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Abstract
Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions
with reasons that justify the provided answer. In the context of Answer Set Programming (ASP) the
user may be interested in linking the presence or absence of an atom in an answer set to the logic
rules involved in the inference of the atom. Such explanations can be given in terms of directed acyclic
graphs (DAGs). This article reports on the advancements in the development of the XAI system xASP by
revising the main foundational notions and by introducing new ASP encodings to compute minimal
assumption sets, explanation sequences, and explanation DAGs.
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1. Introduction

The interest in explainable artificial intelligence (XAI) has grown substantially in recent years.
The reasons for this trend are obvious: while intelligent systems capable of solving complex
problems are useful, confidence in their results is limited unless users can query them about
the reasons that lead to the solutions produced. The right to an explanation law, extensively
discussed in the USA, EU and UK, and partly enacted in some countries, increases the need
for XAI systems. In this paper, we focus on the development of an XAI system for Answer Set
Programming (ASP) [1, 2]. ASP is a knowledge representation and reasoning (KR&R) approach
to problem solving using logic programs under answer set semantics [3], an extension of
Datalog with a strong connection with well-founded semantics [4]. In this setting, we are
mainly interested in the question “given an answer set A of a programΠ and an atom α, why
does α ∈ A (or α ̸∈ A)?”

As a logic programΠ is a set of rules, the question can be answered by providing the subset
ofΠ that supports the presence (or the absence) of α givenΠ and A. IfΠ is a Datalog program,
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then its models are easily explainable by the derivation procedure implemented by Datalog
engines. Essentially, each atom in the model is explained by the support provided by a rule
whose body is true and contains only already explained atoms. IfΠ is a logic program under the
well-founded semantics, then the fact that α belongs (or does not belong) to the well-founded
model of Π can be explained similarly, with the addition of some atoms that are concluded
to be false because belonging to some unfounded set. Generally speaking, explanations for
logic programs under the answer set semantics can also be produced in a similar way under
the assumption provided by the answer sets themselves for the interpretation of false atoms.
However, taking all false atoms as an assumption would likely result in a faint explanation,
actually in an explanation by faith for all such false atoms. Therefore, two main issues need
to be tackled in explaining the assignment of α in A: (i) how to compute a hopefully small
set of assumptions capable of explaining the assignment of α in A; and (ii) how to handle
constraints and rules acting as constraints, which can be taken into account to explain the
falsity of some atoms in easily understandable terms.

An XAI system providing the reasons for the presence or absence of a given atom in an answer
set finds another important application in the identification of the cause of unexpected results.
This is a feature that can be particularly useful to the designers of complex systems confronted
with unexpected inferences. In fact, identifying the root causes of those inferences can be
daunting due to the many possible interactions in large knowledge bases. We found ourselves
faced with such a challenge during the recent development of a commercial application. The
ASP program that powered the decision-making component comprised a number of modules
that could be enabled or disabled depending on needs. During development, we noticed that
certain combinations of modules yielded unexpected results. After carefully checking each
module, individually, for errors, we began to suspect that rules from different modules were
interacting with each other in unexpected ways. Investigating those interactions proved to
be a very time-consuming task that took approximately 3 Full-Time Equivalent weeks and
considerably slowed down the project at a critical time. While XAI-inspired research conducted
by the ASP community had already produced a number of tools related to this problem, such
as xclingo [5], DiscASP [6], xASP [7], and s(CASP) [8], none of them could be used for our
problem, due to inability to process a program of the size of ours in an acceptable amount
of time, to lack of support for certain advanced language features, and in some cases due to
shortcomings in the type of information produced.

In this paper, we present research advancements on the XAI system xASP [7], culminating
with the release of the second version of xASP, which in particular let us obtain explanations
for the unexpected interactions in the commercial application mentioned above. Our main
contributions are the following:

• A notion of explanation for the presence or absence of an atom in an answer set in
terms of easy-to-understand inferences originating from a hopefully small set of atoms
assumed false (Section 3).

• A representation of explanations in terms of directed acyclic graphs, restricted to the
atoms involved in the explanation (Section 3), and a proof of existence for the explana-
tions according to the given definition (Section 4).



• The implementation xASP2 , a system for producing explanations powered by ASP
(Section 5), and the empirical evaluation of xASP2 on the commercial application
mentioned in this introduction (Section 6).

2. Background

All sets and sequences considered in this paper are finite. Finite, possibly empty sequences of
elements are denoted by over-lined symbols. Let P, C, V be fixed nonempty sets of predicate
names, constants and variables. Predicates are associated with an arity, a non-negative integer;
let ⊥ be a fixed predicate of arity 0 in P (that we will enforce to be false when we will define the
notion of interpretation). A term is any element in C∪V. An atom is of the form p(t ), where
p ∈ P, and t is a possibly empty sequence of terms. A literal is an atom possibly preceded by
the default negation symbol not; they are referred to as positive and negative literals.

A rule is of the form
head ← body (1)

where head is an atom, and body is a possibly empty sequence of literals. For a rule r , let H(r )
denote the atom in the head of r ; let B+(r ) and B−(r ) denote the sets of positive and negative
literals in the body of r ; let B(r ) denote the set B+(r )∪B−(r ). If H(r ) = ⊥, r is also called
constraint. If B(r ) =∅, r is also called fact. A variable X occurring in B+(r ) is a safe variable.
And any other variable occurring in r is an unsafe variable. A safe rule is a rule with no unsafe
variables. A programΠ is a set of safe rules.

Example 1 (Graph 3-Colorability). Given an undirected graph G encoded by predicates node/1
and edge/2, the following program assigns a color among red, green and blue to each node so
that adjacent nodes have different colors:

assign(X ,red) ← node(X ), not assign(X ,green), not assign(X ,blue) (2)

assign(X ,green) ← node(X ), not assign(X ,red), not assign(X ,blue) (3)

assign(X ,blue) ← node(X ), not assign(X ,green), not assign(X ,red) (4)

⊥← edge(X ,Y ), assign(X ,C ), assign(Y ,C ) (5)

Note that all variables are safe, and that (5) is a constraint. ■
A substitution σ is a partial function from variables to constants; the application of σ to

an expression (i.e., term, atom, literal, or rule) E is denoted by Eσ. Let instantiate(Π) be the
program obtained from rules ofΠ by substituting variables with constants in C, in all possible
ways. The Herbrand base ofΠ, denoted base(Π), is the set of ground atoms (i.e., atoms with no
variables) occurring in instantiate(Π) that are different from ⊥.

Example 2. LetΠrun comprise rules (2)–(5), and facts over node/1 and edge/2 encoding the
undirected graph in Figure 1. Hence, instantiate(Πrun) contains, among other rules,

assign(a,red) ← node(a), not assign(a,green), not assign(a,blue)

⊥← edge(a,b), assign(a,red), assign(b,red)

and base(Πrun) contains assign(a,red), assign(a,green), assign(a,blue), and so on. ■



Figure 1: The undirected graph and its 3-coloring used as running example

A (two-valued) interpretation is a set of ground atoms not containing ⊥. For a two-valued
interpretation I , relation I |= · is defined as follows: for a ground atom p(c), I |= p(c) if p(c) ∈ I ,
and I |= not p(c) if p(c) ∉ I ; for a ground rule r , I |= B(r ) if I |= α for all α ∈ B(r ), and I |= r
if I |= H(r ) whenever I |= B(r ); for a program Π, I |=Π if I |= r for all r ∈ instantiate(Π). The
reduct ofΠw.r.t. I is the program comprising the rules of instantiate(Π) whose body is true w.r.t.
I , that is, reduct(Π, I ) := {r ∈ instantiate(Π) | I |= B(r )}. An answer set ofΠ is an interpretation
A such that A |=Π and no I ⊂ A satisfies I |= reduct(Π, A).

Example 3. Among the answer sets of programΠrun there is Arun shown in Figure 1, containing,
among others, the atoms assign(a,red), assign(b,blue), and assign(c,green). ■

A three-valued interpretation is a pair (L,U ), where L,U are sets of ground atoms not con-
taining ⊥ and such that L ⊆U ; let lb((L,U )) denote the lower bound L of (L,U ); let ub((L,U ))
denote the upper bound U of (L,U ); hence, atoms in L are true, atoms in U \ L are undefined,
and all other atoms are false. The evaluation function [[·]]U

L associates literals with a truth value
among u, t and f as follows: [[p(c)]]U

L = [[not p(c)]]U
L = u if p(c) ∈U \ L; [[α]]U

L = t if [[α]]U
L ̸= u

and L |=α; and [[α]]U
L = f if [[α]]U

L ̸= u and L ̸|=α. The evaluation function extends to rule bodies
as follows: [[B(r )]]U

L = f if there is α ∈ B(r ) such that [[α]]U
L = f; [[B(r )]]U

L = t if [[α]]U
L = t for all

α ∈ B(r ); otherwise [[B(r )]]U
L = u.

Example 4. Let B(r ) = {node(a), not assign(a,green), not assign(a,blue)}.

Hence, [[B(r )]]{node(a), assign(a,green), assign(a,blue)}
{node(a)} = u, [[B(r )]]{node(a)}

{node(a)} = t, and

[[B(r )]]{node(a), assign(a,green), assign(a,blue)}
{node(a), assign(a,green)} = f. ■

Mainstream ASP systems compute answer sets of a given program Π by applying several
inference rules on (a subset of) instantiate(Π), the most relevant ones for this work are sum-
marized below. Let (L,U ) be a three-valued interpretation, and p(c) be a ground atom such
that [[p(c)]]U

L = u. Atom p(c) in H(r ) is inferred true by “support” if [[B(r )]]U
L = t. Atom p(c) is

inferred false by “lack of support” if each rule r ∈ instantiate(Π) with p(c) occurring in H(r ) is
such that [[B(r )]]U

L = f. Atom p(c) is inferred false by a “constraint-like rule” r ∈ instantiate(Π) if
p(c) ∈ B+(r ), [[H(r )]]U

L = f and [[B(r ) \ {p(c)}]]U
L = t. Atom p(c) is inferred false by “well-founded

computation” if it belongs to some unfounded set X forΠw.r.t. (L,U ), that is, a set X such that
for all rules r ∈ instantiate(Π) at least one of the following conditions holds: (i) H(r ) ∉ X ; (ii)
[[B(r )]]U

L = f; (iii) B+(r )∩X ̸= ∅.



Figure 2: Induced DAG on the vertices reachable from assign(e,green) for the minimal assumption
set {assign(c,red), assign(c,blue), assign(e,red)} for Πrun. Note that the assumption assign(e,red) is not
used in the portion of the DAG explaining assign(e,green).

Example 5. Given instantiate(Πrun), and the three-valued interpretation (∅,base(Πrun)), atom
assign(a, a) is inferred false by “lack of support” (or also by “well-founded computation” as
{assign(a, a)} is an unfounded set), and atom node(a) is inferred true by “support”. Given
the three-valued interpretation

(︁
{edge(a,b), assign(a,red)},base(Πrun)

)︁
, atom assign(b,red) is

inferred false by the “constraint-like rule” (5) with substitution {X ↦→ a, Y ↦→ b, C ↦→ red}. ■

3. Explanations

In order to have easy-to-understand explanations, well-founded computation is applied only
as a preprocessing step. In fact, the notion of unfounded set relies on the state of several rules
in the program in input. Therefore, providing an explanation in which the user is asked to
trace down such states over several steps of computation would not fulfill our requirements.

Let Π be a program, and A be one of its answer sets. A well-founded derivation for Π
w.r.t. A, denoted wf (Π, A), is obtained from the interpretation (∅,base(Π)) by iteratively
(i) adding to its lower bound atoms of A that are inferred true by support, and (ii) remov-
ing from its upper bound atoms belonging to some unfounded set.

Example 6. GivenΠrun and Arun from Examples 2–3, the lower bound of wf (Πrun, Arun) con-
tains atoms occurring as facts (i.e. rules with empty bodies). The upper bound additionally
contains assign(x,k) for all x ∈ {a,b,c,d ,e, f } and k ∈ {red, green, blue}. ■

An explaining derivation for Π and A from (L,U ) is obtained by iteratively (i) adding to
L atoms of A that are inferred true by support, and (ii) removing from U atoms that are
inferred false by lack of support, and constraint-like rules. An assumption set forΠ and A is
a set X ⊆ base(Π) \ A of ground atoms such that the explaining derivation for Π and A from
(∅,ub(wf (Π, A)) \ X ) terminates with A; in words, A is reconstructed from the false atoms
of the well-founded derivation extended with X ; note that ub(wf (Π, A)) is the upper bound
of the three-valued interpretation wf (Π, A). Let AS(Π, A) be the set of assumption sets forΠ



and A. A minimal assumption set for Π, A and a ground atom α is a set X ∈ AS(Π, A) such
that X ′ ⊂ X implies X ′ ∉ AS(Π, A), and α ∈ X implies α ∈ X ′ for all X ′ ∈ AS(Π, A); essentially,
subset-minimal assumption sets not containing α are preferred. Let MAS(Π, A,α) be the set of
minimal assumption sets forΠ, A and α.

Example 7. Set base(Πrun) \ Arun is an assumption set for Πrun and its answer set Arun; it is
essentially the assumption underlying the definition of answer set, that is, the model can be
reconstructed assuming the falsity of false atoms.

It can be checked that also {assign(e,red), assign( f ,red), assign( f ,blue)} belongs to
AS(Πrun, Arun). Indeed, assuming that node f is not red or blue, implies that f is green. The
latter, combined with the assumption that node e is not red, implies that that e is blue. At this
point all other colors are inferred without the need for other assumptions. ■

Given an assumption set X and an explaining derivation from (∅,ub(wf (Π, A))\X ), a directed
acyclic graph (DAG) can be obtained as follows: The vertices of the graph are the atoms in
base(Π). (The vertex p(c) is also referred to as not p(c).) Atoms inferred true by support
due to a rule r ∈ instantiate(Π) are linked to elements of B(r ). Any atom α inferred false by
lack of support is linked to an element of B(r ) that is inferred false before α, for each rule
r ∈ instantiate(Π) such that α occurs in H(r ). Any atom α inferred false by a constraint-like
rule r ∈ instantiate(Π) is linked to the atoms occurring in H(r ) and the elements of B(r ) \ {α}.

Example 8. A portion of an example DAG relying on the minimal assumption set
{assign(c,red), assign(c,blue), assign(e,red)} for Πrun is reported in Figure 2. It can be read
as follows: Atom assign(e,green) is false so to falsify the body of

⊥← edge(c,e), assign(c,green), assign(e,green)

Indeed, edge(c,e) is a fact, and assign(c,green) is supported by

assign(c,green) ← node(c), not assign(c,red), not assign(c,blue)

because node(c) is a fact, and assign(c,red) and assign(c,blue) are assumed to be false. ■

4. Existence of Minimal Assumption Sets

This section is devoted to formally show that the existence of minimal assumption sets is
guaranteed, and so are DAGs as defined in Section 3.

Theorem 1 (Main Theorem). LetΠ be a program, A one of its answer sets, and α a ground atom
in base(Π). Set MAS(Π, A,α) is nonempty.

In order to show the above theorem we introduce some additional notation and claims. Let
Π be a program, and (L,U ) be a three-valued interpretation. We denote byΠ,L,U ⊢α the fact
that α ∈ base(Π) is inferred true by support, which is the case when [[α]]U

L = u, and there is
r ∈ instantiate(Π) such thatα occurs in H (r ) and [[B(r )]]U

L = t, as defined in Section 2. Similarly,
we denote byΠ,L,U ⊢ not α the fact that α ∈ base(Π) is inferred false by lack of support and



constraint-like rules, which is the case when [[α]]U
L = u, and one of the following conditions

holds: each rule r ∈ instantiate(Π) with α occurring in H(r ) is such that [[B(r )]]U
L = f; there is

r ∈ instantiate(Π) with α ∈ B+(r ), [[H(r )]]U
L = f and [[B(r ) \ {α}]]U

L = t.
The explaining derivation operator DΠ is defined as

DΠ(L,U ) := (L∪ {α ∈ base(Π) |Π,L,U ⊢α},U \ {α ∈ base(Π) |Π,L,U ⊢ not α}).

Let (L,U ) ⊑ (L′,U ′) denote the fact that L ⊆ L′ ⊆U ′ ⊆U , i.e., everything that is true w.r.t. (L,U )
is true w.r.t. (L′,U ′), and everything that is false w.r.t. (L,U ) is false w.r.t. (L′,U ′).

Lemma 1. Operator DΠ is monotonic w.r.t. ⊑ .

Lemma 2. L ⊆ A ⊆U implies lb(DΠ(L,U )) ⊆ A ⊆ ub(DΠ(L,U )).

The explaining derivation from (L,U ) is obtained as the fix point of the sequence
(L0,U0) := (L,U ), (Li+1,Ui+1) := DΠ(Li ,Ui ) for i ≥ 0. Note that the fix point is reached in
at most |base(Π)| steps because of Lemma 1 and each application of DΠ reduces the undefined
atoms (or is a fix point).

Lemma 3. For any answer set A ofΠ, set base(Π) \ A is an assumption set forΠ and A.

Lemma 3 essentially uses the definition of answer set (it is the minimal model of the associ-
ated program reduct) to show that there is at least one assumption set. If such an assumption
set is not minimal, given the monotonicity of DΠ (Lemma 1) and the fact that DΠ does not
contradict the given answer set (Lemma 2), there must exist a smaller assumption set, and
eventually a subset-minimal one (as stated by the Main Theorem).

5. Generation via Meta-Programming

The concepts introduced in Section 3 can be computed by taking advantage of ASP systems. A
meta-programming approach is presented in this section, where the full language of ASP is
used, including constructs omitted in the previous sections, like choice rules, aggregates, weak
constraints, uninterpreted functions, conditional literals and @-terms. The reader is referred
to [9] for details. We will use the name ASP programs for encodings using the full language
of ASP, in contrast to the name program that we use for encodings using the restricted syntax
introduced in Section 2.

ProgramΠ, answer set A and the atom to explain are encoded by a set of facts obtained by
computing the unique answer set of the ASP program serialize(Π, A,α), defined next. Each
atom p(c) in base(Π) is encoded by a fact atom(p(c)); moreover, the encoding includes a fact
true(p(c)) if p(c) ∈ A, and false(p(c)) otherwise; additionally, if p(c) is false in wf (Π, A),
the encoding includes a fact explained_by(p(c), initial_well_founded). As for α, the
encoding includes a fact explain(α). Each rule r of instantiate(Π) is encoded by

rule(id(X )) :- atom(p1(t1)), ..., atom(pn(tn)).

where id is an identifier for r , X are the variables of r , and B+(r ) = {pi (ti ) | i = 1, . . . ,n};
moreover, the encoding includes



head(id(X ),p(t )) :- rule(id(X )).

pos_body(id(X ),p ′(t ′)) :- rule(id(X )).

neg_body(id(X ),p ′′(t ′′)) :- rule(id(X )).

for each p(t ) occurring in H(r ), p ′(t ′) ∈ B+(r ) and p ′′(t ′′) ∈ B−(r ).

Example 9. Recall Πrun and Arun from Examples 2–3. The ASP program
serialize(Πrun, A,assign(e,green)) includes

atom(assign(e,green)). false(assign(e,green)).
atom(assign(c,green)). true(assign(c,green)).
explain(assign(e,green)).

rule(r4(X,Y,C)) :- atom(edge(X,Y)), atom(assign(X,C)), atom(assign(Y,C)).
pos_body(r4(X,Y,C), edge(X,Y)) :- rule(r4(X,Y,C)).
pos_body(r4(X,Y,C), assign(X,C)) :- rule(r4(X,Y,C)).
pos_body(r4(X,Y,C), assign(Y,C)) :- rule(r4(X,Y,C)).

and several other rules. The answer set of serialize(Πrun, A,assign(a,green)) includes, among
other atoms, rule(r4(c,e,green)). ■

The ASP program ΠMAS reported in Figure 3, coupled with a fact for each atom in the
answer set of serialize(Π,A,α), has optimal answer sets corresponding to cardinality-minimal
elements in MAS(Π, A,α). Intuitively, line 1 guesses the assumption set, line 2–3 minimizes
the size of the assumption set (preferring to not assume the falsity of the atom to explain), and
lines 4–5 impose that each atom must have exactly one explanation. The other rules encode
the explaining derivation forΠ and A from wf (Π, A) \ X , where X is the guessed assumption
set.

Given a minimal assumption set encoded by predicate assume_false/1, an explain-
ing derivation can be computed by removing lines 1–3 from the ASP program ΠMAS.
Let ΠEXP be such an ASP program. Finally, given an explaining derivation encoded by
explained_by(Index,Atom,Reason), with the additional Index argument encoding the order
in the sequence, a DAG linking atoms according to the derivation can be computed by the ASP
programΠDAG reported in Figure 4.

Example 10. Let ΠS have a fact for each atom in the answer set of
serialize(Πrun, Arun,assign(e,green)). It can be checked that the minimal assumption
set {assign(c,red), assign(c,blue), assign(e,red)} can be generated byΠMAS ∪ΠS .

Program ΠEXP ∪ΠS ∪ {assign(c,red), assign(c,blue), assign(e,red)} generates an explaining
derivation, for example one including the following atoms:

explained_by(assign(e,green), required_to_falsify_body, r4(c,e,green))
explained_by(assign(c,green), support, r2(c))

Let ΠE have a fact for each instance of explained_by/3 in the explaining derivation.
ΠDAG ∪ ΠS ∪ ΠE generates a DAG, for example the one shown in Figure 2 including
link(assign(e,green),assign(c,green)). ■



1 {assume_false(Atom)} :- false(Atom).
2 :∼ false(Atom), assume_false(Atom), not explain(Atom). [1@1, Atom]
3 :∼ false(Atom), assume_false(Atom), explain(Atom). [1@2, Atom]

4 has_explanation(Atom) :- explained_by(Atom,_).
5 :- atom(X), #count{Reason: explained_by(Atom,Reason)} != 1.

6 explained_by(Atom, assumption) :- assume_false(Atom).

7 {explained_by(Atom, (support, Rule))} :- head(Rule,Atom), true(Atom);
8 true(BAtom) : pos_body(Rule,BAtom);
9 has_explanation(BAtom) : pos_body(Rule,BAtom);

10 false(BAtom) : neg_body(Rule,BAtom);
11 has_explanation(BAtom) : neg_body(Rule,BAtom).

12 {explained_by(Atom, lack_of_support)} :- false(Atom);
13 false_body(Rule) : head(Rule,Atom).
14 false_body(Rule) :- rule(Rule);
15 pos_body(Rule,BAtom), false(BAtom), has_explanation(BAtom).
16 false_body(Rule) :- rule(Rule);
17 neg_body(Rule,BAtom), true(BAtom), has_explanation(BAtom).

18 {explained_by(Atom, (required_to_falsify_body, Rule))} :- false(Atom);
19 pos_body(Rule,Atom), false_head(Rule);
20 true(BAtom) : pos_body(Rule,BAtom), BAtom != Atom;
21 has_explanation(BAtom) : pos_body(Rule,BAtom), BAtom != Atom;
22 false(BAtom) : neg_body(Rule,BAtom);
23 has_explanation(BAtom) : neg_body(Rule,BAtom).
24 false_head(Rule) :- rule(Rule); false(HAtom) : head(Rule,HAtom);
25 has_explanation(HAtom) : head(Rule,HAtom).

Figure 3: ASP program ΠMAS for computing a minimal assumption set

6. Implementation and Experiment

We implemented xASP2 , an XAI system for ASP powered by the clingo python api [10]. It
takes as input an ASP programΠ, one of its answer sets A, and an atom α, and can produce in
output minimal assumption sets, explaining derivations, and DAGs to help the user figure out
the assignment of α. The source code is available at https://github.com/alviano/xasp and an
example DAG is given at https://xasp-navigator.netlify.app/.

The pipeline implemented by xASP2 starts with the serialization of the input data, which is
obtained by means of an ASP program crafted from the abstract syntax tree ofΠ and whose
answer set identifies the relevant portion of instantiate(Π) and base(Π). In a nutshell, ground
atoms provided by the user, A∪ {α}, are part of base(Π) and used to instantiate rules ofΠ (by
matching positive body literals), which in turn may extend base(Π) with other ground atoms
occurring in the instantiated rules; possibly, some atoms of base(Π) of particular interest can
be explicitly provided by the user. The system takes care of the computation of false atoms in

https://github.com/alviano/xasp
https://xasp-navigator.netlify.app/


1 link(Atom, BAtom) :- explained_by(_, Atom, (support, Rule));
2 pos_body(Rule, BAtom).
3 link(Atom, BAtom) :- explained_by(_, Atom, (support, Rule));
4 neg_body(Rule, BAtom).

5 {link(Atom, A) : pos_body(Rule,A), false(A), explained_by(I,A,_), I < Index;
6 link(Atom, A) : neg_body(Rule,A), true (A), explained_by(I,A,_), I < Index}

= 1 :- explained_by(_, Atom, lack_of_support); head(Rule, Atom).

7 link(Atom,A) :- explained_by(_, Atom, (required_to_falsify_body, Rule));
8 head(Rule,A).
9 link(At,A) :- explained_by(_,At,(required_to_falsify_body, Rule));

10 pos_body(Rule,A), A != At.
11 link(Atom,A) :- explained_by(_,Atom,(required_to_falsify_body, Rule));
12 neg_body(Rule,A).

Figure 4: ASP program ΠDAG for computing a directed acyclic graph associated with an explaining
derivation

the well-founded derivation wf (Π, A).
Obtained serialize(Π, A,α), xASP2 proceeds essentially as described in Section 5, by com-

puting a minimal assumption set, an explaining derivation and an explanation DAG. As an ad-
ditional optimization, the explaining derivation is shrunk to the atoms reachable from α, again
by means of an ASP program. Finally, the user can opt for a few additional steps: obtain a graph-
ical representation by means of the igraph network analysis package (https://igraph.org/);
obtain an interactive representation in https://xasp-navigator.netlify.app/; ask for different
minimal assumption sets, explaining derivations and DAGs.

We assessed xASP2 empirically on the commercial application mentioned in the introduc-
tion. The ASP program comprises 420 rules and 651 facts. After grounding, there are 4261
ground rules and 4468 ground atoms. The program was expected to have a unique answer
set, but two answer sets were actually computed. Our experiment was run on an Intel Core
i7-1165G7 @2.80 GHz and 16 GB of RAM. xASP2 computed a DAG for the unexpected true
atom, behaves_inertially(testing_posTestNeg,121), in 14.85 seconds on average, over
10 executions. The DAG comprises 87 links, 45 internal nodes and 20 leaves, only one of
which being explained by assumption; only 30 of the 420 symbolic rules and 11 of the 651 facts
are involved in the DAG; at the ground level, only 48 of the 4261 ground rules and 65 of the
4468 ground atoms are involved. Additionally, we repeated the experiment on 10 randomly
selected atoms with respect to two different answer sets, repeating each test case 10 times. We
measured an average runtime of 14.79 seconds, with a variance of 0.004 seconds.

7. Related Work

As mentioned in the introduction, our work is in the context of XAI, which in turn can be
applied to debug by identifying a set of rules that justifies the derivation of a given atom. For
example, if an atom α is supposed to be false in all answer sets of a program Π but appears

https://igraph.org/
https://xasp-navigator.netlify.app/


in some answer set A, an explanation graph of α could help to understand which rules are
behaving anomalously. Therefore, in this section we consider some debugging tools for ASP,
as well as state-of-the-art XAI systems for ASP. Table 1 reports a summary of the compared
features: whether the explanation is guaranteed to be acyclic; whether the input program may
include aggregates and constraints; whether the query atom can be false in the answer set;
and whether the system is available for experimentation.
xclingo [5] can generate derivation trees for an atom in an ASP computation. Derivation

trees are obtained by adding to the input program trace_rule and trace annotations, which
are then compiled into theory atoms and auxiliary predicates. Then, the explanations are
obtained by decoding the answer sets of the modified program. The main drawback of
xclingo is its inability to include negative literals in the explanations and to deal with some
linguistic constructs such as constraint. Due to the simplification, explanations provided by
xclingo are not faithful to the original program. Our system overcomes such limitations.
s(CASP) [8] leverages top-down Prolog computation to generate a justification tree in natural

language for Constraint Answer Set programs. Due to Prolog computation, different justifica-
tions are produced when the order of atoms in rules or the order of rules in the program is
changed [7]. Note that our explanation graphs are not affected by program reordering.
Visual-DLV [11] is a GUI for developing and testing DLV programs, which in particular

provides a command to examine why an atom is true in the latest computed answer set. Such
a question is answered by providing the reason that led the solver infer the atom, among
them the possibility that the atom is a branching literal (a literal guessed to be true by the
backtracking algorithm). Differently from the approach proposed in this paper, in Visual-DLV
the link with the original program is weak due to several simplifications implemented by the
grounder and the solver. Moreover, while our approach minimizes the atoms whose truth
value must be assumed, Visual-DLV by design does nothing to simplify the amount of data
shown to the user to explain the derivation of an atom. For example, the answer set {b} of
Πrw = { a ← not b. a ← b,c. b ← not a. c ← a,b.} may be obtained by branching on not c,
inferring nothing, and then on not a, inferring b. Asking for why c is false, would result in the

Table 1
Summary of compared features

System (if any)
and reference

Acyclic
explanation

Linguistic
extentions

Explanation for
false atoms

System
availability

xclingo [5] Yes None No Yes
s(CASP) [8] Yes Constraints Yes Yes

Visual-DLV [11] Yes Constraints No Yes
spock [12] Yes Constraints No Yes
DWASP [13] Yes Constraints No Yes

[14] No None Yes No
[15] Yes None Yes No

ASPeRiX [16] Yes Constraints Yes Yes
LABAS [17] No None Yes Yes

[18] No Aggregates Yes No
xASP2 Yes Constraints Yes Yes



Figure 5: Induced DAG on the vertices reachable from c for the MAS {a} of Πrw (Section 7)

answer “because not c is a branching literal.” xASP2 assumes the falsity of a, from which the
truth of b and the falsity of c can be inferred.
spock [12] makes use of tagging techniques [19] to translate the input program into a new

program whose answer sets can be used to debug the original program. The information
reported to the user includes rules whose body is true (applicable rules), rules whose body is
false (blocked rules), and abnormality tags associated with completion and loop formulas. For
Πrw and the answer set {b}, spock detects the fact that the third rule is applicable, and that the
other rules are blocked; the exact reason for which a rule is blocked is not reported. Within
this respect, our approach is simpler and focuses on easy-to-understand inference rules that
can be clearly visualized via a DAG like the one in Figure 5.
DWASP [13] is aimed at identifying a set of rules that are responsible for the absence of an

expected answer set. It combines the grounder gringo [20] and an extension of the ASP solver
WASP [21], and introduces the gringo-wrapper to “disable" some grounding simplifications.
The expected, absent answer set is encoded as a set of constraints, so that its combination with
the input program has no answer set at all, and minimal unsatisfiable subsets (MUSes) can be
computed. Some questions are asked to the user so to select one MUS that makes more sense
to investigate for the absence of the answer set; in fact, at that point the user has a hopefully
small set of rules to investigate for bugs.

Explanation graphs can be given in terms of off-line justifications [14, 15], possibly contain-
ing cycles among false atoms [14]. For example, givenΠf = { a ← b. b ← a. } and the answer
set ∅, [14] explains the falsity of a by a cycle between a and b; xASP2 and [15], instead, use
the fact that a is false in the well-founded model of Πf . We also observe that [15] fixes the
assumption set to the false atoms that are left undefined by the well-founded model. On-line
justifications are produced by ASPeRiX [16], which implements a search procedure based
on the selection of rules rather than literals. In this case the explanation is produced while
searching an answer set, and it is not possible to specify an answer set of interest. Other
approaches relying on justifications and resulting in possibly cyclic explanation graphs are
based on assumption-based argumentation, like LABAS [17], or on trees of systems, as proposed
in [18]. Interestingly, [18] deals with aggregates, which we plan to address in our future work,
even if a system implementing the approach of [18] is not discussed or released.

Finally, comparing xASP2 with the previous version of xASP, we observe that the system
was completely redesigned by replacing several algorithms implemented in procedural pro-
gramming languages and Prolog with more declarative meta-encoding programming powered



by mainstream ASP engines. Moreover, the explanation DAGs produced by xASP2 can be
visualized in an interactive web user interface that we expect to describe in future publications.

8. Conclusion

We formalized and implemented a system for XAI targeting the ASP language and powered by
ASP engines. The presence or absence of an atom in an answer set is explained in terms of
easy-to-understand inferences originating from a hopefully small set of atoms assumed false.
The explanation is shown as a DAG rooted at the atom to be explained, and can be computed
in a few seconds in our test cases. The extension of our approach to other linguistic constructs
of ASP beyond those supported by the current approach, as for example aggregates and choice
rules, constitutes an interesting line of future research.
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