
Compilation-based Techniques for Evaluating Normal
Logic Programs Under the Well-founded Semantics
Andrea Cuteri, Giuseppe Mazzotta and Francesco Ricca

University of Calabria, Rende 87036, Italy

Abstract
Recent studies have demonstrated that compilation-based techniques can be beneficial for evaluating

Datalog and ASP programs. In this paper, we develop a compiler that is able to generate solvers for

normal logic programs under the well-founded semantics. The proposed system has been evaluated

on different settings and preliminary results highlight significant improvements in the evaluation of

non-stratified programs.

Keywords
Logic Programming, Well-founded semantics, Compilation

1. Introduction

Logic programming is a declarative programming paradigm that can be used to model complex

problems in terms of logical implications [1]. Logic programs are often evaluated by means of

general-purpose systems that implement a given semantics [2, 3]. The need for handling with

the same algorithm any possible input, in some cases, makes it impossible to apply specific

optimizations that would work only for a subclass of programs. Thus, considerable speedups

can be obtained by using ad-hoc evaluation procedures for the program in input. Following

this consideration, compilation-based techniques have been recently proposed to speed up the

evaluation of Datalog [4] and Answer Set Programming (ASP) [5, 6]. In particular, the idea

behind this approach is to compile the input program into a custom system that is optimized

by exploiting the syntactic properties of the modeled program and can be used for evaluating

different instances of the compiled program. Concerning Datalog, the system soufflé [4] was

demonstrated to be very effective, especially for solving tasks connected with software develop-

ment, but also other prototypical systems were revealed to be very promising [7]. Concerning

ASP, compilation techniques have been successfully employed for the evaluation of grounding-

intensive ASP programs outperforming state-of-the-art ASP solvers [6, 8] and reducing both

time and memory consumption. However, none of the aforementioned systems support the

well-known well-founded semantics [9] when no restriction is posed on the usage of negation.

In this paper, we propose a compilation-based technique for evaluating normal logic programs

under the well-founded semantics and present a system that is able to generate ad-hoc solvers

for programs.

CILC’23: 38th Italian Conference on Computational Logic, June 21–23, 2023, Udine, Italy
$ cuteri.andrea@gmail.com (A. Cuteri); giuseppe.mazzotta@unical.it (G. Mazzotta); ricca@mat.unical.it (F. Ricca)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:cuteri.andrea@gmail.com
mailto:giuseppe.mazzotta@unical.it
mailto:ricca@mat.unical.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

An empirical evaluation of the proposed approach has been conducted on hard bench-

marks [10, 11]. Obtained results demonstrate that the proposed approach is competitive with

existing implementations capable of evaluating both Datalog programs (i.e. positive programs)

and program with negation. Notably, our approach outperforms dlv2 [12] on normal logic

programs with not-stratified negation.

2. Logic Programs Under the Well-founded Semantics

In this section, some preliminaries are provided on normal logic programs under the well-

founded semantics [9].

2.1. Syntax

A term is a constant or a variable. Constants are strings starting with lowercase letter or integers

instead variables are terms starting with uppercase letter. An atom 𝑎 is an expression of the form

𝑝(𝑡1, ..., 𝑡𝑛) where 𝑝 is a predicate of arity 𝑛 and 𝑡1, ..., 𝑡𝑛 are terms. If all the terms are constants

then 𝑎 is a ground atom. A literal is an atom 𝑎, or its negation 𝑛𝑜𝑡 𝑎 where 𝑛𝑜𝑡 represents default

negation. A literal is positive if it is of the form 𝑎, negative otherwise. Given a literal 𝑙, the com-
plement of 𝑙, denoted by 𝑙, is 𝑎 if 𝑙 = 𝑛𝑜𝑡 𝑎, 𝑛𝑜𝑡 𝑎 otherwise. A rule 𝑟 is an expression of the form:

ℎ← 𝑏1, ..., 𝑏𝑘, 𝑛𝑜𝑡 𝑏𝑘+1, ..., 𝑛𝑜𝑡 𝑏𝑚.

where ℎ is an atom referred to as head, 𝐻𝑟 , 𝑏1, ..., 𝑛𝑜𝑡 𝑏𝑚 is a conjunction of literals referred

to as body of the rule, 𝐵𝑟 , and 𝑚 > 0. If 𝑚 = 0 then 𝑟 is a fact. A program Π is a set of rules.

Given a set of literals 𝐵, 𝐵+
(resp. 𝐵−

) denotes the set of positive (resp. negative) literals in

𝐵. The dependency graph of a program Π, 𝐺Π, is a directed labeled graph where the nodes

are predicates appearing in Π and the set of the edges contains a positive (resp. negative) edge

(𝑢, 𝑣) if exists a rule 𝑣 ← 𝐵 ∈ Π where 𝑢 appears in 𝐵+
(resp. 𝑢 appears in 𝐵−

). Π is said to

be Datalog if it does not contain any negative literals; Datalog with stratified negation if 𝐺Π

does not contain cycles with negative edges.

2.2. Well-founded Semantics

Given a program Π, the Herbrand Universe is the set of constants appearing in Π; the Herbrand
Base, 𝐵Π, is the set of possible ground atoms that can be built using predicate in Π and

constants in the Herbrand Universe. Given a rule 𝑟 ∈ Π, 𝑔𝑟𝑜𝑢𝑛𝑑(𝑟) represents all possible

instantiations of 𝑟 replacing variables with constants in the Herbrand Universe. Given a program

Π, 𝑔𝑟𝑜𝑢𝑛𝑑(Π) =
⋃︀

𝑟∈Π 𝑔𝑟𝑜𝑢𝑛𝑑(𝑟). An interpretation 𝐼 is a set of literals whose atoms belong

to 𝐵Π. 𝐼 is consistent if for each literal 𝑙 ∈ 𝐼 , 𝑛𝑜𝑡 𝑙 /∈ 𝐼 . 𝐼 is total if for each atom 𝑎 ∈ 𝐵Π

either 𝑎 or 𝑛𝑜𝑡 𝑎 belongs to 𝐼 . Given a consistent interpretation 𝐼 , a literal 𝑙 is true (resp. false)

w.r.t. 𝐼 if 𝑙 ∈ 𝐼 (resp. 𝑛𝑜𝑡 𝑙 ∈ 𝐼). A literal is undefined w.r.t. 𝐼 if it is neither true nor false.

A conjunction of literals is true w.r.t. 𝐼 if all the literals are true w.r.t. 𝐼 ; it is false if at least

one literal is false w.r.t. 𝐼 ; it is undefined otherwise. A set of atoms, 𝑈Π, is an unfounded set

w.r.t. 𝐼 if for every atom 𝑎 ∈ 𝑈Π and for every rule 𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑(Π) such that 𝐻𝑟 = 𝑎, 𝐵𝑟 is

false w.r.t. 𝐼 or 𝐵𝑟 contains some positive literals whose atoms belong to 𝑈Π. Intuitively, all

rules defining atoms in 𝑈Π have a false body or depend on atoms in 𝑈Π and so they cannot be

inferred as true. The greatest unfounded set, 𝑈Π(𝐼), is the union of possible unfounded sets

𝑈Π. Let 𝑇Π(𝐼) be a transformation defined as the set of atoms 𝑎 such that there exists a rule

𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑(Π) where 𝐻𝑟 = 𝑎 and 𝐵𝑟 is true w.r.t. 𝐼 , we define 𝑊Π(𝐼) = 𝑇Π(𝐼) ∪ ¬𝑈Π(𝐼)
where ¬𝑈Π(𝐼) = {𝑛𝑜𝑡 𝑙 | 𝑙 ∈ 𝑈Π(𝐼)}. Let 𝐼0 = ∅, 𝐼𝛼+1 = 𝒲𝜋(𝐼𝛼), with 𝛼 ≥ 0, the (partial)

well-founded model is defined as 𝒲𝜋 = 𝐼𝛽 where 𝛽 ≥ 0 is the smallest ordinal such that

𝐼𝛽 = 𝐼𝛽+1. Basically,𝒲𝜋 is the least fixed point𝒲𝑃 [9]

Algorithm 1 compileProgram

Input : A normal program 𝑃
Output : Prints evaluation procedure for 𝑃

1 begin
2 ≪def 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑊𝑒𝑙𝑙𝐹𝑜𝑢𝑛𝑑𝑒𝑑(𝑓𝑎𝑐𝑡𝑠)≫
3 ≪ 𝐼 = 𝑓𝑎𝑐𝑡𝑠≫
4 ≪ ℬ = ∅≫
5 𝐷𝐺 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝐺(𝑃)
6 𝑆𝐶𝐶 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝐶𝐶(𝐷𝐺)
7 for all 𝐶 ∈ 𝑆𝐶𝐶 do
8 ≪𝑑_𝑠𝑡𝑎𝑐𝑘 = 𝐹 = ∅≫
9 for all 𝑟 ∈ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑢𝑙𝑒𝑠𝐹𝑜𝑟𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑃,𝐶) do

10 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑅𝑢𝑙𝑒𝐹𝑜𝑟𝐻𝑒𝑎𝑑𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐵𝑟, 𝐻𝑟, 𝐶)

11 ≪while 𝑑_𝑠𝑡𝑎𝑐𝑘 ̸= ∅ do≫

12 ≪ 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 = 𝑑_𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝()≫
13 ≪ switch 𝑝𝑟𝑒𝑑(𝑠𝑡𝑎𝑟𝑡𝑒𝑟)≫
14 for all 𝑟 ∈ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑅𝑢𝑙𝑒𝑠(𝑃,𝐶) do
15 for all 𝑖 ∈ [1, . . . , |𝐵𝑟|] do
16 if 𝑝𝑟𝑒𝑑(𝐵𝑟[𝑖]) ∈ 𝐶 ∧𝐵𝑟[𝑖] is positive literal then
17 ≪case J𝑝𝑟𝑒𝑑(𝐵𝑟[𝑖])K ≫

18 ≪ 𝜎 = 𝜖≫
19 for all 𝑗 ∈ 1, ..., |𝑡𝑟𝑚(𝐵𝑟[𝑖])| do
20 if 𝑡𝑟𝑚(𝐵𝑟[𝑖])[𝑗] is variable then
21 ≪ 𝜎 = 𝜎 ∪ { J𝑡𝑟𝑚(𝐵𝑟[𝑖])[𝑗]K ↦→ 𝑡𝑟𝑚(𝑠𝑡𝑎𝑟𝑡𝑒𝑟)[J𝑗K]}≫

22 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑅𝑢𝑙𝑒𝐹𝑜𝑟𝐻𝑒𝑎𝑑𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐵𝑟 ∖ {𝐵𝑟[𝑖]}, 𝐻𝑟, 𝐶)

23 ≪done≫

24 ≪do≫

25 ≪ 𝑙𝑜𝑜𝑝 = ⊥≫

26 ≪ for 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 ∈ ℬ do≫

27 ≪ 𝑡𝑟𝑢𝑒 = 𝑢𝑛𝑑𝑒𝑓 = ⊥≫

28 ≪ 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 = 𝑠_𝑠𝑡𝑎𝑐𝑘.𝑝𝑜𝑝()≫
29 ≪ switch 𝑝𝑟𝑒𝑑(𝑠𝑡𝑎𝑟𝑡𝑒𝑟)≫
30 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑅𝑢𝑙𝑒𝑠𝐹𝑜𝑟𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑅𝑢𝑙𝑒𝑠(𝑃,𝐶), 𝐶)
31 ≪ done≫

32 ≪while 𝑙𝑜𝑜𝑝 == ⊤ ≫

33 ≪end def≫

Algorithm 2 compileRuleForHeadDerivation

Input : A list of literals 𝐵, an atom 𝑎, a set of predicates 𝐶
Output : Prints a procedure that instantiates 𝐵 and derives new atoms matching 𝑎

1 begin
2 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑅𝑢𝑙𝑒𝐵𝑜𝑑𝑦(𝐵,𝐶)
3 𝑝𝑟𝑖𝑛𝑡𝐻𝑒𝑎𝑑𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐵, 𝑎)
4 for all 𝑖 ∈ [|𝐵|, . . . , 1] do
5 if 𝐵[𝑖] is positive literal then
6 ≪ 𝜎 = 𝜎 J𝑗K ≫

7 ≪done≫

8 else
9 ≪fi≫

3. Compilation of Well-founded Semantics

In this section, we describe the compilation procedure for generating an ad-hoc solver for

an input program Π. In particular, proposed algorithms (see Algorithms 1-5) describe the

compilation of a normal program with not-stratified negation. However, our approach is also

able to generate simplified code for the case of Datalog programs with stratified negation that

is indeed a particular case. Reported algorithms follow the syntactic convention used in [8].

To recall, the code enclosed between≪≫ is printed by the compiler as it is. Instead, the code

enclosed in JK , is first substituted with its run-time value and then is printed. For example, let

𝐵𝑟[𝑖] = 𝑎(𝑋), Algorithm 1 at line 17 prints “case “𝑎” :”.

Description of the Compilation Algorithms. As the first step, the compiler builds the

dependency graph of Π (Alg. 1 lines 5-6) and computes its strongly connected components

SCCs, 𝐶1, ..., 𝐶𝑛, that give us a topological order of 𝐺Π such that no paths exist from 𝐶𝑗 to 𝐶𝑖

if 𝑖 < 𝑗. By following that order, the compiler produces for each component 𝐶 the code that

evaluates the rules defining atoms in 𝐶 (i.e., whose predicate belongs to 𝐶), referred to as 𝑃𝐶 .

Then, each rule 𝑟 is compiled into a sub-procedure that iterates over possible instantiations of

𝐵𝑟 that are either true or undefined w.r.t. 𝐼 ∪ ℬ and, successively, derives 𝐻𝑟 (Alg. 1 lines 9-10).

Such sub-procedures are generated by means of Algorithm 2. Algorithm 2 starts by calling

Algorithm 3 that prints different nested join loops or if statements for each literal in 𝐵𝑟 . These

nested blocks implement iterations over possible rule instantiations (Alg. 3 lines 3-13). Inside

the deepest block, the code that collects negative dependencies within the component 𝐶 into

the set 𝑛𝑠 is printed (Alg. 3 lines 15-19). Then Algorithm 2 prints the code that derives new

atoms matching 𝐻𝑟 by calling Algorithm 4. In particular, the code generated by Algorithm 4

checks if the current body (i.e. 𝑡1, · · · , 𝑡𝑛) is true w.r.t. 𝐼 ∪ℬ. In particular, if all positive literals

belong to 𝐼 , no negative literals are undefined (i.e. ¬𝑏− ∩ ℬ), and no negative literals in the

same component occur in the current body (i.e. 𝑛𝑠 = ∅), then all literals 𝑡1, · · · , 𝑡𝑛 are true

w.r.t. 𝐼 . Thus, if it is the case then the head of the rule is derived as true, otherwise it is derived

as undefined (code generated by lines 5 and 10 of Alg. 4). In both cases, derived atoms are

collected into the derivation stack in order to be used in the second derivation phase. As the last

step, for each literal 𝑙 ∈ 𝐵𝑟 , if 𝑙 is a positive literal then a nested for-loop is closed by restoring

the variable substitution 𝜎 (Alg. 2 lines 5-7). Otherwise, an if-statement scope is closed (Alg. 2

lines 8-9). The second derivation scenario is generated by looking at recursive rules defining

atoms whose predicate belongs to 𝐶 . In this case, the generated procedure will consume literals

collected into 𝑑_𝑠𝑡𝑎𝑐𝑘 and, for each of them, different sub-procedures are executed according

to the predicate name of the consumed literal (Alg. 1 lines 11-13). In particular, the compiler, for

each rule 𝑟, generates different switch-cases for each literal 𝑙 ∈ 𝐵+
𝑟 whose predicate belongs

to 𝐶 (Alg. 1 lines 15-22). Inside each case, a sub-procedure that evaluates 𝑟 starting from a

literal, 𝑠𝑡𝑎𝑟𝑡𝑒𝑟, that matches 𝑙 is generated. Each sub-procedure starts with the initialization of

a variable substitution 𝜎 from variables in 𝑙 to constant in 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 (Alg. 1 lines 18-21) and then

contains the code that evaluates the remaining part of 𝐵𝑟, generated by Algorithm 2. In this

way, the generated procedure is able to simulate a semi-naive evaluation of recursive rules. Out

of the while-loop scope, the compiler generates the code that derives, if it is possible, undefined

atoms either as true or false (Alg. 1 lines 24-32). At this point, atoms in 𝐵Π with predicates

in 𝐶 that do not belong to 𝐼 ∪ 𝐵 are considered false since no rule instantiations that can

derive them exists. Thus, the generated procedure, in this case, will iterate until some undefined

atoms (i.e. atoms belonging to ℬ) are derived either as true or false. For each iteration, the

generated procedure evaluates possible rules defining remaining atoms in ℬ and so different

switch-cases, one for each recursive rule 𝑟, are generated. Each case contains the procedure

that evaluates a rule 𝑟 starting from an undefined atom 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 that can be substituted to 𝐻𝑟 .

These sub-procedures are generated by Algorithm 5 that, for each switch-case, prints the code

that initializes a variable substitution 𝜎 from variables in 𝐻𝑟 to constants in 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 (Alg. 5

Algorithm 3 compileRuleBody

Input : A list of literals 𝐵, a set of predicate 𝐶
Output : Prints the instantiation procedure for the rule body 𝐵

1 begin
2 ≪𝜎 = 𝜖≫
3 for all 𝑗 ∈ 1, ..., |𝐵| do
4 ≪𝜎 J𝑗K = 𝜎≫

5 if 𝐵[𝑗] is a positive literal then
6 ≪𝑇 J𝑗K = {𝑝 ∈ (𝐼 ∪ ℬ) | 𝑚𝑎𝑡𝑐ℎ(𝜎(J𝐵[𝑗]K), 𝑝)}≫
7 ≪for all 𝑡 J𝑗K ∈ 𝑇 J𝑗K do≫

8 for all 𝑘 ∈ 1, ..., |𝑡𝑟𝑚(𝐵[𝑗])| do
9 if 𝑡𝑟𝑚(𝐵[𝑗])[𝑘] is variable then

10 ≪𝜎 = 𝜎 ∪ { J𝑡𝑟𝑚(𝐵[𝑗])[𝑘]K ↦→ 𝑡𝑟𝑚(𝑡 J𝑗K)[J𝑘K]}≫

11 else
12 ≪𝑡 J𝑗K = 𝜎(J𝐵[𝑗]K)≫
13 ≪if 𝑡 J𝑗K /∈ 𝐼 then≫

14 ≪𝑏 = ∅≫
15 ≪𝑛𝑠 = ∅≫
16 for all 𝑗 ∈ 1, ..., |𝐵| do
17 ≪𝑏 = 𝑏 ∪ {𝑡 J𝑗K }≫
18 if 𝐵[𝑗] is a negative literal ∧ 𝑝𝑟𝑒𝑑(𝐵[𝑗]) ∈ 𝐶 then
19 ≪𝑛𝑠 = 𝑛𝑠 ∪ {𝑡 J𝑗K }≫

Algorithm 4 printHeadDerivation

Input : An atom 𝑎
Output : Prints the derivation procedure for new atoms matching 𝑎

1 begin
2 ≪ℎ = 𝜎(J𝑎K)≫
3 ≪if 𝑛𝑠 == ∅ ∧ 𝑏+ ⊆ 𝐼 ∧ (¬𝑏− ∩ ℬ) == ∅ then≫

4 ≪ 𝑑_𝑠𝑡𝑎𝑐𝑘 = 𝑑_𝑠𝑡𝑎𝑐𝑘 ∪ {ℎ}≫
5 ≪ 𝐼 = 𝐼 ∪ {ℎ}≫
6 ≪ ℬ = ℬ ∖ {ℎ}≫
7 ≪else≫

8 ≪ if ℎ /∈ (𝐼 ∪ ℬ)≫
9 ≪ 𝑑_𝑠𝑡𝑎𝑐𝑘 = 𝑑_𝑠𝑡𝑎𝑐𝑘 ∪ {ℎ}≫

10 ≪ ℬ = ℬ ∪ {ℎ}≫
11 ≪ fi≫

12 ≪fi≫

lines 4-7) and then prints the nested block needed for evaluating 𝐵𝑟 by means of Algorithm 3.

Then, inside the last nested level, the code for head derivation is generated (Alg. 5 lines 9-16). If

the conjunction 𝑡1, · · · , 𝑡𝑛, with 𝑛 = |𝐵𝑟|, is true w.r.t. 𝐼 ∪ ℬ (i.e. all positive literals are in 𝐼
and all atoms appearing in some negative literals are not in ℬ, Alg. 5 line 10) then 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 is

derived as true, otherwise a flag variable stating that a ground rule with 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 as head and an

undefined body w.r.t. 𝐼 ∪ ℬ exists is enabled (Alg. 5 line 15). Then, nested blocks’ scopes are

closed (Alg. 5 lines 17-22). After evaluating all switch-cases, if neither 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 has not been

derived as true nor the 𝑢𝑛𝑑𝑒𝑓 flag is true then 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 is derived as false (Alg. 5 lines 23-27).

Example of Compilation. In order to help understanding the outcome of our compiler, an

example is described in the following. Consider the following program Π:

𝑟1 : 𝑎(𝑌)← 𝑏(𝑋,𝑌), 𝑐(𝑌,𝑍), 𝑛𝑜𝑡 𝑑(𝑍)
𝑟2 : 𝑎(𝑋)← 𝑓(𝑋), 𝑛𝑜𝑡 𝑔(𝑋)
𝑟3 : 𝑔(𝑋)← 𝑒(𝑋), 𝑛𝑜𝑡 𝑎(𝑋)

The SCCs of 𝐺Π are 𝐶0 = {𝑏}, 𝐶1 = {𝑐}, 𝐶2 = {𝑑}, 𝐶3 = {𝑓}, 𝐶4 = {𝑒}, 𝐶5 = {𝑎, 𝑔}.
Since for components 𝐶𝑖, with 𝑖 from 0 to 4, there are no rules the code produced for them is

empty and so let us focus on 𝐶5. In this case, 𝑃𝐶5 is the entire program so Algorithm 1 prints a

sub-procedure for each rule of Π. Algorithm 6 reports the code produced by Algorithm 2 for

rule 𝑟1.

For evaluating 𝐵𝑟1, Algorithm 3 generates an external for-loop that iterates over ground

literals 𝑡1 that are not false w.r.t. 𝐼 ∪ ℬ and match 𝑏(𝑋,𝑌) (Alg. 6 lines 4-35). For every 𝑡1,

the variable substitution 𝜎 is updated mapping 𝑋 and 𝑌 to the first and the second term of 𝑡1
respectively (Alg. 6 lines 6-7). Nested into this for-loop, another for-loop is printed to iterate

over ground literals 𝑡2 matching 𝜎(𝑐(𝑌,𝑍)) (Alg. 6 lines 9-33). Note that the application of

𝜎 to a literal will replace mapped variables with the value they are mapped to (i.e. 𝑌 ↦→ 1
then 𝜎(𝑐(𝑌,𝑍)) = 𝑐(1, 𝑍)). Inside this for-loop 𝜎 is updated by mapping 𝑍 to the second term

of 𝑡2 (Alg. 6 lines 11-12). Then, the last literal to evaluate is 𝑛𝑜𝑡 𝑑(𝑍) and so, since the value

of 𝑍 is already fixed by 𝑡2 then, the last nested block is an if-statement that checks whether

Algorithm 5 compileRulesForSupportDerivation

Input : A set of rules 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑅𝑢𝑙𝑒𝑠, a set of predicates 𝐶
Output : Prints a procedure that search for rule body that can support a given atom

1 begin
2 for all 𝑟 ∈ 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑅𝑢𝑙𝑒𝑠 do
3 ≪ case J𝑝𝑟𝑒𝑑(𝐻𝑟)K ≫

4 ≪ 𝜎 = 𝜖≫
5 for all 𝑗 ∈ 1, ..., |𝑡𝑟𝑚(𝐻𝑟)| do
6 if 𝑡𝑟𝑚(𝐻𝑟)[𝑗] is variable then
7 ≪ 𝜎 = 𝜎 ∪ { J𝑡𝑟𝑚(𝐻𝑟)[𝑗]K ↦→ 𝑡𝑟𝑚(𝑠𝑡𝑎𝑟𝑡𝑒𝑟)[J𝑗K]}≫

8 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑅𝑢𝑙𝑒𝐵𝑜𝑑𝑦(𝐵𝑟, 𝐶)
9 ≪ ℎ = 𝜎(J𝑎K)≫

10 ≪ if 𝑏+ ⊆ 𝐼 ∧ (¬𝑏− ∩ ℬ) = ∅ ∧ ℎ /∈ 𝐼 then≫

11 ≪ 𝐼 = 𝐼 ∪ {ℎ}≫
12 ≪ ℬ = ℬ ∖ {ℎ}≫
13 ≪ 𝑡𝑟𝑢𝑒 = 𝑙𝑜𝑜𝑝 = ⊤≫

14 ≪ else if ((𝑏+ ∪ ¬𝑏−) ∩ ℬ) ̸= ∅ ∧ ℎ /∈ 𝐼 then≫

15 ≪ 𝑢𝑛𝑑𝑒𝑓 = ⊤≫

16 ≪ fi≫

17 for all 𝑖 ∈ [|𝐵𝑟|, . . . , 1] do
18 if 𝐵𝑟[𝑖] is positive literal then
19 ≪ 𝜎 = 𝜎 J𝑗K ≫

20 ≪done≫

21 else
22 ≪fi≫

23 ≪ if 𝑢𝑛𝑑𝑒𝑓 = ⊥ ∧ 𝑡𝑟𝑢𝑒 = ⊥ then≫

24 ≪ ℬ = ℬ ∖ {𝑠𝑡𝑎𝑟𝑡𝑒𝑟}≫
25 ≪ 𝐹 = 𝐹 ∪ {𝑠𝑡𝑎𝑟𝑡𝑒𝑟}≫
26 ≪ 𝑙𝑜𝑜𝑝 = ⊤≫

27 ≪ fi≫

𝑡3 = 𝜎(𝑑(𝑍)) is not true w.r.t. 𝐼 (Alg. 6 lines 14-31). At this point the conjunction 𝑡1, 𝑡2, 𝑡3
is an instantiation of 𝐵𝑟 and the generated code should derive the 𝑎(𝑌) (Alg. 6 lines 20-30).

Thus, if the body is true w.r.t. 𝐼 ∪ ℬ then ℎ = 𝜎(𝑎(𝑌)) is added to 𝐼 , otherwise it is added

to ℬ. Then, Algorithm 1 produces other two analogues procedures also for 𝑟2 and 𝑟3. Since

in this case, recursive rules are 𝑟2 and 𝑟3, but no positive literals have predicates in 𝐶5 then

no switch-cases are generated at all and so the while-loop over 𝑑_𝑠𝑡𝑎𝑐𝑘 can be omitted. Thus,

Algorithm 1 continues by printing the last derivation scenario as previously described. In

particular, Algorithm 7 reports the switch-cases generated by Algorithm 5 for rules 𝑟2 and

𝑟3 w.r.t. the component 𝐶5. The first switch-case refers to rule 𝑟2 (Alg. 7 lines 2-24) and so

it contains the code for evaluating 𝑟2 starting from a literal matching the 𝑎(𝑋). Thus, 𝜎 is

initialized by mapping 𝑋 to the first term of 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 literal (Alg. 7 lines 3-4), and then the

nested blocks are generated according to 𝐵𝑟2 (Alg. 7 lines 5-13). Inside the last block, the head

derivation code has been printed (Alg. 7 lines 14-21). If the body instantiation 𝑡1, 𝑡2 is true w.r.t.

𝐼 ∪ ℬ then ℎ = 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 is derived as true, otherwise the 𝑢𝑛𝑑𝑒𝑓 flag is enabled. The second

switch-case is analogous to the first one but it refers to 𝑟3 and so the evaluation starts from a

literal, 𝑠𝑡𝑎𝑟𝑡𝑒𝑟, matching the atom 𝑏(𝑋). Out of the scope of the switch-statement if no rule in-

stantiations have been founded for the atom 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 then it is derived as false (Alg. 7 lines 48-51).

Algorithm 6 Output example compileRuleForHeadDerivation

Input :{𝑏(𝑋,𝑌), 𝑐(𝑌,𝑍), 𝑛𝑜𝑡 𝑑(𝑍)}, 𝑎(𝑌), {′𝑎′,′ 𝑔′}
1 begin
2 𝜎 = 𝜖
3 𝜎1 = 𝜎
4 𝑇1 = {𝑝 ∈ (𝐼 ∪ ℬ) | 𝑚𝑎𝑡𝑐ℎ(𝜎(𝑏(𝑋,𝑌)), 𝑝)}
5 for all 𝑡1 ∈ 𝑇1 do
6 𝜎 = 𝜎 ∪ {𝑋 ↦→ 𝑡𝑟𝑚(𝑡1)[1]}
7 𝜎 = 𝜎 ∪ {𝑌 ↦→ 𝑡𝑟𝑚(𝑡1)[2]}
8 𝜎2 = 𝜎
9 𝑇2 = {𝑝 ∈ (𝐼 ∪ ℬ) | 𝑚𝑎𝑡𝑐ℎ(𝜎(𝑐(𝑌, 𝑍)), 𝑝)}

10 for all 𝑡2 ∈ 𝑇2 do
11 𝜎 = 𝜎 ∪ {𝑌 ↦→ 𝑡𝑟𝑚(𝑡2)[1]}
12 𝜎 = 𝜎 ∪ {𝑍 ↦→ 𝑡𝑟𝑚(𝑡2)[2]}
13 𝜎3 = 𝜎
14 𝑡3 = 𝜎(𝑛𝑜𝑡 𝑑(𝑋))
15 if 𝑡3 /∈ 𝐼 then
16 𝑏 = 𝑛𝑠 = ∅
17 𝑏 = 𝑏 ∪ {𝑡1}
18 𝑏 = 𝑏 ∪ {𝑡2}
19 𝑏 = 𝑏 ∪ {𝑡3}
20 ℎ = 𝜎(𝑎(𝑌))
21 if 𝑛𝑠 == ∅ ∧ 𝑏+ ⊆ 𝐼 ∧ (¬𝑏− ∩ ℬ) = ∅ then
22 𝑑_𝑠𝑡𝑎𝑐𝑘 = 𝑑_𝑠𝑡𝑎𝑐𝑘 ∪ {ℎ}
23 𝐼 = 𝐼 ∪ {ℎ}
24 ℬ = ℬ ∖ {ℎ}
25 else
26 if ℎ /∈ (𝐼 ∪ ℬ)
27 𝑑_𝑠𝑡𝑎𝑐𝑘 = 𝑑_𝑠𝑡𝑎𝑐𝑘 ∪ {ℎ}
28 ℬ = ℬ ∪ {ℎ}
29 fi
30 fi
31 fi
32 𝜎 = 𝜎2

33 done
34 𝜎 = 𝜎1

35 done

Algorithm 7 Output example compileRulesForSupportDerivation

Input :{𝑔(𝑋)← 𝑒(𝑋), 𝑛𝑜𝑡 𝑎(𝑋); 𝑎(𝑋)← 𝑓(𝑋), 𝑛𝑜𝑡 𝑔(𝑋)}, {′𝑎′,′ 𝑔′}
1 begin
2 case ’a’

3 𝜎 = 𝜖
4 𝜎 = 𝜎 ∪ {𝑋 ↦→ 𝑡𝑟𝑚(𝑠𝑡𝑎𝑟𝑡𝑒𝑟)[1]}
5 𝜎1 = 𝜎
6 𝑇1 = {𝑝 ∈ (𝐼 ∪ ℬ) | 𝑚𝑎𝑡𝑐ℎ(𝜎(𝑓(𝑋)), 𝑝)}
7 for all 𝑡1 ∈ 𝑇1 do
8 𝜎 = 𝜎 ∪ {𝑋 ↦→ 𝑡𝑟𝑚(𝑡1)[1]}
9 𝑡2 = 𝜎(𝑛𝑜𝑡 𝑔(𝑋))

10 if 𝑡2 /∈ 𝐼 then
11 𝑏 = 𝑛𝑠 = ∅
12 𝑏 = 𝑏 ∪ {𝑡1} 𝑏 = 𝑏 ∪ {𝑡2}
13 𝑛𝑠 = 𝑛𝑠 ∪ {𝑡2}
14 ℎ = 𝑠𝑡𝑎𝑟𝑡𝑒𝑟
15 if 𝑏+ ⊆ 𝐼 ∧ (¬𝑏− ∩ ℬ) = ∅ ∧ ℎ /∈ 𝐼 then
16 𝐼 = 𝐼 ∪ {ℎ}
17 ℬ = ℬ ∖ {ℎ}
18 𝑡𝑟𝑢𝑒 = 𝑙𝑜𝑜𝑝 = ⊤
19 else if ((𝑏+ ∪ ¬𝑏−) ∩ ℬ) ̸= ∅ ∧ ℎ /∈ 𝐼 then
20 𝑢𝑛𝑑𝑒𝑓 = ⊤
21 fi
22 fi
23 𝜎 = 𝜎1

24 done
25 case ’g’

26 𝜎 = 𝜖
27 𝜎 = 𝜎 ∪ {𝑋 ↦→ 𝑡𝑟𝑚(𝑠𝑡𝑎𝑟𝑡𝑒𝑟)[1]}
28 𝜎1 = 𝜎
29 𝑇1 = {𝑝 ∈ (𝐼 ∪ ℬ) | 𝑚𝑎𝑡𝑐ℎ(𝜎(𝑒(𝑋)), 𝑝)}
30 for all 𝑡1 ∈ 𝑇1 do
31 𝜎 = 𝜎 ∪ {𝑋 ↦→ 𝑡𝑟𝑚(𝑡1)[1]}
32 𝑡2 = 𝜎(𝑛𝑜𝑡 𝑎(𝑋))
33 if 𝑡2 /∈ 𝐼 then
34 𝑏 = 𝑛𝑠 = ∅
35 𝑏 = 𝑏 ∪ {𝑡1} 𝑏 = 𝑏 ∪ {𝑡2}
36 𝑛𝑠 = 𝑛𝑠 ∪ {𝑡2}
37 ℎ = 𝑠𝑡𝑎𝑟𝑡𝑒𝑟
38 if 𝑏+ ⊆ 𝐼 ∧ (¬𝑏− ∩ ℬ) = ∅ ∧ ℎ /∈ 𝐼 then
39 𝐼 = 𝐼 ∪ {ℎ}
40 ℬ = ℬ ∖ {ℎ}
41 𝑡𝑟𝑢𝑒 = 𝑙𝑜𝑜𝑝 = ⊤
42 else if ((𝑏+ ∪ ¬𝑏−) ∩ ℬ) ̸= ∅ ∧ ℎ /∈ 𝐼 then
43 𝑢𝑛𝑑𝑒𝑓 = ⊤
44 fi
45 fi
46 𝜎 = 𝜎1

47 done
48 if 𝑢𝑛𝑑𝑒𝑓 = ⊥ ∧ 𝑡𝑟𝑢𝑒 = ⊥ then
49 ℬ = ℬ ∖ {𝑠𝑡𝑎𝑟𝑡𝑒𝑟}
50 𝑙𝑜𝑜𝑝 = ⊤
51 fi

4. Implementation and Experiments

Implementation Details. The compilation strategy described in the previous section has

been entirely implemented in C++ and so both compiler and generated procedures are written

in C++. Generated code is built on top of optimized data structures that allow to speed up the

whole computation process. In particular, it uses a numerical representation of constant terms

that allows a compact and uniform representation. Moreover, different indexing structures

are used for each predicate. Indexes are defined on the subset of terms of predicates, for fast

retrieval of the list of literals that match a possible tuple.

Benchmarks, Systems and Experiments Setup. In order to assess the performances of

the proposed approach we conducted an empirical evaluation both on positive programs (i.e.,

Datalog) and programs with negation. Among positive programs, we considered:

• Large-join problem [11] defined as follows:

𝑎(𝑋,𝑌)← 𝑏1(𝑋,𝑍), 𝑏2(𝑍, 𝑌).
𝑏1(𝑋,𝑌)← 𝑐1(𝑋,𝑍), 𝑐2(𝑍, 𝑌).
𝑏2(𝑋,𝑌)← 𝑐3(𝑋,𝑍), 𝑐4(𝑍, 𝑌).
𝑐1(𝑋,𝑌)← 𝑑1(𝑋,𝑍), 𝑑2(𝑍, 𝑌).

where 𝑑1/2, 𝑑2/2, 𝑐2/2, 𝑐3/2, and 𝑐4/2 are defined as facts that represent an instance

of the problem. For this benchmark, we have generated instances of different sizes in

a random fashion. More precisely, for each instance, we set the size (number of facts)

roughly from 10000 to 10000000 and we randomly divided the number of facts among the

previous predicates (around 10-25% for each predicate). Then for each predicate 𝑝, we

randomly estimated the max value for each term, 𝑛 and 𝑚, in such a way that 𝑛 *𝑚 = 𝑠,

where 𝑠 is the size of the predicate set of 𝑝.

• Reachability problem defined as follows:

𝑟𝑒𝑎𝑐ℎ(𝑋,𝑌)← 𝑒𝑑𝑔𝑒(𝑋,𝑌).
𝑟𝑒𝑎𝑐ℎ(𝑋,𝑌)← 𝑟𝑒𝑎𝑐ℎ(𝑋,𝑍), 𝑒𝑑𝑔𝑒(𝑍, 𝑌).

Instances of this problem are directed graphs that we have generated varying the number

of nodes and the density of the edges. In particular, we considered graphs with a number

of nodes from 100 to 2000 and density 20, 40, 60, 80, and 100%.

Among programs with negation, instead, we considered three hard benchmarks from asp com-

petitions that are Knight Tour with Holes, Stable Marriage, and Graph Colouring [10].

Our approach, labeled wf-comp, was compared with the following tools:

• General-purpose systems that can evaluate Datalog programs: idlv [13] and gringo [14]

• The soufflé framework [4] for which we have rewritten the encoding to produce a suitable

encoding for this framework. In particular, two versions have been considered, the

interpreted, souffle, and compiled, souffle-comp, ones.

• Compilation-based approach for stratified normal programs wasp-lazy [7].

0 10 20 30 40 50 60
0

300

600

900

1,200

1,500

1,800

Number of solved instances

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
)

souffle

souffle-comp

gringo

idlv

wasp-lazy

wf-comp

Figure 1: Systems comparison on large-join domain

0 20 40 60 80 100
0

300

600

900

1,200

1,500

1,800

Number of solved instances

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
)

souffle

souffle-comp

gringo

idlv

wasp-lazy

wf-comp

Figure 2: Systems comparison on reachability domain

• ASP system dlv2 [12] that can evaluate normal programs under well-founded semantics.

All the experiments were executed on a machine equipped with Xeon(R) Gold 5118 CPUs,

running Ubuntu Linux (kernel 5.4.0-77-generic). Time and memory were limited to 1800

seconds and 8GB, respectively. Source code and benchmark suite are available at https://osf.io/

g9n2z/?view_only=aeb0777c469e46499247284b56dfb598

Evaluation on Positive Programs. In this comparison, we run the systems on instances of

large-join and reachability. Obtained results are summarized by the cactus plots in Figures 1-2.

https://osf.io/g9n2z/?view_only=aeb0777c469e46499247284b56dfb598
https://osf.io/g9n2z/?view_only=aeb0777c469e46499247284b56dfb598

0 50 100 150 200 250 300 350
0

2

4

6

8

10

Number of solved instances

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
)

dlv2

wf-comp

Figure 3: Systems comparison on Knight Tour With Holes benchmark

0 15 30 45 60 75
0

2

4

6

8

10

Number of solved instances

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
)

dlv2

wf-comp

Figure 4: Systems comparison on Stable Marriage benchmark

Recall that a cactus plot reports a line for each system and each line contains a point (𝑋,𝑌) if

a given system is able to solve 𝑋 within a time limit of 𝑌 seconds.

In both cases, wf-comp outperforms state-of-the-art ASP systems gringo and idlv solving

more instances (roughly 15 for reachability and 2 for large-join) and in less time overall. Our

approach also outperforms wasp-lazy on reachability problem solving 16 more instances than

the latter, while wf-comp is comparable on the large-join domain with wasp-lazy. The best

method in this comparison is souffle system. The difference with our tool (souffle is preferable

in complete graphs) is due to different data structures and also to the different input formats.

Indeed, souffle takes as input a numeric format where input facts are organized in files for

0 40 80 120 160
0

5

10

15

20

25

30

35

Number of solved instances

E
x
e
c
u
t
i
o
n
T
i
m
e
(
s
)

dlv2

wf-comp

Figure 5: Systems comparison on Graph Colouring benchmark

each input predicate while wf-comp reads plain text files.

Evaluation on Programs with Negation. In the case of programs with negation, we com-

pare wf-comp and dlv2 (the other methods do not support unrestricted negation). For each

considered benchmark we report a cactus plot see Figures 3, 4, and 5. Obtained results highlight

the strength of the proposed approach that outperforms dlv2 on considered benchmarks. In

particular, both systems are able to solve all problem instances within time and memory limits,

but wf-comp significantly reduced the total execution time for each benchmark (33.24% on

Graph Colouring, 63.26% on Knight Tour With Holes, and 22.37% on Stable Marriage).

5. Conclusion

Logic programming is a widely employed programming paradigm for modeling complex

problems in a declarative fashion. Efficient implementations are needed in order to exploit

the strength of such formalism in real-world applications. Compilation-based techniques

were revealed to be effective in tackling different issues raised in the evaluation of logic pro-

grams [4, 7, 6, 8]. In this paper, we proposed a compilation-based approach for logic programs

under well-founded semantics. Obtained results demonstrate the effectiveness of the proposed

approach both for positive programs and programs with negation. The improvements are

significant on programs with negation while in the evaluation of positive programs our imple-

mentation is competitive with existing systems. As future works, we planned to extend our

technique also to the class of disjunctive programs and to programs with aggregates (again

under the well-founded semantics). Also, there is space for improvements in the data structures

used for evaluating Datalog programs, where better performance could possibly be achieved

(especially on dense graphs) by employing more efficient indexing structures.

References

[1] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer, 1987.

[2] C. Baral, M. Gelfond, Logic programming and knowledge representation, The Journal of

Logic Programming 19 (1994) 73–148.

[3] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic

programming, ACM Comput. Surv. 33 (2001) 374–425.

[4] H. Jordan, B. Scholz, P. Subotic, Soufflé: On synthesis of program analyzers, in:

S. Chaudhuri, A. Farzan (Eds.), Computer Aided Verification - 28th International Con-

ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, vol-

ume 9780 of Lecture Notes in Computer Science, Springer, 2016, pp. 422–430. URL: https:

//doi.org/10.1007/978-3-319-41540-6_23.

[5] B. Cuteri, C. Dodaro, F. Ricca, P. Schüller, Partial compilation of ASP programs, Theory

Pract. Log. Program. 19 (2019) 857–873. URL: https://doi.org/10.1017/S1471068419000231.

[6] B. Cuteri, C. Dodaro, F. Ricca, P. Schüller, Overcoming the grounding bottleneck due

to constraints in ASP solving: Constraints become propagators, in: C. Bessiere (Ed.),

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,

IJCAI 2020, ijcai.org, 2020, pp. 1688–1694. URL: https://doi.org/10.24963/ijcai.2020/234.

[7] B. Cuteri, F. Ricca, A compiler for stratified datalog programs: preliminary results, in:

S. Flesca, S. Greco, E. Masciari, D. Saccà (Eds.), Proceedings of the 25th Italian Symposium

on Advanced Database Systems, Squillace Lido (Catanzaro), Italy, June 25-29, 2017, volume

2037 of CEUR Workshop Proceedings, CEUR-WS.org, 2017, p. 158. URL: http://ceur-ws.org/

Vol-2037/paper_23.pdf.

[8] G. Mazzotta, F. Ricca, C. Dodaro, Compilation of aggregates in ASP systems, in: AAAI,

AAAI Press, 2022, pp. 5834–5841.

[9] A. Van Gelder, K. A. Ross, J. S. Schlipf, The well-founded semantics for general logic

programs, J. ACM 38 (1991) 620–650. URL: https://doi.org/10.1145/116825.116838.

[10] M. Gebser, M. Maratea, F. Ricca, The sixth answer set programming competition, Journal

of Artificial Intelligence Research 60 (2017) 41–95.

[11] S. Liang, P. Fodor, H. Wan, M. Kifer, Openrulebench: an analysis of the performance of

rule engines, in: J. Quemada, G. León, Y. S. Maarek, W. Nejdl (Eds.), Proceedings of the

18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April

20-24, 2009, ACM, 2009, pp. 601–610. URL: https://doi.org/10.1145/1526709.1526790.

[12] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari,

The ASP system DLV2, in: Logic Programming and Nonmonotonic Reasoning - 14th

International Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume

10377 of Lecture Notes in Computer Science, 2017, pp. 215–221. URL: https://doi.org/10.1007/

978-3-319-61660-5_19.

[13] F. Calimeri, D. Fuscà, S. Perri, J. Zangari, I-DLV: the new intelligent grounder of DLV,

Intelligenza Artificiale 11 (2017) 5–20. URL: https://doi.org/10.3233/IA-170104.

[14] M. Gebser, R. Kaminski, A. König, T. Schaub, Advances in gringo series 3, in: J. P. Delgrande,

W. Faber (Eds.), Logic Programming and Nonmonotonic Reasoning - 11th International

Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings, volume 6645

of Lecture Notes in Computer Science, 2011, pp. 345–351.

https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1017/S1471068419000231
https://doi.org/10.24963/ijcai.2020/234
http://ceur-ws.org/Vol-2037/paper_23.pdf
http://ceur-ws.org/Vol-2037/paper_23.pdf
https://doi.org/10.1145/116825.116838
https://doi.org/10.1145/1526709.1526790
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.3233/IA-170104

	1 Introduction
	2 Logic Programs Under the Well-founded Semantics
	2.1 Syntax
	2.2 Well-founded Semantics

	3 Compilation of Well-founded Semantics
	4 Implementation and Experiments
	5 Conclusion

