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Abstract
In recent years there has been a renewed burst of interest in systems able to textually summarize data,
producing natural language text as a description of input data series. Many of the recently proposed
approaches to solve the data-to-text task are based on Machine Learning (ML) and ultimately rely on
Deep Learning (DL) techniques. This technological choice often prevents the system from enjoying
explainability properties.

In this paper we outline our ongoing research and present a framework that is ML/DL free and is
conceived to be compliant with xAI requirements. In particular we design ASP/Python programs that
enable explicit control of the abstraction process, descriptions’ accuracy and relevance handling, and
amount of synthesis.

We provide a critical analysis of the xAI features that should be implemented and a working proof
of concept that addresses crucial aspects in the abstraction of data. In particular we discuss: how to
model and output the abstraction accuracy of a concept w.r.t. data; how to identify what to say with
controlled synthesis level: i.e., the key descriptive elements to be addressed in the data; how to represent
abstracted information by means of visual annotation to charts. The main advantages of such approach
are a trustworthy and reliable description, a transparent methodology, logically provable output, and
measured accuracy that can control natural language modulation of descriptions.
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1. Background

The data-to-text generation task consists in automatically generating descriptions from non-
linguistic data, such as numeric data or their visual representation in terms of charts, histograms,
etc. Over the recent years, there has been a burst of interest in systems able to textually
summarize data, such as time-series. For instance, to mention one research line among many,
the approach reported in [1] proposes DataTuner, neural end-to-end data-to-text generation
system. The tool is open source and is supported by the Alexa AI organization.
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The relevance of this kind of systems lies in their ability to provide textual descriptions of
non-linguistic data in contexts where visual rendering of information represents an obstacle
rather than a facilitation to access to knowledge. Compared to traditional forms of presentations,
textual description can help, for instance, in making data more accessible to readers/users that
are not expert enough to correctly interpret information encoded into a data set. Also, natural
language descriptions of data can help readers also in cases where data can be illustrated
by means of forms of representations usually considered “self-explanatory”, such as charts,
histograms, pies, etc. In fact, also in this cases, it might be difficult to read the graphical
representation if the amount and/or complexity of data is large.

Further use of text-to-speech tools, can be found in screen readers. In this case the screen
reader might exploit textual generator to extract relevant information from the charts contained
in a digital document or in a web page. This is of extreme importance in situations where the
interpretation of visualizations is made difficult or hindered for people with visual impairments
or when human readers have limited cognitive abilities in comprehending and analyzing complex
charts.

Many approaches to the data-to-text generation task appeared in the literature and the
problem has been been widely studied in various specific domains. For example, [2] and [3]
apply a data-to-text generation system to interpret data-records concerning NBA basketball
games. In the financial field, [4] propose an approach to the problem of comment generation for
time-series of stock prices. In the healthcare domain, [5] present the prototype BT-45 aimed at
generating textual summaries of physiological clinical data (for instance, acquired automatically
from sensors or entered routinely by the medical staff).

Different solutions have been designed to process specific forms of diagrammatic representa-
tions of data. For instance, charts and histograms are the inputs of the approaches proposed by
[6] and by [7], while other proposals focus on input data in tabular form [8].

It must be noted that almost all recent systems automating data-to-text processing are based
on Machine Learning and ultimately rely on Deep Learning techniques and on Neural Networks
training algorithms. This is the case for the DataTuner system described in [1].

There are a few exceptions worth mentioning. In particular, [9] describes a rule-based
approach to generate descriptions of inputs from a Dow Jones stock quotes database: the
input data are processed by an expert system written in the OPS5 production system language.
The BT-45 system [5] implements signal analysis and pattern detection techniques in order
to process input time series. The extracted features are then processed and converted into
textual summaries by exploiting a corpus of human-authored sample linguistic expression of
concepts. Such system is one of the few proposals appeared in the literature not relying on
ML/DL techniques. In this sense, it is akin to our approach albeit it is expressly conceived and
developed to be used in a very specific application domain. Indeed, it relies on an ontology
of medical concepts that must be provided by human experts. Such an ontology is essential
both for assessing the importance of patterns in input data and for generating expert-oriented
output descriptions.

In this paper we present a framework to solve the data-to-text generation task for input
(numerical) time series, which is compliant with explainability requirements. To this aim, we
design a system which does not rely on Machine Learning techniques, but leverages Answer Set



Programming to ensure intrinsic explainability and provide explicit control of all main aspects
of input analysis and data processing. Section 2 provides an analysis of the xAI features that
should be taken into account in developing a tool to solve the data-to-text generation task. In
particular, our approach to data abstraction is described in Sections 2.1, 2.2 and 2.3. The output
of the abstraction phase consists of a collection of possible alternative descriptions of input
data, classified by accuracy and relevance. The selection of the best description(s) is described
in Section 2.4, while Section 3 reports on some experimental results. In Section 4 we conclude.

2. The xAI pipeline design

Recent debates about the impact of Artificial Intelligence (AI) on many aspects of everyday
life resulted into an increasing awareness about social and ethical implications of the use of
AI-based systems. Different regulations and white papers have been developed (see e.g., the
2021 USA National AI Initiative Act and the forthcoming on 2024 EU regulations [10]). EU
document introduces a risk-based classification of AI systems based on the principles of ethical
AI (cf., [11]).

The term explainable AI (xAI, for short) [12, 13] identifies a broad set of features that a
high-risk system should implement: transparency (or glass box approach), ethics, the capability
to support results in terms of intelligible descriptions, accountability, security, privacy, and
fairness. A system built on top of such prerequisites can be trusted and embedded into a panel
for high-stake decisions, given its capability of describing at high-level the justification of the
inner deductions that brought to a particular answer.

The machinery used by most Machine Learning (ML) and in particular by Deep Learning (DL)
hides high-level (symbolic) interpretation about the learned parameters (black box approach).
Recent efforts try to recover explainability by observing the trained networks (post-hoc expla-
nations [12]), e.g., textual captioning and/or visual explanation by examples. However, there are
concerns about the reliability of these approaches, if still driven by black box approaches [14].

We prefer designing an intrinsically explainable approach. We selected a Logic Programming
framework, where knowledge can be expressed, rather than learned and hide, and results derive
from the application of resolution techniques that guarantee the soundness of the resulting
interpretation. We select Answer Set Programming (ASP) and Clingo [15], given its flexibility
in modelling knowledge and efficiency in reasoning. Another advantage is the fast prototyping
and the ease in identifying conceptual errors in the model during the developing stage.

In this work we focus on time series, where a quantity is measured and sampled 𝑛 times
at certain frequency along the time domain. We assume that time (on x-axis) and scalar
measure (on y-axis) are both normalized into the 0..1 interval. Our approach is general and
specific knowledge about time evolution of data can be added in a compositional fashion (e.g.
electrocardiograhpy data provide peculiar shapes, meteorological data). As a proof of concept
we describe the data in terms of a combination of basic descriptors that originate from linear
shapes (increase, decrease and constant), peaks/valleys and steps (constant-increase-constant
pattern). Multiple descriptions of the same portion of the series can coexist, since different
shapes can be observed. Shapes should be simple, defined by a few parameters and associated
to simple descriptions in natural language.



The pipeline is composed of three steps. The first step is the abstraction of data, where raw
data are processed to detect basic local properties. The second step builds a set of abstractions
that combine local properties into descriptions that cover larger regions the domain. A third step
selects a combination of descriptions (what to say), that provide enough reliable information
about the data. Finally, each description is translated into natural language (how to say) according
to its accuracy and relevance computed during the process. In the paper we omit actual text
string generation, since output contain enough information to construct a logical narration
structure (thanks to the time and inclusion relationships among descriptions) and to modulate
qualitative adverbs (from accuracy and relevance information). For effective and intuitive
feedback we show equivalent graphical annotations over original data.

2.1. Accuracy and relevance

The most crucial aspect in the semantic interpretation and abstraction of a general data series
is the need to measure the faithfulness of the abstraction process. The system should provide,
as self evaluation of the process, the amount of confidence about each description. This type of
explainability pairs the white box approach, where the process itself can be investigated (by
looking at the logic program that models the process itself).

The bottom up approach in the abstraction of features from data to high-level description
starts from numerical fitting of simple shapes over the data. Such action, described below, is the
link between raw data and logic handling of information. Fitting itself carries an error (typically
Root Mean Squared Error, RMSE) and this is the first measure of accuracy that propagates
along the process. If data provide a low accuracy in fitting a particular shape, the high level
description is necessarily weak.

The logic program that merges low-level shapes into more complex ones (e.g., an increasing
sequence followed by a decreasing one may form a peak) needs to account for another type
of errors. The combination of descriptions into an higher-level description must measure the
deviation from the ideal model. For example, an ideal peak must contain an increasing trend
followed by a decreasing one. However, a soft preference can penalize accuracy when the two
halves are not symmetric. Therefore, accuracy of a description combines fitting errors and
abstraction errors.

Any description with associated high accuracy can be safely selected, since both visually and
conceptually there is a high correlation with data.

Handling at high level, through a logic program, the computation of descriptions, rather than
having a large set of candidate shapes to be fitted on the dataset, provides greater flexibility and
avoids a relevant computation burden.

The relevance of each description is an orthogonal property that captures the importance
of the shape, in terms of extension in the measure domain. For most shapes it can be seen as
the coefficient that scales the y-axis. The combination of accuracy and relevance are at the
basis of the choices for descriptions that cover the series. Moreover, it provides the sufficient
ingredients for the generation of meaningful natural language characterizations. For example,
accuracy can modulate the confidence expressed in the sentence about a particular shape, while
relevance can control qualitative adverbs.



2.2. First step: data abstraction

The first step has the goal of retrieving simple features that describe the time series. Such
features become the basic building blocks for further abstractions handled by ASP program
in later steps. In our examples, we use polyline fitting to describe the original data with a
controlled RMSE. Other types of fitting can be used (e.g., specific patterns can be convoluted
over the series as well as other parametric curves).

We take advantage of Python’s library scipy.interpolate and its function Univariate-
Spline that is able to efficiently fit general splines. We selected the spline degree equal to
1, in order to produce a polyline made of simple segments. Depending on the selected fitting
accuracy (provided as input), an adequate number of segments are placed over the curve. As an
example, Figure 1 depicts a series resulting from the search term “Concert” in the last 5 years
(from Google Trends). We select 9 levels of increasing fitting accuracy for polylines. Throughout
the paper we refer to a polyline’s level as the 𝑖-th version of fitting obtained with a decreasing
sequence of RMSEs. Blue lines represent the original data, while red segments are the result
of the fitting. Higher accuracy requires a larger number of segments, while describing finest
details. On the other side, setting a high error, allows to capture coarser and general trends. In
Figure 1, the top row approximates a rather constant behaviour that mutates to a large valley in
the central row. The bottom row captures tiny spokes and almost noisy behaviour.
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Figure 1: Example of fittings with decreasing RMSEs

A polyline is associated to a global RMSE, but single segments of the polyline can reveal
different local RMSEs. In Figure 2 we depict, from higher fitting error to lowest, the measure of
local RMSE in a black-red-yellow palette corresponding to polylines of Figure 1. It can be noted
that the initial large error for the central valley is reduced while global RMSE gets reduced. The
error caused by the sharp peak on the right requires a larger number of segments in order to be
significantly reduced. In our examples we defined 𝑛/2 (at most 128) bins over the time domain
to measure local errors. This allows to compare segments’ properties even among different
polylines, since they are not necessarily aligned on x coordinates.

Fitting errors should be taken into account when producing a shape that describes the data.
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Figure 2: Local accuracy for each polyline fitting

For example, claiming that the series of Figure 1 has an overall constant behaviour implicitly
carries a relevant error in the central part of the domain (yellow area in the top row if Figure 2).
Depending on the domain knowledge, the amount of error can be either satisfactory or not in
relation to the desired description approximation. The pipeline should provide the means to
select the minimal degree of acceptability for any description. The simplest way to proceed
is to expose RMSE information to next steps and allow user to set a parameter for minimal
acceptable error.

The output of this processing prepares a set of ASP facts that compose the basic knowl-
edge about the series, in terms of: lists of segments classified by their polyline level
(desc(ID,Level)); segment’s properties (desc_info(ID, Type, Value), details below);
local RMSE for each bin covered by a polyline level (desc_accuracy(Level,Bin,RMSE),
equivalent to the content of Figure 2) are output. Details about a segment include x and y
coordinates of ending points, minimal and maximal y encountered in original data and gradient.
Since ASP deals with integral quantities, all values are scaled to 0..100 range.

2.3. Second step: bottom up abstraction hierarchy

Let us focus on a specific polyline ℓ (level) out of the set generated in previous step. A sequence
of segments desc(𝑖,ℓ) represents the finer knowledge about polyline. The goal is to merge
adjacent sequences of segments and produce potentially relevant abstractions that capture
particular properties.

We define merge rules depending on the type of property that is investigated. We currently
have three categories: monotone behaviour, second order zero (peak and/or valley) and step
function (low - high - low sequence of first order derivative magnitude). Other patterns can be



derived similarly, by building on top of such structure (e.g. periodicity), while other shapes may
require different raw data pattern matching.

Monotone arrangements can be directly deduced from desc_info(ID, Type, Value)
facts, and an increasing (decreasing) subcategory is selected if the angular coefficient of the
segment is positive (negative). Accuracy of such descriptions only depends on RMSE, since
these are basic shapes. In particular (recall that we scale numbers in the range 0..100), we assign
an accuracy Acc of 100−RMSE , meaning that 100 is a segment that matches the original data,
while lower values show noisy fitting. Relevance Rel of the segment is associated to the differ-
ence of y values between extremes. Intuitively it represents the impact of the change in the plot.
These basic abstractions are stored as facts abstract(A,B,L,monotone,SubC,Acc,Rel).,
where A..B is the range of segments indexes involved (in this specific case 𝐴 = 𝐵, since we
abstract a single segment), L is the level ℓ that selects the polyline that contains the segment,
SubC is the subcategory.

Let us discuss now the merge rules for consecutive abstracted objects. The general bottom up
procedure joins consecutive abstractions and produce new ones with larger segments span. The
new abstraction is classified by a category and subcategory, as well as accuracy and relevance,
depending on rules that model the abstraction process. We therefore produce a set of horn rules
that models each abstraction type.

In Table 1 we report some examples of simple combination rules that drive the bottom up
process. The output column is the result of the concatenation of 2/3 lower level abstractions.
Bottom elements are abstract/7 facts described above. Let us show the actual rule for the first
case listed in the table (simple merge of two consecutive increasing regions). In Figure 3 we show
a rule for producing a new abstraction for the range 𝐴..𝐶 at level 𝐿 of subcategory increasing.
The computation of the new accuracy Acc inherits the accuracy of the two components. We
found that selecting the minimal one among the two is rather plausible. For fitting errors this
is certainly true (remember that accuracy is computed as 100-RMSE and minimal accuracy
is equivalent to maximal error), while for the error added by the merge operation itself, we
believe that we can inherit the weakest (lower) component’s relevance. Obviously, any different
measure for degradation caused by merging operators can be easily introduced. Relevance
Rel is computed by means of support predicates structure that merge desc_info facts by
joining any possible concatenation of sub-regions and that show structural properties of the
segments (in this case the 𝑦 value for first and last point of the sequence of segments).

Let us discuss a slightly more complicated case that captures the subtle impact on accuracy
when merging incompatible segments. For example, we model a region (made of segments
𝐴..𝐵) defined as increasing with accuracy Acc1 and relevance Rel1 followed by a region (made
of segments 𝐵 + 1..𝐶) defined as decreasing with accuracy Acc2 and relevance Rel2. We can
abstract the union of the regions as decreasing under certain conditions. If the increasing region
is particularly small, both in x or y axis, in comparison to the second region, then it is plausible
to consider it as a detail that can be smoothed out in a more general abstraction. Nevertheless,
we account for such abstraction error, which is not related to the fitting accuracy of the base
segments, but rather on the intuitive semantic error due to the merge. Figure 4 details the
computation of a Penalty that is subtracted from accuracy of the decreasing region. The Penalty
depends on the ratio of the two regions: if increasing part gets irrelevant, the penalty becomes
null. If the increasing part covers half of the decreasing part, the penalty becomes 50. When the



Output Segment 1 Segment 2 Segment 3
Category Subcat Category Subcat Category Subcat Category Subcat
Range [A..C] Range [A..B] Range [B+1..C]
monotone incr monotone incr monotone incr
monotone decr monotone decr monotone decr
peak/valley peak monotone incr monotone decr
peak/valley valley monotone decr monotone incr
Range [A..D] Range [A..B] Range [B+1..C] Range [C+1..D]
step incr monotone const monotone incr monotone const
step decr monotone const monotone decr monotone const

Table 1
Basic abstraction rules for merging categories

abstract(A,C,L, monotone, SubC, Acc, Rel):-
SubC=increasing,
abstract(A,B,L, monotone, SubC, Acc1, Rel1),
abstract(B+1,C,L, monotone, SubC, Acc2, Rel2),
Acc=#min{Acc1;Acc2},
structure(A,B, L, firsty, Fy1),
structure(B+1,C, L, lasty, Ly2),
Rel=Ly2-Fy1.

Figure 3: ASP code for merging two increasing abstractions

penalty(2,50;3,40;4,30;5,20;6,10;7,5;8,0;9,0;10,0).
abstract(A,C,L, monotone, decreasing, Acc2 - Penalty, Rel):-

abstract(A, B,L, monotone, increasing, Acc1, Rel1),
abstract(B+1,C,L, monotone, decreasing, Acc2, Rel2),
Dx1=Maxx1-Minx1+1, Dx2=Maxx2-Minx2+1,
Dy1=Maxy1-Miny1+1, Dy2=Maxy2-Miny2+1,
Dx2 / Dx1 = Times1, Dy2 / Dy1 = Times2,
Times=#min{Times1;Times2},
penalty(Times,Penalty),
Rel = |Rel1-Rel2|.

Figure 4: Merge of incompatible categories

two regions become comparable (Times ratio is equal to 1) the body fails, since the two regions
would merge in something that has no meaning from monotone category point of view. In this
case, relevance gets reduced since the maximal coverage on y axis depends on the difference
between the two regions extensions (or equivalently the difference between the y of the peak
and the highest between the first and last y values).

Such kinds of rules allow to produce multiple categories with multiple subcategories abstrac-
tions for the same range. Some differences in accuracy and relevance may arise. Moreover, even



the same category and sub category could show different facts with different combinations of
accuracy,relevance since there is no associativity of operators in the merge rules. In order to
simplify a potential explosion of alternative (and no so interesting) options, the ASP program
selects, for each range, category and subcategory, the abstraction with maximal accuracy and
relevance found. The rationale is that among them, there is a combination of merges that is
able to support a maximal accuracy and relevance.

Let us mention the peak generation, where the accuracy estimation receives another type
of penalization. In this case, we prefer an ideal shape that presents symmetric increasing and
decreasing ramps (both along x and y axis). Similarly to the previous case, we penalize merges
of unbalanced parts. Relevance in this case depends on the minimal one among the two regions.

We also want to model a monotone constant model. This is complementary to a increas-
ing/decreasing behavior. In this case, we inherit the same accuracy, while relevance gets high if
the increasing/decreasing relevance is low. Moreover low relevance for any other abstraction
(valleys, peaks and steps) can produce high relevance constant descriptions.

The bottom up production of abstractions is handled by Clingo resolution of the ASP program
and requires a simple stratified 𝑇𝑃 resolution with a single stable model.

2.4. Third step: selection of descriptions

Given a set of polyline fittings (recall Figure 1), we index them by levels of improved fitting
RMSE. Each level is associated to a polyline and related abstractions for various ranges of
segments, classified by accuracy and relevance. This dataset is at the basis for the next task: the
selection of important descriptions that arise, at any level.

An generic description of data requires a multi-scale approach: a comprehensive observation
should cover both large scale properties (captured by numerically low levels, higher RMSE
polylines) and small scale properties (numerically high level, lower RMSE polylines). The
correct levels at which coarse trends (summary descriptions) and fine grained trends (detailed
description) appear depend on the series. Moreover, the same detail can be detected at many
levels, with different amount of accuracy and relevance. For example, referring again to Figure 1,
we list the same valley property detected at different levels. For top row, starting from left, no
valleys are found (only a constant description with accuracy 69/100 and relevance 100/100);
for the central fitting a faint valley is found, covering the whole dataset, with accuracy of
64/100 and relevance 3/100 (very weak, barely noticeable); the right figure produces a valley
description again over the whole dataset with 68/100 of accuracy, but 33/100 of relevance. On the
central row, the left figure is able to produce a valley description of 72/100 accuracy and 42/100
relevance limited between 0.25 and 0.87 along x axis, which becomes rather usable as actual
description. The challenge is to select non redundant details among potentially overlapping
descriptions from different levels of description.

We define a logic model that promotes the creation of a fluent and effective narration of
descriptions. In our view an intuitive, yet not exhaustive, set of goals is: to cover both summary
and detail descriptions; avoid to describe redundant descriptions (same category over same
region, also from different levels); control the amount of synthesis by means of a limited number
of description to be used; to cover each point of the series by at least one description; to maximize
the quality of the descriptions (minimal rmse = best accuracy and maximal relevance).



cost(P,Cost,D) :- position(P),
talk_about_top(D),
Cost = #max{Rel1,D1:

talk_about(D1), includes_trans(D,D1),
output_ok(D1,Start1,End1,_,_,_,_,Rel1),
desc_info(Start1, minx, S1), desc_info(End1, maxx, E1),
S1<=P,P<=E1;
0,dummy}.

Figure 5: Cost definition

Our efforts to convert these guidelines into an ASP program provide the advantage of being
very flexible about accommodating additional/modified goals. The possibility to interact with
a logic program, implements the xAI guideline for a white box approach. Even if our model
contains an optimization, compared to pure constrained based solutions, we appreciate ASP’s
flexibility in mixing constraints and aggregates into simple predicates that define the search
space.

Let us present our model step by step. We start by defining two minimal thresholds for select-
ing descriptions that are worth considering: min_accuracy(60) and min_relevance(2).
This cuts our descriptions too inaccurate and/or invisible. We define the facts that are filtered
as follows: description(ID,Start,End,L,Cat,SubC,Acc,Rel). Basically, the variables
have been discussed above: Start and End refer to the segment number of the polyline at
level L; Cat and SubC identify the category and subcategory; Acc and Rel describe accuracy
and relevance. Each description/8 is a potential candidate to be talked about. We therefore
define decisional variables, by means of the talk_about/1 predicate, as follows:

0{talk_about(D)}1 : −description(D, _, _, _, _, _, _, _).

We conclude with the definition of the cost function. We define a cost/3 predicate that
determines the cost for each description D and for each position P. Figure 5 describes the ASP
code. In order to compare segments that may cover unpredictable and different regions among
different levels, we map description properties to the bins introduced for RMSE evaluation. Each
description votes its Relevance to each position P. If the position is not covered, the default is set
to 0. In case multiple included descriptions are present, the best relevance reaches is retained.
Summary and detail optimization will make different usage of cost/3 predicate.

2.4.1. Summary

The optimization cost for summary retrieval considers for each position the best cost provided
by any description at that position:

best_cost_position(C,P) :- position(P),
C=#max{Cost:cost(P,Cost,_); 0}.
#maximize{Cost,P: best_cost_position(Cost,P)}.



includes(D1,D2):-
talk_about(D1),talk_about(D2),D1!=D2,
description(D1,Start1,End1,L1,_,_,Acc1,Rel1),
description(D2,Start2,End2,L2,_,_,Acc2,Rel2),
L1=L2,
desc_info(Start1, minx, S1), desc_info(End1, maxx, E1),
desc_info(Start2, minx, S2), desc_info(End2, maxx, E2),
S1<=S2, E2<=E1, %%% D2 is contained in D1
(E2-S2+1)*3 > E1-S1+1. %%% at least 1/3 covered

Figure 6: Example of descriptions inclusion

This allows to consider potential overlaps and forces to cover the largest portion of
the series. Assume that talk_about_top(D) is equal to talk_about(D) and that
includes_trans(D,D1):- D1=D, talk_about(D). Practically, we account for any de-
scriptions regardless their inclusion relationships.

Finally, we set a small maximal number (max_desc(M)) of descriptions that form the sum-
mary: :−max_desc(M), (M+ 1){talk_about(D)}.

We expect that the optimization selects large and most relevant details, probably from lower
levels of fitting. Even if details provide on average higher relevance, their span is limited and
therefore discouraged by the optimization function.

2.4.2. Details

The model for retrieving details builds on the resolution and optimization of Summary model,
that produces the set of descriptions named talk_about_summary(D).

The summary descriptions are forced into the interpretation, so that the search can select
additional descriptions. However, this search takes care about potential inclusions in terms of
space and in terms of semantic abstraction. This avoids to talk about the same concept multiple
times. Basically, fresh details about an uncovered description are searched.

The relation of inclusion between pairs of descriptions includes(D1,D2) captures cases of
redundancy. This is useful to better evaluate a description accuracy/relevance also in terms of
sub-regions that provide better estimates. This relation partitions the set of descriptions and
identifies representatives that are not included by other descriptions. In Figure 6 we describe an
inclusion relation between two descriptions belonging on the same level. Basically we check
that the range over x axis of D1 contains D2 and that it is no larger than 3 times than D2 (this
includes similar versions of the same descriptions).

We also consider inclusions among levels. In this case we require L1<L2 and that they
intersect for at least on third of their union. However, we restrict the categories to be the same
or valley/peak/steps to include monotone descriptions. In this way we skip simpler features
that contribute in building more complex descriptions.

Since includes relation forms a partial order, we select the top elements in the lattice (predicate



talk_about_top/1), being the ones that are most extended in space and/or informative:

included(D2) : −includes(D1, D2).
talk_about_top(D) : −talk_about(D), not included(D).

The cost function for details selects the maximal relevance for a top description and maximizes
the sum. Note that included descriptions contribute to the improvement of cost/3 but their
cardinality is irrelevant with respect to the function.

best_cost(C,D):-talk_about_top(D),
C=#max{Cost:cost(_,Cost,D)}.

#maximize{Cost,D: best_cost(Cost,D)}.

We also require that details do not contain monotone category, since it is too simple to serve
the purpose. Again we set the maximal number of details to be included in the solution.

This optimization favours most prominent descriptions, regardless their span among time
domain. Therefore is suitable for capturing tiny but relevant descriptions.

2.5. Towards natural language

Description relationships among time allow to establish a narrative order. Summary and details
descriptions prepare two level descriptions. Accuracy and relevance can be easily translated to
correct adverbs ranges. In summary, it is conceivable that such information can be translated
into natural language with little further processing.

For the purpose of validating the results, we provide a visual annotation that comes directly
from descriptions and represents an additional value of the approach.

3. Results

In implementing our tool, we took advantage of Potassco Clingo Python’s API. The process
is handled by a Python program that controls the pre-computation of input, the handling of
ASP programs execution and to converts outputs to text and enriched plots. Results are plotted
with Matplotlib and enriching visual description are computed directly from the description
structure output by the program.

In Figure 8 we show four time series and results for the request of 2 summary descriptions and
4 details. The green-red bar at bottom shows the pure RMSE accuracy provided by the overlap
of selected descriptions. The first one is a synthetic periodic function: the overall behaviour is
correctly captured, even if a short constant region is selected. Probably a small weight / cutoff
on extension could solve the problem. Even if periodic shape is not defined, peaks and valley
begin to appear. We expect that additional extensions can capture periodicity and amplitude
relationships. The second series (keyword Udine on Google Trends over last 5 years) shows two
constants summaries: the largest one is rather relevant, even if slightly decreasing. Accuracy
is around 80/100, given the noisy dataset. Details chosen are among the most relevant ones.
The third series (keyword Concert) shows a single constant behaviour even if an accuracy of
only 69/100 is reached. Details compensate it by finding a large valley, surrounded on the left



(descending red arrow) by a step like function (again with 66/100 accuracy). Main peaks and
valleys are found. Finally last series (keyword Lockdown) shows a nice summary, while details
gets into the almost noisy behaviour.

Figure 7: Comparison of 3 and 6 details request

We now report on the synthesis and detail selection capabilities of our model. We select, for
1 summary description, details equal to 3 and 6. Figure 7 shows that with three descriptions,
the valley is extended far more on the right, while the introduction of more details allows to
cover almost any area of the series without fine details related to noise.

Computational times for ASP programs are around seconds on a 16 threads launch on a 2,3
GHz Intel Core i9 8 core CPU. Grounding is not an issue for the model described.

4. Conclusions

We presented a general framework that addresses the problem of automatic interpretation of
time series. We design a novel xAI pipeline, based on ASP, that is transparent and provides
feedback about the abstraction errors of the process. We also show how to control synthesis
and the definition of summary/detail descriptions.

The model in intrinsically modular and it can be expanded rather easily. We provided
some examples of visual annotation to validate the program. Natural language generation is a
future work that relies on the already processed features about accuracy and relevance of the
descriptions.

In the future we plan to extend the description categories, to introduce comparisons about
multiple comparable series over the same time span, to correlate multi-dimensional features
along time and to apply this technology to high-stakes domains and critical systems monitoring
(medical data, governance data in the Academia).
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Figure 8: Visual annotations for some series (accuracy and relevance are reported in text boxes)
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