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Abstract
ILASP (Inductive Learning of Answer Set Programs) is a logic-based machine learning system. It makes
use of existing knowledge base, containing anything known before the learning starts or even previously
learned rules, to infer new rules. We propose a survey on how ILASP works and how it can be used to
learn constraints. In order to do so we modelled different puzzles in Answer Set Programming: the main
focus concerns how different datasets can influence the learning algorithm and, consequently, what can
or cannot be learnt.
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1. Introduction

In the last few decades, Machine Learning is arousing more and more interest. The main
techniques to be mentioned are Artificial Neural Networks, Reinforcement Learning and Rec-
ommendation Systems. Note that all these techniques are commonly used as black box: they
give a solution, with a certain accuracy, but cannot explain how they got it. Machine Learning
has been also analysed within Logic Programming [1]. The main advantage of Logic-based
Machine Learning is in fact its explainability [2]: known and learned knowledge are expressed
as a set of logical rules that can be translated into natural language. The importance of the AI
branch involved, the Explainable Artificial Intelligence one, is increasing in parallel with AI
advancement. The reason is that in order to use AI algorithm in several situations of real life
we need to give a justification of the prediction we receive from the system.

In this paper we will explore the functionality of ILASP, an Inductive Logic Program frame-
work [3] developed as part of Mark Law’s PhD thesis [4]. The following section gives a
theoretical background on Inductive Logic Programming and then explains how ILASP is able to
‘learn’ logic programs. In Section 4, some logic puzzles are presented with their corresponding
ASP program written by ourselves, as was made for example in [5], [6] and [7]. Continuing to
Section 5 we explain the dataset, i.e. the examples, we used to get new constraints. The paper
closes showing the results we got and some general considerations.
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2. Related Works

Several approaches have been proposed for inductive learning of logic programs. We discuss
some of the well-known methods that have contributed to the field, providing context for
understanding ILASP. In this section, we will also explore some of the key applications of ILASP
and its contribution to solving real-world problems.

In this paper we show how ILASP is capable of learning puzzles’ rules. In fact, ILP was often
exploit to learn rules for games such as chess [8], Bridge [9] and sudoku [10].
Nevertheless, ILASP can been used also in other fields including automated planning and control
systems, in order to learn control policies or planning strategies. These applications has been
adopted, for example, in robotics for surgical tasks [11]. Logic programming is a suitable option
for task planning in robot-assisted surgery because it enables trusted reasoning using domain
knowledge and improves decision-making transparency. Application concerning explainability
was also made in [12] by Fossemò et al.. They usesd a dataset of users preferences over a set of
recipes to train different neural networks (NNs). The aim was to conduct preliminary explore
how ILASP can globally approximate these NNs. Since computational time required for training
ILASP on high dimensional feature spaces is very high, they decided to focus also on how it
would be possible to make global approximation more scalable. Their solution involved the
use of Principal Component Analysis to reduce the dataset’s dimensionality while maintaining
transparent explanations. A similar approach was employed by D’Asaro et al. [13], where ILASP
was used to explain the output of SVM classifiers trained on preference datasets. The distinction
from the previous study lies in the production of explanations in terms of weak constraints as
well.
Another area of interest is generative policies. Generative policies have been proposed as
a mechanism to learn the constraints and preferences of a system within a specific context,
allowing the system to coherently adapt to unexpected changes achieving the system goals
with minimal human intervention. In [14], Calo et al. present the main workflow for global
and local policy refinement and their adaptation based on Answer Set Programming (ASP) for
policy representation and reasoning using ILASP.

3. ILASP

ILASP (Inductive Learning of Answer Set Programs) [4][10] is a logic-based machine learning
system. It make use of existing knowledge base, containing anything known before the learning
starts or even previously learned rules, to infer new rules. Unlike many other ILP systems,
which are only able to learn definite logic programs, ILASP is able to learn normal rules, choice
rules and hard and weak constraints (that is the subset of ASP accepted by ILASP). We use
the term rule to refer to any of these four components. This means that it can be applied to
preference learning, learning common-sense knowledge, including defaults and exceptions, and
learning non-deterministic theories.

We give now a brief overview of Inductive Logic Programming (ILP) [15] and then we show
a framework of ILP that learns from answer sets.



3.1. Inductive Logic Programming

ILP can use different theoretical settings as learning framework: Learning From Entailment (LFE),
Learning From Interpretations (LFI), and Learning From Satisfiability (LFS). A particular problem
associated with a framework is called a learning task [4] and will be denoted by 𝑇 . A learning
task 𝑇 will consist of a background knowledge 𝐵, which is a logic program, a hypothesis space
S, defining the set of rules allowed to be in a hypothesis, and some examples, whose form
depends on the learning frameworks. In this section, a formal definition is given for each one.

Definition 3.1 (LFE). A Learning from Entailment (ILP𝐿𝐹𝐸) task 𝑇 is a tuple ⟨𝐵,𝑆,𝐸+, 𝐸−⟩
where 𝐵 is a clausal theory, called the background knowledge, 𝑆 is a set of clauses, called the
hypothesis space and 𝐸+ and 𝐸− are sets of ground clauses, called the positive and negative
examples, respectively. A hypothesis 𝐻 ⊆ 𝑆 is an inductive solution of 𝑇 if and only if:

• 𝐵 ∪𝐻 ⊨ 𝐸+,
• 𝐵 ∪𝐻 ∪ 𝐸− ⊭ ⊥.

where |= denotes the logical consequence and ⊥ denotes false.

Definition 3.2 (LFI). A Learning from Interpretations (ILP𝐿𝐹𝐼 ) task 𝑇 is a tuple ⟨𝐵,𝑆,𝐸+, 𝐸−⟩
where 𝐵 is a definite clausal theory, 𝑆 is a set of clauses and each element of 𝐸+ and 𝐸− is a
set of facts. A hypothesis 𝐻 ⊆ 𝑆 is an inductive solution of 𝑇 if and only if:

• ∀𝑒+ ∈ 𝐸+ : 𝑀(𝐵 ∪ {𝑒+}) satisfies 𝐻 ,
• ∀𝑒− ∈ 𝐸− : 𝑀(𝐵 ∪ {𝑒−}) does not satisfy 𝐻 .

where 𝑀(·) is the minimal model of (·).

This means that, if we do not have a background knowledge, each positive example must be
a model of 𝐻 , and no negative example should be a model of 𝐻 .

Definition 3.3 (LFS). A Learning from Satisfiability (ILP𝐿𝐹𝑆) task 𝑇 is a tuple ⟨𝐵,𝑆,𝐸+, 𝐸−⟩
where 𝐵 is a clausal theory, 𝑆 is a set of definite clauses and 𝐸+ and 𝐸− are sets of clausal
theories. A hypothesis 𝐻 ⊆ 𝑆 is an inductive solution of 𝑇 if and only if:

• ∀𝑒+ ∈ 𝐸+ : 𝐵 ∪𝐻 ∪ {𝑒+} has at least one model,
• ∀𝑒+ ∈ 𝐸− : 𝐵 ∪𝐻 ∪ {𝑒−} has no models.

In [16] is proved that ILP𝐿𝐹𝑆 can simulate ILP𝐿𝐹𝐸 using the fact that 𝑃 ⊨ 𝑒 if and only if
𝑃 ∪ {¬𝑒} has no models.

3.2. Learning from Answer Set

We focus on the approaches to ILP by using Answer Set semantics. We will now switch from
classical logic to logic of stable model [17]. The first thing to notice is that in ASP there can be
zero or many answer sets of a program. For this reason we talk about brave entailment (|=𝑏)
and cautious entailment (|=𝑎): an atom 𝑎 is bravely entailed by a program 𝑃 if and only if at
least one answer set 𝑃 contains 𝑎, while it is cautiously entailed if every answer set contains it.
We will denote with 𝐴𝑆(𝑃 ) the set of all answer sets of 𝑃 .

Definition 3.4. A cautious induction (ILP𝑐) task 𝑇 is a tuple ⟨𝐵,𝑆,𝐸+, 𝐸−⟩ where 𝐵 is an ASP
program, 𝑆 is a set of ASP rules and 𝐸+ and 𝐸− are sets of ground atoms. A hypothesis 𝐻 ⊆ 𝑆



is an inductive solution of 𝑇 if and only if 𝐴𝑆(𝐵 ∪𝐻) ̸= ∅ and ∀𝐴 ∈ 𝐴𝑆(𝐵 ∪𝐻), 𝐸+ ⊆ 𝐴
and 𝐸− ∩𝐴 = ∅.

This means that all examples should be covered in every answer set and that 𝐵 ∪𝐻 should
be satisfiable. On the other hand, brave induction require all the examples to be covered by at
least one answer set.

Example 1. Consider the 𝐼𝐿𝑃𝑐 task T = ⟨𝐵,𝑆,𝐸+, 𝐸−⟩ where:

B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dog(X):- alano(X).

dog(X):- corgi(X).

alano(Scooby).

corgi(Muick).

S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ℎ1 : long_legs(X):- dog(X).

ℎ2 : long_legs(X):- dog(X), not corgi(X).

ℎ3 : 0{long_legs(X)}1:- dog(X).

ℎ4 : 0{long_legs(X)}1:- dog(X),

not corgi(X).

E+ = {long_legs(Scooby)}
E− = {long_legs(Muick)}

The inductive solution 𝐼𝐿𝑃𝑐(T) is ℎ2 because 𝐵 ∪ {ℎ2} has exactly one answer set, and
it contains long_legs(Scooby) but not long_legs(Muick).

Definition 3.5. A brave induction (ILP𝑏) task 𝑇 is a tuple ⟨𝐵,𝑆,𝐸+, 𝐸−⟩ where 𝐵 is an ASP
program, 𝑆 is a set of ASP rules and 𝐸+ and 𝐸− are sets of ground atoms. A hypothesis
𝐻 ⊆ 𝑆 is an inductive solution of 𝑇 if and only if ∃𝐴 ∈ 𝐴𝑆(𝐵 ∪𝐻) such that 𝐸+ ⊆ 𝐴 and
𝐸− ∩𝐴 = ∅.

Example 2. Consider the 𝐼𝐿𝑃𝑏 task T = ⟨𝐵,𝑆,𝐸+, 𝐸−⟩ where 𝐵, 𝑆, 𝐸+, 𝐸− are the same
as ones of example 1. {ℎ2}, {ℎ3}, {ℎ4} are solutions of 𝐼𝐿𝑃𝑏(T) as each of 𝐴𝑆(𝐵 ∪ {ℎ2}),
𝐴𝑆(𝐵∪{ℎ3}) and 𝐴𝑆(𝐵∪{ℎ4}) contains long_legs(Scooby) but not long_leg(Muick).

The problem of brave induction is that it cannot learn constraints because it is not able to
reason about what is true in every answer set. To overcome this, ILASP uses Induction of Stable
Models which allows to set conditions over multiple answer sets. The idea is to use partial
interpretations as examples.

Definition 3.6. A partial interpretation e is a pair of sets of atoms ⟨𝑒𝑖𝑛𝑐, 𝑒𝑒𝑥𝑐⟩. We refer to 𝑒𝑖𝑛𝑐

and 𝑒𝑒𝑥𝑐 as the inclusions and exclusions respectively. An interpretation 𝐼 is said to extend 𝑒 if
and only if 𝑒𝑖𝑛𝑐 ⊆ 𝐼 and 𝑒𝑒𝑥𝑐 ∩ 𝐼 = ∅.

Definition 3.7. An induction of stable models (ILP𝑠𝑚) task 𝑇 is a tuple ⟨𝐵,𝑆,𝐸⟩, where 𝐵 is
an ASP program, 𝑆 is the hypothesis space and 𝐸 is a set of example partial interpretations. A
hypothesis 𝐻 is an inductive solution of 𝑇 if and only if 𝐻 ⊆ 𝑆 and ∀𝑒 ∈ 𝐸,∃𝐴 ∈ 𝐴𝑆(𝐵 ∪𝐻)
such that A extends e.

Keeping in mind all these definitions, we can finally declare what is Learning from Answer
Sets. In particular we are presenting the learning framework used by ILASP to infer new
constraints.



Definition 3.8. A Learning from Answer Sets task is a tuple 𝑇 = ⟨𝐵,𝑆,𝐸+, 𝐸−⟩ where 𝐵 is
an ASP program, 𝑆 a set of ASP rules and 𝐸+ and 𝐸− are finite sets of partial interpretations.
A hypothesis 𝐻 ⊆ 𝑆 is an inductive solution of 𝑇 if and only if:

• ∀𝑒+ ∈ 𝐸+ ∃𝐴 ∈ 𝐴𝑆(𝐵 ∪𝐻) such that 𝐴 extends 𝑒+,
• ∀𝑒− ∈ 𝐸− ∄𝐴 ∈ 𝐴𝑆(𝐵 ∪𝐻) such that 𝐴 extends 𝑒−.

Since positive examples have to be extended by at least one answer set, they can be considered
as characterised by brave induction, while negative examples as characterised by cautious
induction, as we want them to not be extended by any answer set. This is what ILASP use to
infer new rules.

3.3. ILASP Algorithm

ILASP uses a Conflict-Driven ILP (CDILP) process which iteratively constructs, for each example,
a set of coverage constraints.

Definition 3.9. Let 𝑆 be a rule space. A coverage formula over 𝑆 takes one of the following
forms:

• 𝑅𝑖𝑑, for some 𝑅 ∈ 𝑆,
• ¬𝐹 , where 𝐹 is a coverage formula over 𝑆,
• 𝐹1 ∨ ... ∨ 𝐹𝑛 , where 𝐹1, ...𝐹𝑛 are coverage formulas over 𝑆,
• 𝐹1 ∧ ... ∧ 𝐹𝑛, where 𝐹1, ...𝐹𝑛 are coverage formulas over 𝑆.

The semantics of coverage formulas are defined as follows. Given a hypothesis H:
• 𝑅𝑖𝑑 accepts 𝐻 if and only if 𝑅 ∈ 𝐻 ,
• ¬𝐹 accepts 𝐻 if and only if 𝐹 does not accept 𝐻 ,
• 𝐹1 ∨ ... ∨ 𝐹𝑛 accepts 𝐻 if and only if ∃𝑖 ∈ [1,n] s.t. 𝐹𝑖 accepts 𝐻
• 𝐹1 ∧ ... ∧ 𝐹𝑛 accepts 𝐻 if and only if ∀𝑖 ∈ [1,n] s.t. 𝐹𝑖 accepts 𝐻

Definition 3.10. A coverage constraint is a pair ⟨𝑒, 𝐹 ⟩ where 𝑒 is an example in 𝐸 and 𝐹 is a
coverage formula, such that for any 𝐻 ⊆ 𝑆, if 𝑒 is covered then 𝐹 accepts 𝐻 .

At every iteration, an optimal hypothesis 𝐻* (i.e. the shortest), that is consistent whit the
existing coverage constraints, is computed. Then the counterexample search starts. If an example
that is not covered by 𝐻* exists then a new coverage constraint for that one is generated. Then
the conflict analysis takes place which compute a coverage formula 𝐹 that does not accept 𝐻
but that must hold for the most recent counterexample to be covered. If the counterexample
does not exist then 𝐻* is returned as the optimal solution of the task.

3.4. ILASP Syntax

ILASP syntax for background knowledge is the same as the ASP one except for the fact that
it is not allowed to define constants. Concerning examples 𝐸+ e 𝐸−, they are declared as
follows: #pos({e𝑖𝑛𝑐},{e𝑒𝑥𝑐}) and #neg({e−},{}). For negative example we always leave
an empty set because we do not have the partition between inclusions and exclusions as
happens for positive ones. For example, if we want to express 𝐸+ and 𝐸− of example 1, we



have: #pos({long_legs(Scooby)},{}) and #neg({long_legs(Muick)},{}). In this
case we do not have exclusions for positive examples so the set is left empty.

To describe hypothesis spaces we have two way. The first one consists of mode declarations.
A mode declaration is a ground atom whose arguments can be placeholders. They are terms
like var(t) or const(t) for some constant term t. The idea is that these can be replaced
respectively by any variable or constant of type t. Their syntax is the following, where pred
stands for a generic predicate and (·) would be replaced with var(t) or const(t):

• to declare what can be in the head: #modeh(pred(·)) or #modeha(pred(·)) if we
want to allow aggregates,

• to declare what can be in the body: #modeb(n, pred(·)) where n in the maximum
times pred(·) can appear in the body

• to declare conditions: #modec(·), where the argument can be, for example,
var(t)>var(t).

The second way is to directly declare the rules we want to include in the hypothesis space.

4. Puzzles

In this section we present some classical puzzles, and a standard declarative encoding in ASP.
We will compare these encoding with those generated by ILASP in Section 5 and also to use
some predicates in the hypothesis search space. The full encodings can be found here. Every
puzzle uses a 𝑛× 𝑛 board that is considered as a matrix so that (1, 1) is the top-left cell and
(𝑛, 𝑛) is the bottom-right one.

4.1. N-queens

N-queens is a well known puzzle in which we have a 𝑛× 𝑛 board. The aim is to place 𝑛 queens
such that they cannot attack each other; in other words, two queens cannot stay on the same
row, column or diagonal. queen(X, Y) is defined to describe that a queen is on the board in
the position (X, Y). To completely model the game we need to state which reciprocal positions
are not allowed between queens and that there must be 𝑛 queens.

1 n{queen(X,Y): coord(X), coord(Y)}n.

2 same_col(X1,Y,X2,Y) :- queen(X1,Y), queen(X2,Y), X1!=X2.

3 same_row (X,Y1,X,Y2) :- queen(X,Y1), queen(X,Y2), Y1!=Y2.

4 same_diagonal(X1,Y1,X2,Y2) :- queen(X1,Y1), queen(X2,Y2), X1!=X2, |X1-X2|=|Y1-Y2|.

5 :- same_row (X1,Y1,X2,Y2).

6 :- same_col(X1,Y1,X2,Y2).

7 :- same_diagonal(X1,Y1,X2,Y2).

https://github.com/Talu96/Exploring-ILASP-through-logic-puzzles-modelling


4.2. Star Battle
Star Battle is a logic puzzle whose goal is to find a way to
put 𝑠 · 𝑛 stars on a 𝑛× 𝑛 board (where 𝑠 is the number
of allowed stars per row, column and field). The board
is divided in 𝑛 fields of different size and shape and the
stars must be placed satisfying the following constraints:
two stars cannot be adjacent horizontally, vertically
or diagonally, and there must be 𝑠 stars on each row,
column and field. An example is shown in Figure 1.

Figure 1: Example of a solved board
(s=1); different colours define
different fields.

Since boards can differ from one to another by fields, cell_in_field(C, F) is used to
describe that cell C belongs to the field F. Moreover, neighbour(C1,C2) was used to express
that a cell C2 is adjacent (even diagonally) to C1.

1 neighbour((X1,Y1), (X2,Y2)) :- cell((X1,Y1)), cell((X2,Y2)),

|X1-X2|+|Y1-Y2|=2, X1!=X2, Y1!=Y2.→˓

2 neighbour(C1, C2) :- adj(C1, C2).

3 adj((X1,Y1), (X2,Y2)) :- cell((X,Y1)), cell((X,Y2)), |Y1-Y2|+|X1-X2|=1.

Finally, we express the constraints for the placement of stars:

4 s{star_in_cell((X,Y)): cell((X,Y))}s :- 1<=X, X<=n.

5 s{star_in_cell((X,Y)): cell((X,Y))}s :- 1<=Y, Y<=n.

6 s{star_in_cell(C): cell_in_field(C, F)}s :- field(F).

7 :- star_in_cell(V1), star_in_cell(V2), neighbour(V1,V2), V1!=V2.

For simplicity in next sections we will always consider the case where s=1.

4.3. Flow Lines
Flow Lines consists of a board where are placed some
pairs of dots. The goal is to connect the correspond-
ing dots of every pair while filling the entire board
(as shown in Figure 2). The problem has been solved
considering that each pair of dots can be seen as a
pair of start and end of a path. For this reason, we en-
coded start(C, P) and end(C, P) as facts. The
predicate cell_in_path(C, P) describes that cell
C belongs to path P; each cell of the board has to
belong to exactly one path.

Figure 2: Example of a solved board;
each circle is a start or a end

1 1{cell_in_path(C, P): path(P)}1 :- cell(C).

To describe the path, for each cell is defined a next(C1, C2) and a prev(C1, C2) stating,
respectively, that the next step after C1 in its path is C2 and that the previous step for C1 in its
path was C2.



2 1{next(C,C1): cell_in_path(C1,P), adj(C,C1)}1 :- cell_in_path(C,P), not end(C,P).

3 1{prev(C,C1): cell_in_path(C1,P), adj(C,C1)}1 :- cell_in_path(C,P), not start(C,P).

The path we want to find is the one connecting start to end without crossing other paths.

4 crossing(P1, P2) :- cell_in_path(C, P1), cell_in_path(C, P2), P1!=P2.

To conclude we state what cannot happen.

5 :- start(C, P), end(C, P). % start and end cannot be coincident

6 :- crossing(P, P1), P!=P1, path(P), path(P1). % paths cannot cross

7 :- start(C1, P), start(C2, P), C1!=C2, path(P). % each path has only one start

8 :- end(C1, P), end(C2, P), C1!=C2, path(P). % each path has only one end

4.4. 15 Puzzle
The last example we considered is the 15 puzzle, a sliding
puzzle having 15 square tiles numbered from 1 to 15 in a
grid 4×4, leaving one unoccupied tile position. Note that
the puzzle is a planning problem because we are searching
a sequence of actions that could lead to the solution. In
fact, the aim is to move the tiles, using the empty space,
until they are ordered from 1 to 15 starting from the top
left corner. The solution proposed uses a slightly different
definition of adjacency from the other games.

Figure 3: Solved 15 puzzle board.

Indeed, we only need to know tiles adjacent to the empty space. The effects of a move are
described by move(N,S), meaning that the tile with number N has been moved at time S.

1 adj_empty(N, S) :- value(X1, Y1, S, N), value(X2, Y2, S, n*n), coord(X1;X2;Y1;Y2), step(S),

card(N), |X1-X2|+|Y1-Y2|=1, N!=n*n.→˓

2 :- move(N,S), move(M,S), M!=N, card(N), card(M), step(S).

3 :- move(N,S), not adj_empty(N,S), card(N), step(S).

4 move(N,S) :- value(X,Y,S,N), value(XE,YE,S,n*n), value(X,Y,S+1,n*n), value(XE,YE,S+1,N),

adj_empty(N,S), coord(X;Y;XE;YE), step(S;S+1), card(N), N!=n*n.→˓

5 value(X,Y,S+1,n*n) :- move(N,S), value(X,Y,S,N), card(N), coord(X;Y), step(S;S+1).

6 value(X,Y,S+1,N) :- move(N,S), value(X,Y,S,n*n), card(N), coord(X;Y), step(S;S+1).

We added some more constraints. First, we want to have a move at each step until the solution
is reached, i.e. there is no step with no move before the solution is reached. Secondly, if a tile N
has not been moved then it will stay in the same position. Furthermore, if tile N has been moved
at time S, the move of the next step must be on another tile as we do not want to go back to the
previous configuration.

7 1{move(M,S-1): card(M), step(S-1)}1 :- move(N,S), S>1, card(N), step(S).

8 value(X,Y,S+1,N) :- not move(N,S), value(X,Y,S,N), coord(X;Y), step(S;S+1), card(N), N!=n*n.

9 :- move(N,S), move(N,S+1), step(S+1), step(S).



Finally, to reach the solution, we say that a board is not ordered if there is at least one tile in
the wrong place and then we force the board to be ordered at max timestep. max is, indeed, the
maximum number of steps needed to solve any 15 puzzle (that is 80 for 4×4 version, while for
3×3 version it is 31). By imposing such a bound on the number of steps, the solution may not
be optimal, but this is not an essential aspect of our study.

10 not_ordered(S) :- value(X,Y,S,N), coord(X;Y), step(S), card(N), N!=n*(X-1)+Y.

11 :- not_ordered(max).

5. Examples and Hypotheses

In this section we are going to explain the examples that we used for each puzzle. In order to
make ILASP to learn constraints, from our ASP modelling we kept, as background knowledge,
only the definition of predicates.
All data reported refers on tests done on a NVIDIA GeForce RTX 3060 (16GB).

5.1. N-queens

For n-queens puzzle it was sufficient to consider one positive and one negative example for each
constraint we wanted to learn: a powerful aspect of ILASP is that it can generalise from very
few examples, making it possible to learn complex knowledge without needing large datasets.

1 %% in every column there cannot be more than one queen

2 #pos({queen(1,3)}, {queen(2,3), queen(3,3), queen(4,3)}}).

3 #neg({queen(4,3), queen(2,3)},{}).

4 %% in every row there cannot be more than one queen

5 #pos({queen(1,3)}, {queen(1,2), queen(1,4), queen(1,1)}}).

6 #neg({queen(2,1), queen(2,4)},{}).

7 %% in every diagonal there cannot be more than one queen

8 #pos({queen(2,4)}, {queen(3,3), queen(4,2), queen(1,3)}).

9 #neg({queen(1,1), queen(4,4)},{}).

We also defined a search space 𝑆 to speed up the algorithm, that is:

10 :- same_row (X1, Y1, X2, Y2). % only one queen per row

11 :- same_col(X1, Y1, X2, Y2). % only one queen per col

12 :- same_diagonal(X1, Y1, X2, Y2). % only one queen per diagonal

13 1{queen(X,Y): coord(Y)}1 :- coord(X). % only one queen per row

14 1{queen(X,Y): coord(X)}1 :- coord(Y). % only one queen per col

15 4{queen(X,Y): coord(X), coord(Y)}4. % four queens in total

With this set of examples the program was able to learn the constraints at line 11, 12 and 13.
Time required to reach this solution, with 6 rules in search space and 6 examples (3 positive
and 3 negative) are:

Pre-processing : 0.007s
Hypothesis Space Generation : 0.004s
Conflict analysis : 0.006s



Counterexample search : 0.008s
Hypothesis Search : 0.021s

Total : 0.047s

Note that it learns line 13 instead of 10 because line 13 is needed to generate answer sets
containing istances of queen(X, Y). The others constraints in 𝑆 are discarded even if
they are correct because ILASP returns the minimum set. The minimum set consists of the
minimum number of constraints that the program has to learn to cover all examples. Given any
framework ILP𝑋 , learning task T and example 𝑒, we say that 𝑒 is covered by a hypothesis if the
hypothesis meets all conditions that T imposes on 𝑒. If two or more rules in the hypothesis
space are equivalent, ILASP will chose the smallest in terms of number of atoms.

5.2. Star Battle

In the following examples we omitted those representing the configuration where we have more
than one star per row/column or stars that are adjacent as they are similar to the n-queen’s
ones. Moreover, examples are defined also by a third argument that is context. Context is a set
of ground atoms that enrich the knowledge base only for that single example.

1 %% two stars cannot stay in the same field

2 #pos({star_in_cell((1,4))},

3 {star_in_cell((1,3)), star_in_cell((2,4)), star_in_cell((3,4)), star_in_cell((4,4))},

4 {cell_in_field((1,1),1). cell_in_field((1,2),1). cell_in_field((1,3),2).

cell_in_field((1,4),2). cell_in_field((2,1),1). cell_in_field((2,2),1).

cell_in_field((2,3),1). cell_in_field((2,4),2). cell_in_field((3,1),1).

cell_in_field((3,2),3). cell_in_field((3,3),3). cell_in_field((3,4),2).

cell_in_field((4,1),4). cell_in_field((4,2),4). cell_in_field((4,3),4).

cell_in_field((4,4),2).}).

→˓

→˓

→˓

→˓

→˓

5 #neg({star_in_cell((1,2)),star_in_cell((2,3))}, {},

6 {cell_in_field((1,1),1). cell_in_field((1,2),1). cell_in_field((1,3),2).

cell_in_field((1,4),2). cell_in_field((2,1),1). cell_in_field((2,2),1).

cell_in_field((2,3),1). cell_in_field((2,4),2). cell_in_field((3,1),1).

cell_in_field((3,2),3). cell_in_field((3,3),3). cell_in_field((3,4),2).

cell_in_field((4,1),4). cell_in_field((4,2),4). cell_in_field((4,3),4).

cell_in_field((4,4),2).}).

→˓

→˓

→˓

→˓

→˓

The search space 𝑆 considered this time is:

7 1{star_in_cell(C): cell_in_field(C, F)}1 :- field(F).

Then we enriched it using mode declarations. The set of rules produced by mode declarations
can be expensive in terms of cost so we introduced the predicate incompatible(C1,C2)
which is inferred by any of same_row, same_col, same_field or same_neighbour.

Example 3. With just the following mode declarations, which will also generate the rules we are
interested in, the search space will contain more than 56000 rules.

#modeha(star_in_cell(var(cell))).



#modeb(1, same_col(var(cell), var(cell))).
#modeb(1, same_row(var(cell), var(cell))).
#modeb(1, same_field(var(cell), var(cell))).
#modeb(1, neighbour(var(cell), var(cell))).
#modeb(1, field(var(field))).
#modeb(2, var(cell)!=var(cell)).

Running ILASP with this configuration will end in process killing itself due to exceeding memory.

8 #modeha(star_in_cell(var(cell))). % generate rule 12

9 #modeb(2, star_in_cell(var(cell))).

10 #modeb(1, incompatible(var(cell), var(cell)), (symmetric)).

The code above is used to create hypotheses and the search space it generate includes 526
rules. In particular line 8 says that we can produce rules where the head could contain
star_in_cell(C), where C is a variable cell(C), as aggregate. Line 2 and 3 states that
body rules can show up to two star_in_cell(C) and up to one incompatible(C1,C2)
(symmetric means that rules with arguments (C2,C1) are considered equivalent to the ones
with (C1,C2)). The program was able to infer:

11 :- star_in_cell(V1); star_in_cell(V2); incompatible(V1,V2). % no incompatibility

12 0{star_in_cell(V1)}1 :- incompatible(V1,V2). % star_in_cell should appear in some AS

Running ILASP with a search space of size 526 and 9 examples (2 positive, 7 negative) is:

Pre-processing : 0.006s
Hypothesis Space Generation : 0.041s
Conflict analysis : 0.055s
Counterexample search : 0.017s
Hypothesis Search : 2.596s

Total : 2.718s

Note that rule at line 12 seems useless but, as in the background knowledge we never talked about
star_in_cell, it would be in no answer set and so any example containing star_in_cell
would not be covered. Adding this constraint, answer sets containing star_in_cell are
admitted and so examples can be covered. If we remove line 8, that is the one generating the
rule in line 12, ILASP will learn:

13 1{star_in_cell(C): cell_in_field(C,F)}1 :- field(F).

instead of the previous. In this case, when both rules 11 and 12 belong to 𝑆, the second one is
chosen because it is shorter in terms of atoms contained. The problem with the latter is that, if
used instead of 11, it admits also solutions where stars are less than n. If we remove:



14 1{cell_in_field(C1, F): field(F)}1 :- cell(C1). % removed from B

and then put it in 𝑆, it will learn again 11 and not 14.

5.3. Flow Lines

Flow lines has the most numerous set of examples in this
paper. Furthermore, as for Star Battle, another predicate,
called not_good, was introduced. It simply means that
if not_good(P) then path P is not valid for some reason
such as crossing another path or being disconnected as
shown in Figure 4. The most relevant examples are: Figure 4: Graphical representation of last

negative example.

1 %% each path has only one start

2 #pos({start((1,2),1), cell_in_path((1,2),1)}, {start((2,3),1)}).

3 %% start and end cannot be coincident

4 #neg({start((1,1),1), end((1,1),1)},{}).

5 %% next and previous of a cell cannot be the same

6 #pos({next((2,2),(3,2))}, {prev((2,2),(3,2))}).

7 #neg({next((2,2),(3,2)), prev((2,2),(3,2))},{}).

8 %% previous and next must be in the same path

9 #pos({prev((2,1),(3,1)), cell_in_path((2,1),3)}, {cell_in_path((3,1),4)}).

10 #pos({next((2,1),(3,1)), cell_in_path((2,1),3)}, {cell_in_path((3,1),4)}).

11 #neg({next((2,2),(3,2)), cell_in_path((2,2),1), cell_in_path((3,2),4)},{}).

12 %% previous of a cell cannot be the previous of another cell

13 #neg({prev((3,1),(1,1)), prev((2,1),(1,1))},{}).

14 %% every cell of a path must be reachable from start

15 #neg({cell_in_path((2,1),1), cell_in_path((2,2),1), cell_in_path((1,2),1),

cell_in_path((1,1),2), start((3,2),2)},{}).→˓

With all of them, ILASP is able to learn the following:

16 :- not_good(P).

17 :- end(C, P); start(C, P).

18 1 {start(C, P) : cell(C) } 1 :- path(P).

19 1 {end(C, P) : cell(C) } 1 :- path(P).

20 :- prev(C1, C2); P1 != P2; cell_in_path(C2, P2); cell_in_path(C1, P1).

Actually, the search space for hypothesis we gave included also these rules:

21 :- crossing(P1, P2). %redundant

22 :- next(C, C1), prev(C, C1).

23 :- cell(C), not path_to_start(C).

24 cell_in_path(C, P) :- start(C, P).

25 :- next(C1, C), next(C2, C), C1!=C2.

26 :- prev(C1, C), prev(C2, C), C1!=C2. %redundant

27 :- cell_in_path(C, P1), cell_in_path(C, P2), P1!=P2.

28 :- cell_in_path(C1, P1), cell_in_path(C2, P2), P1!=P2, next(C1, C2). %redundant



Some of them are redundant such as those in line 21 and line 26 (because of
not_good(P):-crossing(P1,P2),P1!=P2) while others, such as the one in line 28, seem
to be missing even if there are negative example where there are cells that cannot be reached
from start (see Figure 4) but this only means that they are not necessary to cover all examples.
With 12 rules in the search space and 13 examples (6 positive and 7 negative), the amount of
time needed to run ILASP on this puzzle is:

Pre-processing : 0.006s
Hypothesis Space Generation : 0.004s
Conflict analysis : 0.037s
Counterexample search : 0.177s
Hypothesis Search : 0.681s

Total : 0.905s

5.4. 15 Puzzle

15 puzzle examples shown below are just the most relevant. We considered the case of a grid
3×3 instead of the original one to reduce the execution time required by the algorithm. In a 3×3
board the tiles are numbered from 1 to 8 (in ASP program we use 9 to describe the empty slot).
Moreover, to make ILASP learn more interesting rules, we changed the background knowledge
by modifying the rule move(N,S). In fact, we removed adj_empty(N,S) from its body.

1 %% at each step only one move is permitted

2 #pos({move(4,1)},{move(5,1)}).

3 #neg({move(4,2), move(1,2)},{}).

4 %% if N was moved at time S then I will not move it again at S+1

5 #pos({move(3,5)},{move(3,6)}).

6 %% each number appears only one time per step

7 #neg({value(3,1,5,3), value(1,2,5,3)},{},{}).

8 %% moving tiles not adj to the empty one is not permitted

9 #pos({move(5,1), adj_empty(5,1)},{}).

10 #neg({move(1,1),adj_empty(2,1),adj_empty(4,1),adj_empty(8,1),adj_empty(6,1)},{}).

11 %% reaching the solution

12 #pos({not_ordered(30)},{not_ordered(31)}).

13 #neg({not_ordered(31)},{}).

The search space in this case it is quite vast.

14 :- not_ordered(31).

15 :- not move(9, S), step(S).

16 :- value(X1, Y1, S, N), value(X2, Y2, S, N), X1!=X2.

17 :- value(X1, Y1, S, N), value(X2, Y2, S, N), Y1!=Y2.

18 1{move(N,S): card(N), step(S)}30.

19 :- move(N, S), move(N, S+1), step(S+1), step(S).

20 :- move(N, S), not adj_empty(N, S), card(N), step(S).

21 :- not not_ordered(S), not_ordered(S+1), step(S), step(S+1).

22 :- move(N, S), not adj_empty(N, S), card(N), step(S).

23 :- not_ordered_row (X, S), not not_ordered_row (X+1, S), coord(X), coord(X+1).

24 1{value(X, Y, S, N): card(N)}1 :- step(S), coord(X), coord(Y).

25 1{value(X, Y, S, N): coord(X), coord(Y)}1 :- card(N), step(S).

26 :- not not_ordered(S), move(N, S+1), step(S), step(S+1), card(N).



27 :- step(S), not not_ordered(S), move(N,S1), S1>S, step(S1), card(N).

28 :- move(N, S), move(M, S), M!=N, card(N), card(M), step(S).

29 1{move(M, S-1): card(M), step(S-1)}1 :- move(N, S), S>1, card(N), step(S).

The solver was able to learn only the following:

30 :- step(S); card(M); card(N); M != N; move(M, S); move(N, S).

31 :- step(S); step(S+1); move(N, S+1); move(N, S).

32 1 {move(N, S) : step(S), card(N) } 30.

As was happening in Star Battle, if we do not add to the search space also the following rule,
there will be answer sets that do not contain instantiations of adj_empty and so our examples
will not be covered.

33 0{adj_empty(N, S): card(N)}4 :- step(S).

Now running ILASP we get the additional rules:

34 2 {adj_empty(N, S) : card(N) } 4 :- step(S).

35 :- move(V1,V2); not adj_empty(V1,V2).

Finally, to get it learn the goal of the game we have to add to 𝑆 the following rule:

36 0{not_ordered(S): step(S)}30.

That permits to include in the solution also:

37 :- not_ordered(31).

Time required, with a search space of 19 and 20 examples (11 positive and 9 negative), was:

Pre-processing : 0.006s
Hypothesis Space Generation : 0.004s
Conflict analysis : 0.22s
Counterexample search : 0.707s
Hypothesis Search : 35.94s

Total : 36.878s

We tried to use more general examples in order to learn these last constraints, such as the ones
below, but unfortunately they were not enough. With general examples, we mean complete
solutions generated by the ASP program described in section 4.4 used as positive examples with
no exclusions. Those example are general in the sense that they are not constructed to cover
specific constraints. The reason is that in a real life problem, we do not always know what is
permitted and what is not and so we cannot always create examples that describe a precise
behaviour.



38 #pos({move(6,13), move(5,12), move(4,11), move(7,10), move(8,9), move(4,8), move(5,7),

move(6,6), move(4,5), move(8,4), move(7,3), move(5,2), move(6,1)},→˓

39 {not_ordered(14), not_ordered(17), not_ordered(20), not_ordered(23), not_ordered(26),

not_ordered(29), not_ordered(15), not_ordered(18), not_ordered(21), not_ordered(24),

not_ordered(27),not_ordered(30), not_ordered(16), not_ordered(19), not_ordered(22),

not_ordered(25), not_ordered(28), not_ordered(31)},

→˓

→˓

→˓

40 {value(1,1,1,1). value(1,2,1,2). value(1,3,1,3). value(2,1,1,5). value(2,2,1,6).

value(2,3,1,9). value(3,1,1,7). value(3,2,1,8). value(3,3,1,4).}).→˓

41 #neg({value(1,1,28,1), value(1,2,28,2), value(1,3,28,3), value(2,1,28,4), value(2,2,28,5),

value(2,3,28,6), value(3,1,28,7), value(3,2,28,8), value(3,3,28,9), not_ordered(30)},{}).→˓

Table 1 reports a little summary of what we got.

6. Conclusions and Future Works

In this article, we presented a way to describe some puzzles in ILASP focusing on the effects that
different examples have on the solution. That exploration led us to get good results, learning all
the rules needed to solve puzzles, except for Flow Lines. What emerged is the difficulty to learn
from very general examples. Indeed, all the examples used were constructed knowing what we
wanted to learn: when we tried, for example in 15 puzzle, to give it generic examples of solutions,
it was not able to infer new rules. Moreover, we always gave a hypothesis space containing
correct rules for the problem, even if redundant. Using mode declarations worked too but it is
very space consuming and so not practical when trying to learn complex and long constraints.
Lastly, as the Definition 3.8 states, positive examples must appear in at least one answer set
and so we always need a rule that forces the generation of the instatiation of the predicates for
which we want to learn a rule about. If we do not, ILASP will return UNSATISFIABLE even if
the examples given are correct.
As future work, we would like to better explore the functionality of ILASP and how to improve
or enrich them. In fact, ILASP can be used also with weak constraints and taking account of
preference ordering of constrains, not discussed in this paper. Furthermore, future studies could
interest the use of parallel computation in order to reduce time and space required to explore
bigger hypothesis space.



N-Queens Star Battle Flow Lines 15 Puzzle

Background
Knowledge

Rules defining
when queens
are on same row,
column or diagonal

Rules defining
when stars are on
same row, column,
field or when are
adjacent

Rules defining
what is a path
between start and
end cells, what
means crossing
one path with
another and, in
general, what is
not an admitted
path

Rules defining
what is a move
(without adjacency
constraint) and
what means that
the board is not
ordered

Examples

One positive and
one negative for
each constraint to
be learnt

One positive and
one negative for
each constraint to
be learnt

More than one pos-
itive and one neg-
ative for each con-
straint to be learnt

One positive
and/or one neg-
ative for each
constraint to be
learnt

Hypothesis
Space

All constraints nec-
essary to solve the
puzzle

All constraints
necessary to solve
the puzzle (consid-
ering also a con-
straint to include
star_in_cell in
answers sets)

All constraints nec-
essary to solve the
puzzle

All constraints nec-
essary to solve the
puzzle, plus some
alternatives for the
same constraints

Learnt

All constraints in
the hypothesis
space

Minimum set of
constraints in the
hypothesis space
showing how to
place stars

Constraints telling
that is not possible
to cross paths, to
do not have exactly
one start and one
end per path and to
have previous and
next cells in differ-
ent paths

Minimum set of
constraints in the
hypothesis space
to solve the puzzle

Not Learnt ⧹

Rule telling there
must be exactly n
stars

Redundant rules
and rule saying
that a path cannot
have "turnarounds"

Redundant rules

Table 1
Summary of ILASP results
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