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Abstract  
The work is devoted to the development of a method for controlling the main rotor speed, 

which is a key task to be solved in a helicopter flight. A modified block diagram of the circuit 

for maintaining the helicopters turboshaft engines free turbine speed an electronic PID-

controller with a neural network tuning of the amplification factor has been developed, which 

made it possible to automatically adjust the amplification factor and, thereby, reduce the time 

of the transition process. The use of a dynamic neural network of direct data transmission based 

on neurons with a radial-basis activation function in the first layer and adalines – neurons with 

a linear activation function in the second layer is proposed, which made it possible to improve 

the quality of the transient process in terms of helicopters turboshaft engines turbine rotation 

frequency, which consists in an increase in performance up to 3 seconds, an increase in 

statistical accuracy up to ± 0.05 % and the elimination of parameter overshoot. The use of a 

dynamic neural network of direct data transmission as some functional converter that generates 

for a set of input and output signals the amplifications factors of the PID-controller made it 

possible to improve the probability of errors of the 1st and 2nd kind in comparison with the 

known controllers by 35... 85 %.  
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1. Introduction 

The helicopters turboshaft engines (TE) are a complex thermogas-dynamic system with many 

features that must be taken into account when designing an automatic control system (ACS). The ACS 

of a modern aircraft engine performs many functions. These functions are distributed and carried out 

by a digital controller and hydromechanical actuators. The digital controller performs the main part of 

the engine control functions. Its main tasks are to control the TE operating modes, maintaining and/or 

limiting its various parameters, diagnosing and monitoring the state of the TE and ACS elements, and 

providing service and information functions. The task of the hydromechanical part of the ACS includes 

the control of the engine mechanization by the commands of the digital controller and the control of the 

operation of the gas turbine engine according to simplified laws in the event of an electronic system 

failure [1, 2]. 

The quality of control of TE parameters largely depends on the quality of tuning of electronic 

algorithms. Often in electronic control systems of TE linear controllers of P-, PD-, PI- and PID-type 

are used. Their popularity is explained by the simplicity of the mathematical description, low cost of 

implementation and sufficient efficiency. However, as practice shows, within the framework of the 

linear theory, it is not always possible to tune the PID-controller to ensure the required quality of 
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transients in a nonlinear system [3, 4], which are helicopters TE. Under these conditions, the use of 

neural network technologies is relevant and promising. 

2. Related Works  

When controlling complex non-linear objects, such as a helicopters TE, such controllers cannot 
always provide the required quality of control over TE parameters, stability and robustness of the system 
under changing operating conditions and failures. In this case, it makes sense to use alternative 
nonlinear controllers [5, 6]. For example, it can be a fuzzy logic controller (FLR), which has the 
property of robustness [7, 8]. Due to the absence of the need for a strict mathematical description of the 
object, logic controllers have gained great popularity among developers of electronic systems [9, 10]. 
The fuzzy control law obtained as a result of synthesis is non-linear and works well in systems with a 
high degree of complexity, non-linearities such as a dead zone, hysteresis, when the parameters of the 
unchanging part of the system deviate from their nominal values and information is lost in case of 
failures [11, 12]. It is worth noting that Elizaveta Chicherova conducted a number of alternative control 
methods research that make it possible to increase the stability margins of gas turbine engines ACS and 
eliminate oscillations using the following controllers: a linear PD controller with a reduced proportional 
gain, a square-law controller, a variable gain controller, a proportional fuzzy logic controller, a fuzzy 
logic controller with a proportional gain and a corrective differential link [13, 14], which made it 
possible to ensure the aperiodic nature of the transient process, to achieve a statistical accuracy of 
± 0.2 % and a speed of up to 6 seconds. 

However, when using these types of controllers, the overshoot value ranges from 0.1 to 2.2 %. In 
order to eliminate overcasting, increase statistical accuracy and develop a method for controlling the 
speed of the free turbine of helicopters TE using neural network technologies, this is an urgent scientific 
and practical task. 

3. Methods and Materials 

The main task of the automatic control system of helicopters TE is to maintain the rotational speed 
of the main rotor nнв. This task is accomplished by controlling the free turbine speed nFT through the 
required fuel flow rate GT. The value of the required fuel consumption is formed from the gas generator 
rotor r.p.m. nTC and its derivative nTC_req. Depending on the engine operating mode, the value of the 
required derivative of the gas generator rotor r.p.m. is formed by various circuits. For example, in idle 
mode, the value of nTC_req is determined by the circuit for maintaining the required speed of the 
turbocharger rotor, and at flight mode, by the circuit for maintaining the free turbine speed. Since the 
helicopter TE can be operated at flight mode for a significant part of the time, the choice of the structure 
and parameters of the electronic controller determines the dynamic quality of helicopter TE control and 
its resource. 

The mathematical model of the regulated object – the helicopter TE (in this work, the deviations of 
the state variables are considered) according to [15] has the form: 
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where GT – fuel consumption, τ1 and τ2 – time constants, k11, k21, k22 – amplification factors. 
The analysis of the object of regulation – the helicopter TE according to [15] is presented in the form 

of a series connection of dynamic links with transfer functions: 
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(2) 

The mathematical model of the fuel dispenser with a direct drive from an electromechanical 
converter according to [15, 16] after dry friction linearization is represented as: 
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where J – rotor inertia moment, α – rotor rotation angle, kv, ki, 
TGk  – coefficients of viscous friction, 

torque and fuel consumption, i – control current. 
Thus, the transfer function of the fuel dispenser is presented in the following form [15]: 
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For the internal fuel consumption control loop, a proportional-differential control law is adopted: 
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where GTgiven – fuel consumption setpoint, kP and kD – proportional and differential gains. 
According to [15, 17], to take into account the delay of the digital control unit, a link of pure delay 

by 1.5·T is introduced, where T – sampling period in time: 
1.5 ;p T

delayW e            (6) 

at the same time, for the transfer function of a closed internal fuel consumption control loop, the 
following expression is obtained: 
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where 
0 delay PD FDW W W W   . 

According to [15], as a control law nFT, a proportional-integral control law with a transfer function 
is adopted: 
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where nFT_reg – set value of the free turbine speed, kP1 and ki – gains of the proportional and integral 
components. 

To exclude the sequential inclusion of two integral components for an additional internal control 
loop nTC, a proportional control law is adopted: 
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where nTC_set – set value of the gas generator rotor r.p.m., kP2 – amplification factor. 
According to [15], the value of the gain is chosen from the condition of ensuring the required 

accuracy of the implementation of the law  TCdn
f U

dt
  in all modes of engine operation. 

The transfer function of the open control loop nFT with independent operation of the controller is 
presented in the following form: 
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Similarly, the open-loop transfer function nFT when operated in series with an nTC controller is: 
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In connection with the foregoing, an improved typical circuit for maintaining the free turbine speed 
of helicopters TE with a linear PID controller is proposed (fig. 1). 
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Figure 1: Modified block diagram of the circuit for maintaining of helicopters turboshaft engines free 
turbine speed with a linear electronic controller (developed based on [13, 14]) 
 

The error of the mismatch between the current and required value of the free turbine speed ΔnFT, 

and the derivative of the current free turbine speed 
FTn , is fed to the loop input, and the output signal is 

the value of the required derivative of the turbocharger rotor speed. The expression describing the circuit 
for maintaining the free turbine speed with a linear PID-controller has the form: 

_ .TC req FT p FT dn n k n k           (13) 

The gains of the proportional kp and differential kd links are determined from the equations: 
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where  _T stat TCG n  – characteristic of the static fuel consumption,  13 TCa n  – coefficient of engine linear 

dynamic model in terms of fuel consumption,  FT TCn  – time constant of the free turbine rotor. 

The coefficient is given by the following system of equations: 
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The static coefficient of the proportional link is kstat_p = 0.35, while that of the differential link is 
kstat_d = 0.05 [13, 14]. 

Since the main task solved in the helicopter flight mode is to maintain the main rotor speed, it is 
advisable to apply the neural network setting of the coefficients kp, ki and kd, which will eventually 
allow dynamic maintenance of the main rotor speed. 

It is assumed that, in general, the circuit for maintaining the speed of the free turbine of the gas 
turbine engine of helicopters with a linear electronic controller is described by the following equation: 

     ;X A t X B t u f t         (16) 

where х = (х1 ... хn)
T – state vector of the system under the action of control u = (u1, u2, u3)

T, – components 
of which are constants under the constraints |ui| < 1, i = 1, 2, 3. The elements of the matrices A(t), B(t) 
and the vector f(t) will be considered real, continuous functions for t  [0, T], their dimensions are (n 
× n), (n × 3) and (n × 1), respectively. The matrix B(t) is determined by a predetermined real and 

continuous at t  [0, T] vector  
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To obtain an equation describing the search for the coefficients kp, ki and kd, under which the quality 
of the control system will be the best or will satisfy the specified requirements, the assumptions are 
made that kp = const, ki = const and kd = const. It is assumed that the vector function b(t) satisfies the 

inequality  1 2

t ta e b t a e     for some positive λ and a1 < a2. Then, due to the choice of control u, 

it is necessary to achieve exponential stability of the original system. It is accepted that     
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where the vectors B1(t), B2(t), B3(t) make up the matrix B(t). 
Initially, the coefficients u, considered as control, are assumed to be constant. However, for further 

research, a new control  u t  is introduced, which will be a function of time, that is, 
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In order for the program motion   ,x t u t  together with the control  u t  to set the product constant 

    ,u t x t u t , system (16) is represented as: 
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Let be  ,Z t u  – matrix of the fundamental system of solutions corresponding to the homogeneous 

system (20) for   0f t  . Then for  ,Z t u  will be fulfilled 
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in this case,  1 ,Z t u  – inverse matrix  ,Z t u . 

It follows that the general solution in the Cauchy form of system (21) with initial data х0 = х(0) will 
be written in the form: 
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It should be noted that the choice of control is subject to restrictions caused by the operating 
conditions of helicopters TE at flight mode. Therefore, it is necessary to take into account this possibility 
and add admissibility conditions for the values of the coefficients: 
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where φ – positive constant, T – length of the time interval on which the program control law will 

operate in the form of fixed coefficients  u t . Let’s introduce the following functional: 
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where  ,x t u  – solution of the Cauchy task (22) determined by the functional law of coefficients  u t  

during the time interval [0, T]. 

Let us assume that there is an optimal control [18, 19] in the form 
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Then any other control from some local proximity to the optimal will have the form: 
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and the admissibility condition must also be satisfied for it, but the inequality will necessarily be true: 
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for all sufficiently small ε. Then, taking into account the individual choice, a vector function ν(t) is 
accepted that satisfies the requirement 
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and, therefore, under the admissibility condition for non-optimal control 
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account the square under the integral sign in this condition, we notice that 
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It is assumed that the structure of the derivative of the functional J(u) has the form 
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where 
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but it can only be done under one condition: 
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The resulting expression (33) is a consequence of relations (29) and, in essence, represent the 

necessary conditions for the optimality of controls 
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Then, assuming the moment of time t = T, we find 
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where 
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It can be seen from (36) that the functions 
  0

,i t u  depend on the index i only through the 

corresponding function Bi(t). Thus, having determined the type of functions 
  0

,i t u  through the 

dependence on the optimal control 
 0

u  and the type of system (20), in the future, an algorithm for 

programmatic adjustment of the gains and will be proposed, which will play the role of a “teacher” 
 



4. Experiment 

On a cycle, the neural network receives the setpoint and generates the control coefficients of the 

PID-controller, which are fed to the PID-controller along with the value of the current feedback error 

e(k). The PID-controller calculates the control signal according to the expression: 

                       1 2 31 1 2 1 2 ;u k u k u k e k e k u k e k u k e k e k e k                (37) 

used for discrete PID-controllers and feeds it to the control object – the helicopters TE. The neural 

network is trained in real time by feedback error. 

Let the entire observation time be divided into time intervals of length Т: [0, Т], [0, 2Т], [2Т, 3Т], ... 

Within each individual segment [sТ, (s + 1)Т], s = 0, 1, 2, … is used as a “teacher” for a neural network, 

the method of programmatic adjustment of gain factors, described in this paper. 

When synthesizing the controller, a dynamic network of direct data transmission was used, based 

on neurons with a radial basis activation function in the first layer and adalines – neurons with a linear 

activation function, in the second layer. At the same time, on test examples, the optimal settings of the 

neural network were obtained, which provide the smallest overshoot for a given time of the transient 

process [20]. The following sequences are used as neuroregulator inputs: 

– reference signal – a master sequence that determines the final state of the object, 

– controller output –feedback from the controller output, 

– object error – the difference between the reference signal and the real output of the object, 

– integrable error – the error accumulated by the controller for the entire time of the object operation, 

– object output – signal from the object output. 

The choice of input sequences is not random. Some of the sequences are intended only for a certain 

component of the control signal. So, the output of the object and the output of the controller are 

necessary for the differential component and the adjustment of the parameters of the predictor, which 

actually implements the differentiation function. The “integrable error” sequence is only necessary for 

the integral component and affects only it. The remaining incoming sequences affect all neurons of each 

of the blocks (fig. 2). 
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Figure 2: Neural network diagram (developed based on [20]) 
 

The ACS structure, which includes a neural network in the role of setting the coefficients, using a 

PID controller, is schematically shown in fig. 3 (developed on the basis of [21]), in which the neural 

network plays the role of some functional converter that generates the required coefficients of the PID 

controller kp, ki, kd for a set of signals nFT_max, ∆nFT, u, 
_TC regn . 

 



+

-

nFT_max  nFT

nFT

Neural 

network

NFT_max
u P

nTC_req
.

.. ..
ki kp kd

 
Figure 3: PID-controller structure with auto-tuning block based on a neural network (developed based on 
[21]) 
 

Let us consider a method for approximate construction of an optimal control based on the application 

of (33) and assume that 
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where 
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u u u u  – l-th successive approximation, and the constant factors β have the form 
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Thus, following [21], a sequence is constructed that approximates the optimal control 
 l

u  for the 

entire observation interval [0, T]. Note that in [21] it is not indicated at which step in the construction 

of an approximate control to stop one’s choice. Having fixed some approximate control 
 
 

l

u t , we 

obtain a time-varying control (in this problem, the time-varying [0, T] coefficients of the PID-

controller). However, this control will be deprived of the possibility of correction if the value of the 

control error is exceeded, caused, for example, by fixing an insufficiently large approximation step or 

by the presence of an unexpected random perturbation of the function f(t) (although it is considered 

deterministic). 

It is assumed that the time T is not the entire observation time of the controlled dynamic process, 

but only its rather small segment of the algorithmic stepwise sampling (not the time sampling step used 

in the calculations), that is, the entire observation time will be divided into time segments of length Т: 

[0, Т], [0, 2Т], [2Т, 3Т], … Within each individual segment [sТ, (s + 1)Т], s = 0, 1, 2, …, we will apply 

the method of software adjustment of gain coefficients. 

As a first approximation 
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u , we take the constant values 
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 obtained at the previous step 
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 at the time sT of the corresponding time interval 

of the algorithmic discredit [(s – 1)Т, sТ]. In this case, the initial point x0 from (22) will also be given 



by the value 
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 obtained at the boundary time. Thus, at this stage, we define the following 

approximation: 
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where the functions 
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, i = 1, 2, 3 are found by expressions (36), taking into account the 

time shift t = t + sT for all functions included in this expression: 
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Thus, we obtain the final expressions for determining α and βi: 
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The input parameters of helicopters TE mathematical model are the values of atmospheric 

parameters (h – flight altitude, TN – temperature, PN – pressure, ρ – air density). The parameters recorded 

on board of the helicopter (nFT – free turbine rotor speed) reduced to absolute values according to the 

theory of gas-dynamic similarity developed by Professor Valery Avgustinovich (table 1). We assume 

in the work that the atmospheric parameters are constant (h – flight altitude, TN – temperature, PN – 

pressure, ρ – air density) [22]. 

 

Table 1 
Fragment of the training sample 

Number nFT Number nFT 

1 0.943 8 0.969 
2 0.982 9 0.947 
3 0.962 10 0.953 
4 0.987 11 0.955 
5 0.972 12 0.959 
6 0.963 … … 
7 0.962 256 0.981 

 

To form the training and test subsets, cross-validation [23] was used to estimate the values of nFT, 

the results of which are shown in fig. 4. 

 



 
Figure 4: Scatter diagram of input parameters 
 

In order to establish the representativeness of the training and test samples, a cluster analysis [22, 

24] of the initial data was carried out (table 1), during which seven classes were identified (fig. 5, a). 

After the randomization procedure, the actual training (control) and test samples were selected (in a 

ratio of 2:1, that is, 6 7% and 33 %). The process of clustering the training (fig. 5, b) and test samples 

shows that they, like the original sample, contain seven classes each. The distances between the clusters 

practically coincide in each of the considered samples, therefore, the training and test samples are 

representative. 

 

 
    a             b 

Figure 5: Clustering results: a – initial experimental sample (I…VII – classes); b – training sample 
 

An important issue is the assessment of the homogeneity of the training and test samples. To do this, 

we use the Fisher-Pearson criterion χ2 [22, 25] with r – k –1 degrees of freedom: 
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where θ – maximum likelihood estimate found from the frequencies m1, …, mr; n – number of elements 

in the sample; pi(θ) – probabilities of elementary outcomes up to some indeterminate k-dimensional 

parameter θ. 

The specified statistics χ2 allows, under the above assumptions, to test the hypothesis about the 

representability of sample variances and covariances of factors contained in the statistical model. The 

area of acceptance of the hypothesis is 2

,n m    , where α – significance level of the criterion. The 

results of calculations according to (43) are given in table 2. 

 
 
 



Table 2 
Fragment of χ2 probabilities 

Number P(nFT) Number P(nFT) 

1 0.652 8 0.971 
2 0.574 9 0.658 
3 0.515 10 0.663 
4 0.655 11 0.664 
5 0.612 12 0.588 
6 0.515 … … 
7 0.515 256 0.651 

 
Calculating the value of χ2 from the observed frequencies m1, …, mr (summing line by line the 

probabilities of the outcomes of each measured value) and comparing it with the critical values of the 

distribution χ2 with the number of degrees of freedom r – k –1. In this work, with the number of degrees 

of freedom r – k –1 = 13 and α = 0.05, the random variable χ2 = 0.687 did not exceed the critical value 

from table 2 is 22.362, which means that the hypothesis of the normal distribution law can be accepted 

and the samples are homogeneous. 

The neural network was trained by the above method for 1000 epochs, the training accuracy 

characteristic is shown in fig. 6, the steady-state mean square error is 0.382. Fig. 7 shows the results of 

the neural network training validation test, from which it can be seen that the average value of the 

gradient is, and the optimal value of the training coefficient does not exceed 1. 

 
Figure 6: Neural network performance function diagram: 1 – train; 2 – validation 

 
    a      b 

Figure 7: Neural network training diagram: a – gradient change diagram; b – diagram of the change in 
the training coefficient of the neural network 
 



The circuit for maintaining of helicopters TE free turbine speed based on a neural network (fig. 3) 

has one caveat: although the neural network controller finds a minimum, this minimum is only a local 

minimum and it cannot be argued that this is the optimal solution. To avoid choosing a suboptimal local 

minimum in the objective function, it is required to repeat the optimization process several times and 

choose the best result. It is possible that by setting different initial values of the PID-controller 

parameters, different optimal controller parameters will be obtained. In addition, during the training of 

the neural network, several random perturbations are used during each cycle and the reaction time of 

the system is taken into account to calculate the objective function and its gradient. This ensures 

obtaining local optimal coefficients of the PID-controller for various disturbances affecting the system. 

In addition, by changing the step size and the number of perturbations, the sensitivity of the results 

increases during the search process for the controller coefficients. The process of searching for 

controller parameters is terminated when a steady state of the system is determined, which is achieved 

through the calculation of a linear regression of the most recent estimates and iteration until the step 

response reaches a steady state value with an error of 1 % (fig. 8). 

 

 
Figure 8: Diagram of the dependence of the objective function on the number of iterations 
 

It should be noted that the adequacy of the model represented by the neural network directly depends 

on the training process. There are a number of parameters that affect the quality of training: training rate 

coefficient (assumed 1.5); number of neurons in the hidden layer (assumed 20); length of the delay line 

of input signals (5 is accepted); number of completed training epochs (assuming 1000 training epochs). 

As a criterion for assessing the quality of training, you can use the final total standard deviation for 

the epoch, which is determined according to the expression: 

 
2

1 1

1 1
;

2

M m

epoch k out k

i k

E y y
M  

 
  

 
      (44) 

where M – number of training sample elements. The training of the neural network continues until one 

of the stopping criteria is met. For example, the training time will not run out, a certain number of 

training epochs will pass, or the error per epoch will not exceed the minimum required threshold. 

Let’s carry out a number of additional research that determine the influence of training parameters 

on the quality of the neural network, namely: 

1. Influence of the training rate coefficient. 

2. Influence of the number of neurons in the hidden layer. 

3. Influence of the delay length of input signals. 

4. Influence of the number of training epochs passed. 

The results of the research are given in table 3–6 and in fig. 9, where: a – diagram that determines 

the influence of the training rate on the final standard deviation; b – diagram that determines the effect 

of the number of hidden neurons on the final standard deviation; c – diagram that determines the 

influence of the length of the delay line on the final standard deviation; d – diagram that determines the 

effect of the number of epochs passed on the final standard deviation. 



 
    a     b 

 
              c      d 

Figure 9: Research results that determine the impact of training parameters on the quality of a neural 
network 
Table 3 
Influence of the training rate coefficient on the resulting error 

Training rate coefficient Final standard deviation 

0.4 1.722 
1.5 1.471 
3.6 1.471 
5.0 1.723 

Table 4 
Influence of the number of neurons in the hidden layer on the resulting error 

Number of neurons in the hidden layer Final standard deviation 

5 6.360 
10 3.138 
15 1.004 
20 0.126 
25 0.126 
50 0.126 

Table 5 
Influence of delay line length on the resulting error 

Delay line length Final standard deviation 

0.5 3.349 
1.5 4.354 

25.1 7.512 
50.1 6.029 



Table 6 
Influence of the number of epochs passed on the resulting error 

Epoch of training passed Final standard deviation 

0 10.0 
1000 0.239 
2500 0.239 
5000 0.239 

10000 0.239 

 

The conducted studies, which determine the influence of training parameters on the quality of the 

neural network, allow us to preliminarily state: 

1. At low values of the training rate coefficient, slow convergence is observed and there is a risk of 

hitting a local minimum, while at the same time, the accuracy of hitting an extremum point increases. 

With large values, it is impossible to achieve a small error, since each step we skip past the extremum. 

2. A larger number of neurons in the hidden layer allows you to more accurately describe the training 

sample at the cost of computing power. At the same time, there is a danger of overfitting when the 

neural network reproduces noises and distortions in the training sample and is not able to adequately 

represent the circuit for maintaining the speed of the free turbine of helicopters TE. 

3. A large length of the delay line increases the number of input neurons and, consequently, the 

computational load. At the same time, a longer delay line describes the dynamic properties of the object 

better and avoids contradictions in training, when the object can change its behavior depending on past 

influences. 

4. The final error depends logarithmically on the number of epochs passed, as a result of which it is 

not rational to use a large number of epochs, since the computation time increases exponentially and 

there is a risk of retraining the neural network. 

5. Results 

Fig. 10 shows the characteristics of the transient process in terms of free turbine frequency rotation 

according to [13, 14], as well as according to the developed neural network, while: 

1) a – diagram of the transient process in terms of the free turbine speed when the engine is operating 

at flight mode with a linear PD-controller of the circuit for maintaining the free turbine speed; 

2) b – diagram of the transient process in terms of the free turbine speed during the operation of a 

linear PD–controller and a PD–controller with a reduced proportional gain (1 – linear PD-controller; 

2 – PD-controller with reduced kd); 

3) c – diagram of the transient process for the speed of the free turbine during the operation of a 

linear PD-controller and a quadratic controller (1 – linear PD-controller; 2 – quadratic controller); 

4) d – diagram of the transient process in terms of the free turbine speed during the operation of a 

linear PD-controller and a PD-controller with a variable amplification factor (1 – linear PD controller; 

2 – PD-controller with a variable amplification factor); 

5) e – diagram of the transient process in terms of the free turbine speed during the operation of a 

linear PD-controller and a fuzzy P-controller (1 – linear PD-controller; 2 – fuzzy logical P-controller); 

6) f – diagram of the transient process in terms of the free turbine speed during the operation of a 

linear PD-controller and a fuzzy P-controller with a corrective differential link (1 – linear PD-controller; 

2 – fuzzy logical P-controller with a corrective differential link); 

7) g – diagram of the transient process for the free turbine speed during the operation of a linear PD-

controller and a neural network PID-controller (1 – linear PD-controller; 2 – PID-controller developed 

on the basis of a neural network). 

Fig. 11 shows diagrams of changes in the values of the coefficients of the PID-controller during the 

transient process. As follows from fig. 11, the transient process turns out to be very close to the reference 

process, and the PID-controller with a neural network provides a much higher quality of control than 

PD-controllers of various architectures (fig. 10, a – f). 
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Figure 10: Free turbine frequency rotation transient’s processes resulting diagram 
 



 
Figure 11: Diagram of the change in the coefficients of the PID-controller during the transient: 1 – kp; 
2 – kd; 3 – ki 

6. Discussions 

A comparison was made of the quality of control of the transient response by free turbine frequency 

rotation and the stability margins provided by each of the considered controllers (Fig. 10). Fig. 12 shows 

a diagram of the joint arrangement of the transient curves according to the free turbine speed during the 

operation of various controllers: 1 – linear PD-controller; 2 – PD-controller with reduced kd; 3 – 

quadratic controller; 4 – PD-controller with a variable amplification factor; 5 – fuzzy logical P-

controller; 6 – fuzzy logical P-controller with a corrective differential link; 7 – PID-controller developed 

on the basis of a neural network. Table 7 presents a numerical analysis of the quality of operation of the 

circuit for maintaining the free turbine speed with various controllers. 

 

 
Figure 12: Characteristics of transient processes by the frequency of rotation of the free turbine during 
the operation of various controllers 
 

 

 

 



Table 7 
Analysis of the quality of operation of the circuit for maintaining the free turbine rotation frequency with 
various controllers 

Controller type Static 
accuracy, % 

Speed, 
seconds 

Transition 
process nature 

Throw 
value, % 

Linear PD-controller ± 0.2 20.0 oscillatory 1.9 
PD-controller with reduced kd ± 0.3 15.0 aperiodic – 
Quadratic controller ± 0.2 18.0 oscillatory 2.2 
PD-controller with a variable 
amplification factor 

± 0.2 16.5 aperiodic 0.1 

Fuzzy logical P-controller ± 0.1 16.5 aperiodic – 
Fuzzy logical P-controller with a 
corrective differential link 

± 0.2 6.0 aperiodic 0.3 

PID-controller developed on the 
basis of a neural network 

± 0.05 3.5 aperiodic – 

 
From fig. 12 and table 7 it follows that the best quality of the transient process in terms of the free 

turbine speed is provided by the PID-controller developed on the basis of a neural network. The 

transient response during operation of this controller differs from others in its higher speed (about 

3.5 seconds) and the absence of oscillations (curve 7). The remaining controllers are inferior in terms 

of providing the required quality of control. According to [13, 14], the transient response in terms of 

free turbine rotational speed, obtained with the operation of a quadratic controller, does not differ in 

quality from the characteristic obtained with the operation of the original linear PD-controller (curves 

1 and 3). The process is characterized by the presence of fluctuations and overshoot of about 4 %. The 

oscillation amplitude is 0.2 %. The transition process time is about 20 seconds. When analyzing the 

characteristics of transients obtained during the operation of a PD-controller with a reduced proportional 

gain, a variable gain controller, and a P-type fuzzy logic controller, it can be seen that these 

characteristics differ slightly from each other. The transient process has an aperiodic character (curves 

2, 4, 5 and 6) and almost the same speed (for curve 2, the transition process time is 15 seconds, for 

curves 4, 5 – 16.5 seconds, for curve 6 – 6 seconds). 

A comparative analysis of the accuracy provided by each of the considered controllers (Fig. 12) is 

given in table 8, which shows the probabilities of errors of the 1st and 2nd kind in determining the 

optimal parameter nFT. 
 

Table 8 
The results of determining the probability of errors of the 1st and 2nd kind 

Controller type Probability of error in determining 
Type 1st error Type 2nd error 

Linear PD-controller 1.95 1.42 
PD-controller with reduced kd 1.74 1.21 
Quadratic controller 1.46 1.03 
PD-controller with a variable amplification factor 1.32 0.95 
Fuzzy logical P-controller 1.08 0.77 
Fuzzy logical P-controller with a corrective 
differential link 

0.97 0.64 

PID-controller developed on the basis of a neural 
network 

0.58 0.22 

 

As can be seen from table 8, the use of a PID-controller developed on the basis of a neural network 

provides an improvement in the probability of errors of the 1st and 2nd kind compared to the controllers 

developed in [13, 14] by 35...85 %. 



7. Conclusions 

1. The method of maintaining the helicopter rotor speed has been further developed, which, through 

the use of a PID-controller developed on the basis of a dynamic neural network of direct data 

transmission based on neurons with a radial basis activation function in the first layer and adalines – 

neurons with a linear activation function, in the second layer, made it possible to improve the quality 

of the transient process in terms of helicopter aircraft turboshaft engine free turbine rotation frequency, 

which consists in increasing the speed up to 3 seconds, increasing the statistical accuracy up to ± 0.05 % 

and eliminating the overshoot of parameters. 

2. The circuit for maintaining the helicopter aircraft turboshaft engine free turbine speed has been 

improved, which, due to the use of a PID-controller with neural network tuning of the gain factors, 

made it possible to automatically adjust the amplification factor and, thereby, reduce the time of the 

transition process. 

3. The neural network training method based on the method of programmatic gain adjustment, 

developed by Professor Volodymyr Zubov, was further developed, which, by integrating direct data 

transmission into a dynamic neural network based on neurons with a radial-basis activation function in 

the first layer and adalines – neurons with a linear activation function, in the second layer, made it 

possible to reduce the error of its training for the problem of researching the transient process in terms 

of helicopter aircraft turboshaft engine free turbine rotation frequency to 0.005 %. 

4. The structure of the PID-controller with an auto-tuning unit based on a neural network has been 

improved, in which, due to the use of a dynamic neural network of direct data transmission based on 

neurons with a radial basis activation function in the first layer and adalines – neurons with a linear 

activation function, in the second layer, as a functional converter that generates the desired amplification 

factor of the PID-controller for a set of input and output signals, made it possible to improve the 

probability of errors of the 1st and 2nd kind in comparison with the known controllers by 35 ... 85 %. 
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