 

Figure 4: Gated Recurrent Unit performance 

7.3 Bidirectional RNN 

Bidirectional RNNs process the input sequence in both forward and backward directions, enabling the 

network to capture information from both past and future time steps. This capability proves useful for tasks where 

context from both directions is important, such as natural language processing and speech recognition (Fig. 5).  

 

 

Figure 5: Bidirectional RNN architecture 



In the context of PRNG and QRNG sequence prediction, bidirectional RNNs exhibit enhanced performance 

due to their ability to incorporate information from the entire sequence (Fig. 6). 

 

 

Figure 6: Bidirectional RNN performance 

7.4 Stacked RNN 

A stacked RNN architecture consists of multiple layers of RNNs stacked on top of each other, allowing the 

network to learn more complex features and representations of the input sequence. This increased complexity 

can lead to improved prediction performance for PRNG and QRNG sequences (Fig.7). 

 

 

Figure 7: Stacked RNN architecture 

 



Stacked RNNs, when compared with other RNN variants, demonstrate superior performance in capturing 

intricate patterns within the input data (Fig. 8). 

 

 

Figure 8: Stacked RNN performance 

7.5 Convolutional Neural Networks 

CNNs have shown success in time series prediction tasks due to their ability to capture local patterns and 

dependencies [7]. In our experiments, a CNN model is trained on the PRNG and QRNG sequences dataset (Fig. 9).  

 

 

 



 
Figure 9: CNN architecture 

 

The results indicate that the CNN model can capture some local patterns in the sequences, but struggles to 

predict long-range dependencies, leading to suboptimal prediction accuracy (Fig. 10). 

 

 

Figure 10: CNN performance 

7.6 Long Short-Term Memory Networks 

LSTMs are designed to capture long-term dependencies in time series data [8-10]. Was trained an LSTM 

model on the PRNG and QRNG sequences dataset and evaluate its performance (Fig. 11).  

 



 

Figure 11: Long Short-Term Memory architecture 
 

The results show that the LSTM model can capture temporal dependencies in the sequences, but its 

performance is limited by the absence of feature extraction capabilities (Fig. 12) [11]. 

 

 

Figure 12: Long Short-Term Memory performance 



7.7 Hybrid Deep Learning Model 

The proposed hybrid model combines the strengths of CNNs, LSTMs, and RNNs to predict PRNG and 

QRNG sequences (Fig. 13) [12,13].  

 

 

Figure 13: Hybrid Deep Learning architecture 

 



The model's performance is compared with the other models, and the results show that the hybrid model 

outperforms the traditional CNNs, LSTMs, and RNNs models, providing better prediction accuracy for PRNG 

and QRNG sequences (Fig. 14). 

 

 

Figure 14: Hybrid Deep Learning performance 
 

It can be observed numerous instances where the models were able to predict the exact value or a very close 

trend in PRNG and QRNG sequences (Fig. 15, 16). These instances demonstrate the effectiveness of the models 

in understanding the underlying patterns and dependencies within the data, as well as their capability to 

generalize and make accurate predictions on unseen data. 

 

 
Figure 15: Exact match 1 

 

 

Figure 16: Exact match 2 
 

Furthermore, it was observed that the models were often able to predict a close trend in the sequences, even 

if the exact value was not pinpointed (Fig.17).  

 



 

Figure 17: Close trend example 
 

This indicates that the models have a strong grasp of the overall dynamics and structure of the data, enabling 

them to generate predictions that closely follow the actual trajectory of the PRNG and QRNG sequences [14-

16]. This level of trend identification can prove beneficial in scenarios where understanding the general 

direction or pattern of the data is more critical than pinpointing individual values [17]. 

Conclusions and Future Work 

In this paper, was presented a novel hybrid deep learning model that combines the strengths of 

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and RNNs to predict 

Pseudo-Random Number Generator (PRNG) and Quantum Random Number Generator (QRNG) sequences. 

Our results demonstrate that the hybrid model outperforms traditional CNNs, LSTMs, and RNNs models in 

terms of prediction accuracy for both PRNG and QRNG sequences. 

As part of the future work, it is planned to explore other hybrid model architectures that could further 

enhance the performance of our current model. Also was aimed to investigate the use of additional features, 

such as information from the frequency domain, to improve the prediction capabilities of our model. 

Furthermore, authors intend to study the generalizability of our hybrid model to other sequence prediction tasks. 

These tasks may include predicting cryptographic keys, secure communication protocols, and other security-

related applications. Additionally, will be considered the development of more robust and efficient training 

strategies to ensure that proposed model remains effective even in the face of rapidly evolving security threats. 

By continuing to enhance and refine our hybrid deep learning model, authors hope to contribute to the 

advancement of secure communications and data protection in the digital age. 
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