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Abstract
The Operating Room Scheduling (ORS) problem deals with the optimization of daily operating room
surgery schedule. It is a challenging problem given it is subject to many constraints, like to determine the
start time of different surgeries and allocating the required resources, including the availability of beds
in different units. In the last years, Answer Set Programming (ASP) has been successfully employed for
addressing and solving the ORS problem. However, due to the inherent difficulty of retrieving real data,
all the analysis on ORS encodings have been performed on synthetic data so far. In this paper, instead,
we deal with the real case of ASL1 Liguria, and present adaptations of the ASP encodings to include real
requirements of such case. Further, we analyze the resulting encodings on these real data. Results on some
scenarios show that the ASP solutions produce satisfying results also when tested on real, challenging data.
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1. Introduction

Hospitals have long waiting times, surgeries cancellation and even worst resource overload: such
problems negatively impact the level of patients satisfaction and the quality of care provided.
Within every hospital, Operating Rooms (ORs) are an important unit. As indicated in [1], the OR
management account for approximately 33% of the total hospital budget because it includes high
staff costs (e.g. surgeons, anesthetists, nurses) and material costs. Nowadays, in most modern
hospitals, long surgical waiting lists are present because of inefficient planning. Therefore, it is
of paramount importance to improve the efficiency of OR management, in order to enhance the
survival rate and satisfaction of patients, thereby improving the overall quality of the healthcare
system.
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To manage the ORs, a solution has to provide the date and the starting time of the surgeries
required, considering the availability of ORs and beds, and the other resources requested. More
in details, the Operating Room Scheduling (ORS) [2, 3, 4, 1] problem is the task of assigning
patients to ORs by considering specialties, surgery durations, shift durations, and beds availability,
among others. Further, the solution should prioritize patients based on health urgency. In recent
years a solution based on Answer Set Programming (ASP) [5, 6, 7] was proposed and is used
for solving such problem [8, 9], that followed other similar scheduling problems in this context:
this is because ASP combines an intuitive semantics [10] with the availability of efficient solvers
[11, 12].

However, due to the inherent difficulty of retrieving real data, all the analysis on ORS encodings
via ASP have been performed on synthetic data so far. In this paper, instead, we deal with the
real case of ASL1 Liguria for computing weekly schedules, which include data from the cities
of Sanremo, Imperia, and Bordighera in the Liguria region, Italy. We present adaptations of
the ASP encodings employed so far in the literature to include real requirements of such cases.
We then define three scenarios: in the first scenario, our goal is to test whether our solution
is able to replicate the schedule that the hospital indeed followed, while the last two scenarios
evaluate whether "better" schedules could have been determined. Further, we analyze the resulting
encodings on the real data: results show that our solutions are able to both replicate and improve
the original schedule, thus indicating that ASP produces satisfying results also when tested on
real, challenging data.

The paper is structured as follows. Section 2 describes the target problem in an informal way,
whose ASP encoding is presented in Section 4, after having introduced syntax and semantics
of ASP in Section 3. Section 5 presents the results of our experiments on the defined scenarios.
The paper ends in Section 6 and 7 by discussing related work and by drawing conclusions and
possible topics for further research, respectively.

2. Problem Description

This section provides the description and the requirements of the ORS problem as implemented
in ASL1 Liguria, Italy, which is a local health authority consisting of three hospitals: Bordighera,
Sanremo, and Imperia. The elements of the waiting list are called registrations. Each registration
links a particular surgical procedure, with a duration, to a patient, to a specialty, and to a type of
hospitalization.

The overall goal of the ORS problem is to assign the maximum number of registrations to
the ORs. As the first requirement, the assignments must guarantee that the sum of the duration
of surgeries assigned to a particular OR does not exceed the opening time of the OR itself. Of
the three hospitals, Bordighera had two ORs available from 07:30 to 13:30, while Imperia and
Sanremo had five ORs available from 07:30 to 20:00.

Moreover, registration can be linked to different types of hospitalizations. Specifically, patients
could undergo Day Surgery or Ordinary Surgery, with the latter requiring the assignment of
a bed to the patient before and/or after the surgery. Therefore, the solution must ensure that
the number of patients requiring a bed for a particular specialty is not bigger than the number
of available beds for that surgery in every day. The number of available beds for the different



Table 1
Beds available in Imperia.

OR Day 1 Day 2 Day 3 Day 4 Day 5

Gynecology 12 15 15 15 15

Cardiovascular 7 8 8 8 8

General Surgery 5 6 8 9 10

Urology 8 9 12 12 13

Table 2
Beds available in Sanremo.

OR Day 1 Day 2 Day 3 Day 4 Day 5

Gynecology 15 15 16 18 18

Orthopedics 7 9 8 12 13

ENT 5 5 5 5 5

General Surgery 6 7 9 10 11

specialties of the hospitals is based on the originally available number of beds less the number of
beds already occupied by the hospitalized patients. The total number of beds available for each
specialty in Imperia and Sanremo are presented in Tables 1 and 2, while Bordighera has no beds
availability. Finally, there are two aspects that are more specific to the data we considered for the
ORS problem: the priority levels and an implied rule derived from the data. Registrations are
not all equal: they can be related to different medical conditions and can be on the waiting list
for different periods of time. These two factors can be unified in a unique concept: priority. In
our settings, we introduced four different priority categories, namely P1, P2, P3, and P4. The first
one gathers the patients originally assigned by the hospital: it is required that these registrations
are all assigned to an OR. Then, the registrations of the other two categories are assigned to the
top of the ORs capacity, prioritizing P2 over P3 and P3 over P4. Regarding the implied rule, by
analyzing the considered original data, we derived the limited usage of an OR. Thus, we decided
to introduce a specific rule to avoid the usage of that particular OR.

3. Background on Answer Set Programming

Answer Set Programming (ASP) [5] is a programming paradigm developed in the field of non-
monotonic reasoning and logic programming. In this section, we overview the language of ASP.
More detailed descriptions and a more formal account of ASP, including the features of the
language employed in this paper, can be found in [5, 10]. Hereafter, we assume the reader is
familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings starting with
an uppercase letter, and constants are non-negative integers or strings starting with lowercase
letters. A term is either a variable or a constant. A standard atom is an expression p(t1, . . . , tn),
where p is a predicate of arity n and t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if



t1, . . . , tn are constants. A ground set is a set of pairs of the form ⟨consts : con j⟩, where consts
is a list of constants and con j is a conjunction of ground standard atoms. A symbolic set is
a set specified syntactically as {Terms1 : Con j1; · · · ;Termst : Con jt}, where t > 0, and for all
i ∈ [1, t], each Termsi is a list of terms such that |Termsi|= k > 0, and each Con ji is a conjunction
of standard atoms. A set term is either a symbolic set or a ground set. Intuitively, a set term
{X :a(X ,c), p(X);Y :b(Y,m)} stands for the union of two sets: the first one contains the X-values
making the conjunction a(X ,c), p(X) true, and the second one contains the Y -values making the
conjunction b(Y,m) true. An aggregate function is of the form f (S), where S is a set term, and f
is an aggregate function symbol. Basically, aggregate functions map multisets of constants to a
constant. The most common functions implemented in ASP systems are the following:

• #count, number of terms;
• #sum, sum of integers.

An aggregate atom is of the form f (S)≺ T , where f (S) is an aggregate function, ≺ ∈ {<,≤,>
,≥, ̸=,=} is an operator, and T is a term called guard. An aggregate atom f (S)≺ T is ground if
T is a constant and S is a ground set. An atom is either a standard atom or an aggregate atom. A
rule r has the following form:

a1 | . . . | an :– b1, . . . ,bk,not bk+1, . . . ,not bm.

where a1, . . . ,an are standard atoms, b1, . . . ,bk are atoms, bk+1, . . . ,bm are standard atoms, and
n,k,m ≥ 0. A literal is either a standard atom a or its negation not a. The disjunction a1 | . . . | an

is the head of r, while the conjunction b1, . . . ,bk,not bk+1, . . . ,not bm is its body. Rules with
empty body are called facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global variable of r. An
ASP program is a set of safe rules, where a rule r is safe if the following conditions hold: (i) for
each global variable X of r there is a positive standard atom ℓ in the body of r such that X appears
in ℓ, and (ii) each local variable of r appearing in a symbolic set {Terms :Conj} also appears in a
positive atom in Conj.

A weak constraint [13] ω is of the form:

:∼ b1, . . . ,bk,not bk+1, . . . ,not bm. [w@l].

where w and l are the weight and level of ω , respectively. (Intuitively, [w@l] is read as "weight w
at level l”, where the weight is the “cost” of violating the condition in the body of ω , whereas
levels can be specified for defining a priority among preference criteria). An ASP program with
weak constraints is Π = ⟨P,W ⟩, where P is a program and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground if no variables
appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Herbrand base BP

of P are defined as usual. The ground instantiation GP of P is the set of all the ground instances
of rules of P that can be obtained by substituting variables with constants from UP.



An interpretation I for P is a subset I of BP. A ground literal ℓ (resp., not ℓ) is true w.r.t. I
if ℓ ∈ I (resp., ℓ ̸∈ I), and false (resp., true) otherwise. An aggregate atom is true w.r.t. I if the
evaluation of its aggregate function (i.e., the result of the application of f on the multiset S) with
respect to I satisfies the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I whenever all
conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a ground program GP

and an interpretation I, the reduct [14] of GP w.r.t. I is the subset GI
P of GP obtained by deleting

from GP the rules in which a body literal is false w.r.t. I. An interpretation I for P is an answer
set (or stable model) for P if I is a minimal model (under subset inclusion) of GI

P (i.e., I is a
minimal model for GI

P) [14].
Given a program with weak constraints Π = ⟨P,W ⟩, the semantics of Π extends from the basic

case defined above. Thus, let GΠ = ⟨GP,GW ⟩ be the instantiation of Π; a constraint ω ∈ GW is
violated by an interpretation I if all the literals in ω are true w.r.t. I. An optimum answer set for
Π is an answer set of GP that minimizes the sum of the weights of the violated weak constraints
in GW in a prioritized way.

Syntactic Shortcuts. In the following, we also use choice rules of the form {p}, where p is
an atom. Choice rules can be viewed as a syntactic shortcut for the rule p | p′, where p′ is a fresh
new atom not appearing elsewhere in the program, meaning that the atom p can be chosen as true.

4. ASP Encoding for the Scheduling Problem

Starting from the specifications in Section 2, here we present our compact and efficient ASP
solution for the scheduling problem, organized in two subsections, presenting the encoding to
replicate the schedule of the hospital and the encodings to improve the schedule of the hospital,
respectively. In turn, each subsection contains two paragraphs with input and output data models,
and the ASP encoding, respectively. The ASP encoding is based on the input language of CLINGO

[15].

4.1. Scheduling Problem

Data Model. The input data is specified by means of the following constants and atoms:

• The constant time_disp represents the opening time of the ORs.
• Instances of registration(NOSOLOGICAL,P,SP,REG,DUR,RICOV,IN,OUT) repre-

sent the registration of the patient identified by in ID (NOSOLOGICAL) with priority level
(P), and the requested specialty (SP) characterized by a type of hospitalization (REG),
the duration of the surgery (DUR) plus the information regarding if the patient is already
hospitalized (RICOV), and the number of days the patient requires a bed, before (IN) and
after (OUT) the surgery, respectively.

• Instances of mss(OR,SP,DAY) represent which specialty (SP) is assigned to an OR (OR)
in a day (DAY).



1 {x(NOSOLOGICAL, P, OR, SP, DAY, DUR)} :- registration(NOSOLOGICAL, P, SP, _, DUR, _, _, _),
mss(OR, SP, DAY).

2 :- x(NOSOLOGICAL, _, _, _, DAY1, _), x(NOSOLOGICAL, _, _, _, DAY2, _), DAY1 != DAY2.
3 :- x(NOSOLOGICAL, _,OR1, _, _, _), x(NOSOLOGICAL, _,OR2, _, _, _), OR1 != OR2.
4 :- mss(OR, _, DAY), #sum {DUR, NOSOLOGICAL : x(NOSOLOGICAL, _, OR, _, DAY, DUR)} > timeDisp.
5 stay(NOSOLOGICAL, SP, DAY - IN..DAY - 1) :- x(NOSOLOGICAL, _, _, SP, DAY, _),

registration(NOSOLOGICAL, _, SP, "Ordinario", _, 0, IN, _), IN > 0.
6 stay(NOSOLOGICAL, SP, DAY..OUT + DAY) :- x(NOSOLOGICAL, _, _, SP, DAY, _),

registration(NOSOLOGICAL, _, SP, "Ordinario", _, 0, _, OUT), OUT >= 0.
7 :- beds(N, SP, DAY), #count {NOSOLOGICAL : stay(NOSOLOGICAL, SP, DAY)} > N.
8 :- not x(NOSOLOGICAL, _,OR, _, DAY, _), givenSchedule(NOSOLOGICAL, DAY, OR).

Figure 1: ASP encoding for replicating the original schedule.

• Instances of beds(N,SP,DAY) represent the number (N) of available beds for a specialty
(SP) in the day (DAY).

• Instances of givenSchedule(NOSOLOGICAL,DAY,OR) represent the original schedule
of the hospital, characterized by the patient identified by an ID (NOSOLOGICAL) scheduled
in a day (DAY) in an OR (OR).

The output is an assignment represented by an atom of the form
x(NOSOLOGICAL,P,OR,SP,DAY,DUR), where the intuitive meaning is that the patient
identified by an ID (NOSOLOGICAL) having a priority (P), linked to a specialty (SP), is assigned
to the OR OR in the day DAY with a surgery duration equal to (DUR).

Encoding. The related encoding is shown in Figure 1, and is described next. To simplify the
description, we denote as ri the rule appearing at line i of Figure 1.

Rule r1 assigns an OR and a day to the registrations. Rules r2 and 3 ensure that each registration
is assigned just to one day and OR, respectively. Rule r4 ensures that the sum of the duration
of the surgeries assigned to every OR is lower than the time at disposal time_disp. Auxiliary
atoms in the heads of rules r5, r6 and, r8 are derived by the encoding to simplify the other rules.
Rules r5 and r6 evaluate the days and the specialty on which every assigned patient requires a bed
before and after the surgery, respectively. Rule r7 ensures that the number of patients requiring a
bed is less than the available ones. Rule r8 ensures that the schedule of the hospital and the newly
generated schedule are equal.

4.2. Improving the Original Schedule

Here we present the new rules for the ASP encodings that aim at improving the original schedule:
the first one assigns the patients of the original schedule without taking into account the original
date and ORs (OPT1), while the second encoding (OPT2) assigns new patients on top of the
original schedule, and we take into account a constraint derived from the data.

Encodings. The ASP encoding OPT1 is made by the rules in Figure 2, where we denote with ri

the rule appearing at line i, plus the rules from r1 to r7 from Figure 1.



9 :- not x(NOSOLOGICAL, _,_, _, _, _), registration(NOSOLOGICAL, 1,_,_,_,_,_,_).
10 :∼ not x(NOSOLOGICAL, _,_, _, _, _), registration(NOSOLOGICAL, 2,_,_,_,_,_,_).

[1@3,NOSOLOGICAL]
11 :∼ not x(NOSOLOGICAL, _,_, _, _, _), registration(NOSOLOGICAL, 3,_,_,_,_,_,_).

[1@2,NOSOLOGICAL]
12 :∼ not x(NOSOLOGICAL, _,_, _, _, _), registration(NOSOLOGICAL, 4,_,_,_,_,_,_).

[1@1,NOSOLOGICAL]

Figure 2: ASP rules for dealing with priorities.

13 :- #count{NOSOLOGICAL: x(NOSOLOGICAL,_,"OR A",_,_,_)} > 1.

Figure 3: ASP rule that encodes a constraint from the real data.

Rule r9 ensures that all the patients with priority 1 are assigned, while weak constraints r10,
r11, and r12 minimize, with a decreasing optimization priority level, the number of not assigned
patients with priority 2, 3, and 4, respectively, by paying a penalty of 1 for every not assigned
patient with that priority level.

The ASP encoding OPT2 is composed, instead, of the rule in Figure 3, where we denote with
ri the rule appearing at line i, plus the rules from r1 to r8 from Figure 1 and rules from r9 to
r12 from Figure 2. Rule r13 ensures that the OR identified by the id "OR A" is used just by one
patient, as in the original data.

5. Experimental Results

In this section, we report the results of an empirical analysis conducted using the defined ASP
encodings, on the three scenarios previously defined. For all the settings we used original data.
In particular, for the first scenario, we used data corresponding to a weekly schedule of the
hospital. While, for OPT1 and OPT2, we used data corresponding to a weekly schedule of
the hospital plus, in order to augment the number of patients to schedule, a random selection
of patients scheduled in the future by the hospital. The experiments were run on a Apple
M1 CPU @ 3.22 GHz with 8 GB of physical RAM. The ASP system used was CLINGO [15]
5.6.2, using parameters --restart-on-model for faster optimization and --parallel-mode 4 for
parallel execution. To let the solution be used in a real-time context, the time-limit was set
to 10 seconds. Encodings and benchmarks employed in this section can be found at: http:
//www.star.dist.unige.it/~marco/CILC2023/material.zip .

5.1. Benchmarks

Data Description. To test our solution for scheduling surgeries, we utilized data from hospitals
of ASL1 of Liguria region, Italy. The hospitals in ASL1 serve a population of around 213 thousand
people. For our analysis, we used data from a weekly schedule of surgeries across the three
hospitals, as well as data from other weeks, including a list of available beds and ORs for all
hospitals.

http://www.star.dist.unige.it/~marco/CILC2023/material.zip
http://www.star.dist.unige.it/~marco/CILC2023/material.zip


We collected and prepared the data for testing by working with five different xls files, each file
represents a different type of data, in particular:

• The operating list of the considered week of surgeries, from 04/03/2019 to 10/03/2019,
which provided information on the required surgery, the operating room, and the specialty
originally scheduled.

• The historical list of surgeries scheduled in 2019, which includes information on the
required surgery, the starting and ending time of the surgery, and the date of the surgery.

• The list of ORs in each hospital and their opening hours.
• The list of patients hospitalized the week before the considered week of the scheduling,

along with their admission and discharge times.
• The list of beds in each specialty at each hospital.

The initial data set contained several issues commonly found in real-world data, including
incomplete information, inaccuracies, and inconsistencies between files. In order to address
these issues, we performed data cleaning procedures such as correcting typos, filling in missing
values by deriving data from other files, removing duplicate rows of the same patient, dropping
columns with non-meaningful information, and creating new columns by merging information
from different columns.

Through these cleaning procedures, we were able to obtain a more accurate and compact
representation of the original data.

Tested Settings. Having presented the data, now we will present the different settings we
utilized to test the encodings. In the first scenario, the solution has to provide a schedule for the
patients of the considered week and the number of available resources, beds and ORs, replicating
the original schedule. This scenario was meant to confirm the consistency of the schedule
produced by our encoding with the schedule of the patients as done by the hospital. For the two
remaining scenarios, OPT1 and OPT2, we wanted to test our solution by scheduling the patients
scheduled by the hospital plus other patients. This enabled us to assess how the ASP solution
could have improved patient’s assignment and optimized resource allocation. In particular, in
OPT2, the solution had to schedule the original patients in the same way done by the hospital
and try to schedule as many new additional patients as possible. In OPT1, we considered both
the original patients and additional patients but did not impose constraints requiring the ASP
solution to replicate the hospital’s schedule. In the hospital of Bordighera, we had to make a
slight change between OPT1 and OPT2. Indeed, the hospital scheduled just 1 patient in one
OR, without using it for other patients. Thus, we decided to discard this OR in OPT1, while
we maintained it just for that patient in OPT2 (this is linked to rule r13 in Figure 3). Both for
OPT1 and OPT2, a selection of new patients was needed. To select these additional patients
and distinguish them from the original ones, we introduced the concept of priority. In particular,
originally scheduled patients were assigned to priority 1. The patients with priority 1 are forced to
be assigned, freely in OPT1 while following the original schedule in OPT2. Then, we randomly
select a number of patients assigned by the hospital in the following weeks, assigning priority 2
to patients assigned in the next week, priority 3 to patients assigned after 2 weeks, and priority 3
to patients assigned at least 3 weeks later. The number of additional patients the solution will try



Table 3
Percentage usage of ORs in Bordighera. A "-" means that the OR is not available on that day.

OR Day 1 Day 2 Day 3 Day 4 Day 5 Average

OR A - - - 8.2% - 8.2

OR B 59.1% 69.7% 70.0% 74.2% 80.0% 70.6%

Table 4
Percentage usage of ORs in Imperia. A "-" means that the OR is not available on that day.

OR Day 1 Day 2 Day 3 Day 4 Day 5 Average

OR A 57.9 % 85.9 % 50.4 % 86.3 % 39.6 % 64.0 %

OR B 44.5 % 48.0 % 45.0 % 41.6 % 60.1 % 47.8 %

OR C 24.9 % 24.7 % 32.3 % 38.0 % 32.0 % 30.4 %

OR E 25.3 % 34.0 % 36.3 % 25.2 % 28.4 % 29.8 %

OR Ophthalmology 38.5 % 38.4 % - - - 38.5 %

Table 5
Percentage usage of ORs in Sanremo. A "-" means that the OR is not available on that day.

OR Day 1 Day 2 Day 3 Day 4 Day 5 Average

OR 1 59.1 % 51.9 % 25.7 % 41.9 % 74.0 % 50.5 %

OR 2 - 21.6 % 63.2 % - - 42.4 %

OR 3 24.7 % 34.0 % - - 24.8 % 27.8 %

OR 4 - 35.3 % - 86.3 % - 60.8 %

OR C 12.9 % - - - 14.4 % 13.7 %

to schedule is linked to the original number of scheduled patients. Each setting was tested with
10 different instances composed of different samples of additional patients. In particular, for all
the hospitals, the solution tried to schedule a number of patients equivalent to the 250% of the
original one. OPT1 and OPT2 enable us to assess the potential impact of our solution in terms of
reducing patient waiting lists and optimizing resource allocation.

5.2. Results of Scenario 1

Scenario 1 consists of recreating the same schedule done by the hospital. The solution is obtained
in less than 0.5 seconds for all the hospitals, indicating the correctness of the implemented
rules and the obtained resources availability. In Tables 3, 4, and 5 can be seen the original
percentage usage of the ORs obtained by the three hospitals of Bordighera, Imperia, and Sanremo,
respectively. These results represent the benchmarks to compare with in OPT1 and OPT2.

5.3. Results of OPT1

Tables 6, 7, and 8 show the results obtained in this setting in terms of the percentage of patients
assigned in all the ten instances in the hospitals of Bordighera, Imperia, and Sanremo, respectively.
As can be seen from the tables, the solution is able to increase the number of assigned patients



Table 6
Number of assigned patients in Bordighera grouped by their priority level.

P1 P2 P3 P4

28/28 14/29 1/28 0/13

28/28 13/29 2/28 0/13

28/28 14/29 1/28 0/13

28/28 14/29 1/28 0/13

28/28 14/29 1/28 0/13

28/28 14/29 0/28 0/13

28/28 13/29 2/28 1/13

28/28 14/29 1/28 0/13

28/28 14/29 0/28 0/13

28/28 14/29 0/28 0/13

Table 7
Number of assigned patients in Imperia grouped by their priority level.

P1 P2 P3 P4

143/143 112/120 109/130 48/108

143/143 112/120 109/130 47/108

143/143 112/120 109/130 45/108

143/143 112/120 109/130 45/108

143/143 112/120 109/130 46/108

143/143 112/120 109/130 47/108

143/143 112/120 109/130 46/108

143/143 112/120 109/130 43/108

143/143 112/120 109/130 43/108

143/143 112/120 109/130 44/108

significantly for all the hospitals. Indeed, patients P1 are the patients originally scheduled, while
all the other patients represent the additional ones. Moreover, even if not all the patients with
priority 2 are assigned, some patients with lower priorities are. This is due to the fact that a
bottleneck of the hospitals taken into account is beds availability. Thus, once all the beds are
occupied, the solution is able to schedule some patients with lower priorities that do not require
a bed before and/or after the surgery. To corroborate the explanation above, the percentages of
beds usage in the different specialties, in Sanremo, are presented in Table 9. From the table it can
be seen that the beds are used almost at full capacity throughout the week; thus, for the solution
is not possible to assign additional patients requiring a bed. In the hospital of Imperia, beyond the
beds, even the ORs are used almost at full capacity with the additional patients. In particular, in
Figure 4, it can be seen a comparison between the obtained percentage usage of the ORs with
the ASP solution in OPT1 and the usage obtained by the ASL1. Without following the previous
assignments of ASL1, the ASP solution is able to schedule three times the number of patients
originally scheduled.



Table 8
Number of assigned patients in Sanremo grouped by their priority level.

P1 P2 P3 P4

43/43 12/28 7/26 5/54

43/43 12/28 7/26 6/54

43/43 12/28 7/26 3/54

43/43 12/28 7/26 4/54

43/43 12/28 7/26 5/54

43/43 12/28 7/26 5/54

43/43 12/28 7/26 9/54

43/43 12/28 7/26 7/54

43/43 12/28 7/26 5/54

43/43 12/28 7/26 1/54

Table 9
Percentage of usage of beds in Sanremo.

Gynecology Orthopedics ENT General Surgery

90% 100% 95% 100%

90% 100% 95% 99%

90% 100% 94% 97%

90% 100% 82% 99%

90% 100% 97% 99%

90% 100% 94% 97%

82% 100% 97% 97%

90% 100% 90% 97%

90% 100% 100% 97%

82% 100% 85% 100%

5.4. Results of OPT2

The results obtained in this setting are summarized for each hospital in Figure 5. In particular,
from the figure, it can be noted the advantage of using the ASP solution. Indeed, while both
settings assign additional patients, the difference between them lies in the usage of ASP (OPT1)
to assign the originally scheduled patients. Therefore, all the additional patients assigned in OPT1
result from a more efficient schedule for the original patients. However, not all comparisons seem
to suggest better results with OPT1: we will now delve into the results of each hospital in more
detail. In particular, in Bordighera, the second and the third settings assign the same number of
patients. This seems to suggest that the assignments done by the ASP solution didn’t improve the
original schedule but, as previously mentioned, in OPT2 the schedule assigns the patients as in
the original schedule and in this hospital, 1 patient is assigned to an OR is not used in the OPT1,
since it was used just by one patient. Therefore, even if using fewer resources, the solution of
OPT1 is still able to match the performance of OPT2, meaning that the patients were scheduled
more appropriately.

In Imperia, the total number of patients assigned in OPT2 is actually higher than the one
assigned in OPT1 but, as can be seen in Table 10, the schedule provided by OPT1 is of higher
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Figure 5: Comparison on the number of patients scheduled by ASL1, and by OPT1 and OPT2 solutions.

quality, since it is able to assign more patients with higher priority, even if at the detriment of
patients with lower priorities. Finally, in Sanremo, the schedule done by OPT1 outperforms that
of OPT2 by assigning more patients while not decreasing the quality of the solution. As such,
considering all the priorities, OPT1 has assigned at least the same number of patients as OPT2 in
each priority group.



Table 10
Mean percentage of assigned patients with different priorities in Imperia for OPT1 and OPT2.

Setting P1 P2 P3 P4

OPT1 100% 93% 83% 41%

OPT2 100% 90% 83% 63%

6. Related Work

This section is organized into two paragraphs: The first one is focused on existing works that use
different techniques to solve the ORS problem, with a focus on the works using real data. While
the second presents some works in which ASP has been employed in the healthcare domain.

Solutions to the Operating Room Scheduling Problem In [16] is presented a comprehensive
review of the different approaches to the ORS problem. It presents different methods to solve it
and different definitions of the problem. Two studies that proposed solutions to the ORS problem
by testing them with real data are [3] and [17]. In the former, the problem of scheduling surgical
interventions over a one-week planning horizon was analyzed, considering several departments
that share a fixed number of ORs and post-operative beds. The problem was addressed using a two-
phase method with the aim of minimizing patient waiting times and maximizing hospital resource
utilization. In the latter, the problem addressed consists of two interconnected sub-problems.
In the first sub-problem, the decisions concerned the assignment of a date for the intervention
and an operating block to a set of patients to be operated on in a given planning horizon. The
second sub-problem aims to determine the sequence of selected patients daily and in each OR. To
solve the entire problem, a hybrid two-phase optimization algorithm was devised that exploits
the potential of neighborhood search combined with Monte Carlo simulation. Moreover, [4]
incorporated the decision-making styles (DMS) of the surgical team to improve the compatibility
level by considering constraints such as the availability of material resources, priorities of patients,
and availability, skills, and competencies of the surgical team. They developed a multi-objective
mathematical model to schedule surgeries. Two metaheuristics, namely Non-dominated Sorting
Genetic Algorithm and Multi-Objective Particle Swarm Optimization, were developed to find
pareto-optimal solutions. To evaluate the effectiveness of their solution they used data coming
from an hospital based in Iran.

Solving Healthcare Domain Problems with ASP. ASP has been successfully used for solving
hard combinatorial and application scheduling problems in several research areas. In the Health-
care domain (see, e.g., [18] for a recent survey), the first solved problem was the Nurse Scheduling
Problem [19, 20, 21], where the goal is to create a scheduling for nurses working in hospital
units. Then, the problem of assigning operating rooms to patients, denoted as Operating Room
Scheduling [8, 9], has been treated, and further extended to include bed management [22, 23].
More recent problems include the Chemotherapy Treatment Scheduling problem [24], in which
patients are assigned a chair or a bed for their treatments, and the Rehabilitation Scheduling
Problem [25], which assigns patients to operators in rehabilitation sessions. In [26] and in [27]



is proposed a solution to a problem split into two phases. In the former, the problem consists to
assign a date to the patients in the first phase and the time for the exams in the second phase. In
the latter, the problem consists of assigning a date to visit or therapy for multiple recurrent exams
to chronic patients. The problem is split into two sub-problems to increase the performance of
the solution using the Benders’ decomposition method.

7. Conclusion

In this paper we have adapted and tested on real data ASP encodings for the ORS problem.
The evaluated scenarios show that our ASP encoding (i) is able to mimic the original schedule
implemented in the hospitals of ASL1 Liguria, and (ii) could have greatly improved such schedule
in terms of efficiency. Future works include the definition of an encoding for the rescheduling
problem, which takes place when the original schedule can not be implemented for some reason,
and the development of a web application for the easy use of our solution.
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