
ASPECT: Answer Set rePresentation as vEctor
graphiCs in laTex
Alessandro Bertagnon1, Marco Gavanelli2 and Fabio Zanotti3

1Dipartimento in Scienze dell’Ambiente e della Prevenzione, University of Ferrara, C.so Ercole I D’Este, 32, Ferrara, Italy
2Dipartimento di Ingegneria, University of Ferrara, Via Saragat 1, Ferrara, Italy
3Dipartimento di Informatica - Scienza e Ingegneria, University of Bologna, Viale del Risorgimento 2, Bologna, Italy

Abstract
Logic programming is a declarative programming paradigm that finds extensive use in the field of Artificial
Intelligence (AI). As a result, it has become a valuable tool used in university courses for teaching students
AI techniques. Besides Prolog language, the more recent Answer Set Programming (ASP) language
turns out to be a powerful tool for developing advanced applications due to the expressiveness of the
language and the availability of efficient solving systems. Unfortunately, the output of ASP solvers can
be difficult to interpret, since it is a set of atoms, often long and verbose. This is most true in the case of
students learning the language or in the case of experts developing applications for complex real-world
problems. For these reasons, the ability to produce, when possible, a graphical representation of the
solver output becomes useful to ensure easier interpretation of the results. In this paper we present
ASPECT, a sub-language of ASP in which the user can directly define, in an intuitive and declarative way,
a graphical representation of the answer set. The ASPECT atoms can be converted into the popular LaTeX
markup language to produce vector graphics. The documents produced by ASPECT are easy to embed
in documents such as scientific articles, course handouts, and presentations. Also, the development of
user-friendly interfaces is critical for wider use of similar technologies in the industrial sector as well.

Keywords
Answer Set Programming, Answer Set Visualization, Vector Graphics, LaTeX

1. Introduction

Logic programming is a declarative programming paradigm that finds extensive use in the
field of Artificial Intelligence (AI). As a result, it has become a valuable tool used in university
courses for teaching students AI techniques [1].
Answer Set Programming (ASP) is a logic programming language with a semantics known

as the stable models semantics [2]. The popularity of this language is due to its expressiveness
and the availability of efficient solving systems [3, 4], which allow its use even in advanced
applications. ASP programs are logic programs composed of facts and rules that represent the
problem to be solved. The key idea of ASP is to model problems in such a way that its stable
model(s) provides the solution(s). Stable models, also called answer sets, are represented by
consistent sets of ground facts provided to the user through a textual representation often long

CILC’23: 38th Italian Conference on Computational Logic, June 21–23, 2023, Udine, Italy
Envelope-Open alessandro.bertagnon@unife.it (A. Bertagnon); marco.gavanelli@unife.it (M. Gavanelli);
fabio.zanotti2@studio.unibo.it (F. Zanotti)
Orcid 0000-0003-2390-0629 (A. Bertagnon); 0000-0001-7433-5899 (M. Gavanelli); 0009-0004-7533-9751 (F. Zanotti)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:alessandro.bertagnon@unife.it
mailto:marco.gavanelli@unife.it
mailto:fabio.zanotti2@studio.unibo.it
https://orcid.org/0000-0003-2390-0629
https://orcid.org/0000-0001-7433-5899
https://orcid.org/0009-0004-7533-9751
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and verbose. Unfortunately, text-based representation makes it difficult to interpret the answer
sets, because important information is not easily identifiable. This problem equally impacts
both students taking their first steps with ASP and experienced programmers when dealing
with very complex applications.

In this paper we introduce ASPECT, a sub-language of ASP in which the user can directly
define, in an intuitive and declarative way, a graphical representation of answer sets. This
language complements other tools already presented for the graphical representation of answer
sets [5, 6, 7, 8] but at the same time introduces some noteworthy advantages. First, ASPECT is
designed to generate high-quality vector graphics. In fact, ASPECT atoms are converted to the
popular markup language LATEX making it easy to incorporate those graphics into documents
such as scientific papers, course handouts and presentations. ASPECT also gives the programmer
complete flexibility in graphics design since it provides only low-level graphical primitives (e.g.,
lines, polygons, ellipses, etc.) that can be exploited for any type of visualization. Finally, the
syntax of ASPECT, although compatible with ASP, is strongly inspired by that of the popular
TikZ language making its use more intuitive to those already familiar with the latter.

A preliminary version of the interpreter for the ASPECT language is available online at
https://github.com/abertagnon/aspect.
The rest of the paper is organized as follows. First the ASPECT language and the current

structure of its interpreter are described in Section 2. Some examples of possible uses of the
ASPECT language are presented in Section 3. Related works are described in Section 4. The
final section contains conclusions and some possible future developments of this project.

2. ASPECT

ASPECT is declarative sub-language of ASP that can be used to define the graphical repre-
sentation of an answer set. ASPECT syntax consists of special atomic formulas that define
rendering of geometric primitives such as points, lines, polygons, ellipses, etc. Currently, the
language consists of 21 atoms that allow the user to represent 8 different geometric shapes and
also manage their style properties such as color and fill (if applicable). The positioning of each
element is determined by Cartesian coordinates. A complete list of ASPECT atoms is given in
Tables 1 and 2.

The syntax of the ASPECT language is inspired by the popular PGF/TikZ language developed
for drawing vector graphics in the markup language LATEX. Portable Graphics Format (PGF) is a
language that provides a collection of low-level graphics primitive for LATEX and TikZ is a set of
higher-level macros that make PGF easier to use. To date, users who want to make graphics in
LATEX interact almost exclusively with TikZ, which has become a whole language of its own.
ASPECT atoms can indeed be easily converted to the TikZ language. The ASPECT interpreter
is responsible for the conversion.
The ASPECT interpreter is written in Java, and it depends on an ASP solver and a LaTeX

distribution. In the current implementation we chose clingo1 as ASP solver and TeX Live2 as
LATEX software distribution, but other systems can be supported with minor implementation

1https://potassco.org/clingo/
2https://www.tug.org/texlive/

https://github.com/abertagnon/aspect
https://potassco.org/clingo/
https://www.tug.org/texlive/

Graphic
element

ASPECT Atom Parameters

node
aspect_drawnode(x1,y1,"s1")
aspect_drawnode(x1,y1,X)
aspect_colornode(x1,y1,"s1",color)
aspect_imagenode(x1,y1,image,width)

x1: x-coordinate
y1: y-coordinate
s1: text used to visualize the node
X: ASP variable
color: sets the line color
image: path of image to include
width: image width (px)

line
aspect_drawline(x1,y1,x2,y2)
aspect_colorline(x1,y1,x2,y2,color)

x1,y1

x2,y2

x

x

x1: start point x-coordinate
y1: start point y-coordinate
x2: end point x-coordinate
y2: end point y-coordinate
color: sets the line color

arc
aspect_drawarc(x1,y1,a1,a2,r1)
aspect_colorarc(x1,y1,a1,a2,r1,color)

a1

a2

x1,y1

r1
x

x1: x-coordinate of the center
y1: y-coordinate of the center
a1: start angle
a2: end angle
r1: radius
color: sets the line color

straight
arrow

aspect_drawarrow(x1,y1,x2,y2)
aspect_drawarrow(x1,y1,x2,y2,color)

x1,y1

x2,y2

x

x

x1: tail x-coordinate
y1: tail y-coordinate
x2: tip x-coordinate
y2: tip y-coordinate
color: set the line color

square\
rectangle

aspect_drawrectangle(x1,y1,x2,y2)
aspect_colorrectangle(x1,y1,x2,y2,color)
aspect_fillrectangle(x1,y1,x2,y2,fill)

x1,y1

x2,y2

x

x

x1: first corner x-coordinate
y1: first corner y-coordinate
x2: second (opposite) corner

x-coordinate
y2: second (opposite) corner

y-coordinate
color: sets the line color
fill: sets the fill color

Table 1
ASPECT syntax (part 1). The numerical values (coordinates) must be within the range 000-999 as required
also by the TikZ language.

Graphic
element

ASPECT Atom Parameters

triangle

aspect_drawtriangle(x1,y1,x2,y2,x3,y3)
aspect_colortriangle(x1,y1,x2,y2,x3,y3,color)
aspect_filltriangle(x1,y1,x2,y2,x3,y3,fill)

x1,y1 x2,y2

x3,y3

x x

x

x1: first vertex x-coordinate
y1: first vertex y-coordinate
x2: second vertex x-coordinate
y2: second vertex y-coordinate
x3: third vertex x-coordinate
y3: third vertex y-coordinate
color: sets the line color
fill: sets the fill color

circle
aspect_drawcircle(x1,y1,r1)
aspect_colorcircle(x1,y1,r1,color)
aspect_fillcircle(x1,y1,r1,fill)

x
x1,y1

r1

x1: center x-coordinate
y1: center y-coordinate
r1: radius
color: sets the line color
fill: sets the fill color

ellipse
aspect_drawellipse(x1,y1,r1,r2)
aspect_colorellipse(x1,y1,r1,r2,color)
aspect_fillellipse(x1,y1,r1,r2,fill)

x
x1,y1

r1r2

x1: center x-coordinate
y1: center y-coordinate
r1: x radius
r2: y radius
color: sets the line color
fill: sets the fill color

Table 2
ASPECT syntax (part 2). The numerical values (coordinates) must be within the range 000-999 as required
also by the TikZ language.

changes. These dependencies are due to the fact that we initially wanted to develop a quick-to-
use tool capable, with a single command-line invocation, of generating from an ASP program a
vector graphic representation of its solution(s) in both LATEX and Portable Document Format
(PDF) file formats at the same time.

In order to more easily handle different types of problems, four operating modes have been
provided.

2.1. Standard Mode

The usage of ASPECT in standard mode is very simple. The interpreter should be invoked from
the command line using the following scheme:

java ASPect <clingo arguments> <input file(s).lp>

First, the ASP program along with the ASPECT code for the visualization are passed to clingo
together with the opportune solver options (if needed). The problem ASP code and the ASPECT

code for visualization can be in the same file or in separate files since clingo also accepts multiple
files as input. The output from clingo is redirected to a thread that is responsible, for each
answer set, for generating the corresponding LATEX file.

Then, each LATEX file containing the TikZ description of the vector graphics is automatically
converted into a PDF file using the pdfTeX extension.

The architecture of the ASPECT interpreter standard mode is sketched in Algorithm 1. The
atom2TikZ function (line 7) simply rewrites each ASPECT atom into a corresponding TikZ
instruction. Below an example of an ASPECT atom converted into a TikZ instruction:

aspect_fillrectangle(3,15,5,17,gray) ----> (atom2TikZ)
(atom2TikZ) ---> \draw [fill=gray] (3,15) rectangle (5,17);

Algorithm 1 Sketch of ASPECT interpreter

1: AnswerSets = ASP solver(solver arguments and input file(s))
2: for each answerSet ∈ AnswerSets do
3: LaTeXOutput = new output LATEX file
4: write preamble on LaTeXOutput
5: for each atom 𝑎 ∈ answerSet do
6: if 𝑎 ∈ ASPECT language then
7: tikz_istruction = atom2TikZ(𝑎)
8: write tikz_istruction on LaTeXOutput
9: write end section on LaTeXOutput
10: PDFOutput = pdflatex(LaTeXOutput)

2.2. Merge Mode and Free Mode

The merge and free modes are designed specifically for handling problems that admit more than
one solution and also implement support for the LATEXbeamer class.
The merge mode, which can be invoked using the syntax:

java ASPect merge resize<dim> <clingo arguments> <input file(s).lp>

groups all the graphical representations of answer sets into a single LATEX beamer document and
consequently a single PDF file. This mode is aimed at creating animations for presentations in
LATEX in fact if the problem admits multiple solutions each of these will be placed in a different
beamer frame. In the case of optimization problems, with this mode, it is possible to show in a
simple way the successive solutions of increasing quality found by the solver up to the optimal
one.

Use of the merge mode is not recommended if the user wants to constantly monitor the output
produced by the ASP solver, as the PDF file will not be produced until the solver has completed
the computation. The merge mode accepts a resize parameter that uses the resizebox command
of the LATEX graphicx package to resize the produced graphic. The value of the dim parameter
uses em (em quadrat) as the unit of measure, which is applied as both vertical and horizontal
length.

Free mode works similarly to merge, but allows the user to customize beamer frames and the
tikzpicture environment by entering custom commands through the incorporation of two
files called before.tex and after.tex. A schematic of the architecture of the ASPECT interpreter
when operating in free mode is depicted in Figure 1. Free mode, similarly to the merge mode,
can be invoked using the command line by entering:

java ASPect free <clingo arguments> <input file(s).lp>

problem.lp

draw.lp

ASPECT interpreter

clingo

stdout

pdflatex

after.tex

before.tex

solution1.tex
solution2.tex
solutionN.tex

solution.tex

solution.pdf

Figure 1: ASPECT interpreter architecture when working in free mode.

2.3. Graph Mode

Graph mode as the name suggests allows for quick visualization of solutions that can be
represented by a graph. An example is shown in Section 3.1. This mode can be invoked with
the command:

java ASPect graph <clingo arguments> <input file(s).lp>

Graph mode allows the user to insert graphical elements without having to worry about
specifying coordinates, which will be handled automatically by the TikZ package.

Graph mode handles a different set of ASPECT atoms than the previous modes. The complete
list of ASPECT atoms that can be used in this mode is given in Table 3. Again note how these
graph elements do not require coordinates to be specified for their visualization.

Graphic
element

ASPECT Atom Parameters

node aspect_drawnode(A)
aspect_colornode(A,fill)

A: node name (label)
fill: sets the fill color

simple edge aspect_drawline(A,B)
aspect_quoteline(A,B,"text")

A: node name first endpoint
B: node name second endpoint
”text”: sets the edge label

arrow edge aspect_drawarrow(A,B)
aspect_quotearrow(A,B,"text")

A: node name arrow tail
B: node name arrow tip
”text”: sets the edge label

Table 3
ASPECT syntax supported in graph mode.

3. Examples

In this section we show how to use ASPECT syntax in various problems typical of the ASP
context.

3.1. Graph Coloring

Graph coloring is a well-known problem that is often used as an example to introduce answer
set programming to students. The problem consists of assigning colors to vertices of a graph
such that two adjacent vertices do not share the same color.

The ASP encoding of the problem consists of node(N) atoms to denote the nodes of the graph
where N is an index that identifies the node. Also part of the encoding are arc(A,B) atoms
indicating the edges of the graph and colour(N,Color) atoms indicating the colour associated
with each vertex.

The coordinates of the various graph nodes in the visualization are not important therefore
we used the graph mode described in the previous section. Below are the ASPECT lines of code
for the visualisation of the problem shown in Figure 2.

aspect_colornode(X,Color):- color(X,Color).
aspect_drawline(A,B):- edge(A,B).

In the first line, the aspect_colornode command draws a node graph with Colour filling.
In the second line, the aspect_drawline command draws the edges of the graph.

0

1

2

3

4

5

Figure 2: Graph coloring solution generated with ASPECT graph mode.

3.2. N-queens Problem

The N-queens problem is a classic puzzle that involves placing 𝑁 chess queens on an 𝑁 × 𝑁
chessboard such that no two queens threaten each other: so, no pair of queens should share
the same row, column, or diagonal. The challenge is to find a solution for any given value of 𝑁.
Suppose that we are using an ASP encoding where the chessboard is described with an atom

grid(I,J) for all the possible squares of the board, while the solution has an atom queen(R,C)
indicating each queen positioned on the board; the programmer can draw the chessboard by
adding just two lines of code.

aspect_fillrectangle(2*I-1,2*J-1,2*I+1,2*J+1,gray):- grid(I,J), I\2=J\2.
aspect_drawrectangle(2*I-1,2*J-1,2*I+1,2*J+1):- grid(I,J), I\2!=J\2.

These two lines of ASPECT code draw the squares of the checkerboard, each with side length 2
and centered in (2I,2J). In particular, the first line set the background color to gray for half
of the squares to create the classic chequered pattern. In a similar fashion, we can draw the
queens with:

aspect_imagenode(2*I,2*J,"queen.png",50):- queen(I,J).

ASPECT allows the programmer to further customize the visualization of a solution: as ob-
servable in the line above, users can include their own images in the plot just by specifying
the respective filenames in the left-hand side of the desired rule. An example of the vector
graphic produced by ASPECT, for this problem, using the syntax presented above and 𝑁 = 8 is
presented in Figure 3a.
On this well-known problem we also decided to evaluate the performance of the ASPECT

interpreter. Table 4 shows how the time required by APSECT interpreter to generate the
visualization varies as the problem size varies. The setup used in the tests consisted of an Intel®

Core® i7-9750H CPU running at 2.6GHz with 16GB of RAM and Ubuntu 22.04 as OS.

𝑁 clingo
CPU Time [s]

TeX file
writing time [s]

pdflatex
compile time [s]

Total
Time [s]

10 0.023 0.037 0.536 0.596
30 0.039 0.097 0.971 1.107
60 0.157 0.235 2.590 2.982
100 0.459 0.544 5.770 6.773

Table 4
Detailed time analysis of ASPECT interpreter (split into the various components). Times refer to solving
the N-queens problem as the number 𝑁 of chess queens varies. A visualization of the problem with
𝑁 = 100 is shown in Figure 4.

3.3. Hitori

Hitori is a logic puzzle that is played on a grid of squares, where each square contains a number.
The goal is to shade in some of the squares so that no number appears more than once in any
row or column, and all unshaded squares are connected to each other horizontally or vertically.

Using a similar syntax as the one adopted for the N-queens problem to represent squares and
nodes, we can obtain the graphical representation of the solution (see Figure 3b).

The squares are encoded using schema(X,Y,N) atoms where X,Y indicates the position of the
square in the grid and N is the displayed number. The black(X,Y) atoms indicate the shaded
squares.

(a) N-queens problem

1

4

1

2

4

2

4

3

4

1

4

1

4

3

3

3

1

4

5

2

5

2

1

4

3

(b) Hitori

Figure 3: A board game and a logic puzzle generated with ASPECT.

Figure 4: One solution of the N-queens problem with 𝑁 = 100 chess queens. This image is generated
using 10100 TikZ instructions.

aspect_fillrectangle(2*(X-1),2*(Y-1),2*X,2*Y,gray):- schema(X,Y,N), black(X,Y).
aspect_drawrectangle(2*(X-1),2*(Y-1),2*X,2*Y):- schema(X,Y,N).
aspect_drawnode(2*X-1,2*Y-1,N):- schema(X,Y,N).

Differently from the previous case, here “standard” nodes were needed in order to draw
the correct number in each square, rendered through the variable N, but the programmer can
arbitrarily choose to use any desired character or string to represent the nodes. Another famous
logic puzzle that can be represented in a similar way to Hitori is Sudoku.

3.4. Minesweeper

Minesweeper is a logic puzzle that is played on a game board divided into cells. The player’s goal
is to find where the hidden mines are located using clues found on the game board as numbers.
The number in some cells corresponds to the number of mines in the 8 cells surrounding it.

A classic ASP coding for this game involves number(X,Y,N) atoms where X and Y are the
row and column indexes of the game board and N is the clue that is displayed in the cell at that
position. The mine(X,Y) atoms represent the position of the mines.

Using a combination of ASPECT atoms presented in the previous examples, the game board
graphical representation can be easily obtained. In fact, this game requires the visualization of
nodes both containing variables and containing images (for mines). An example is shown in
Figure 5, and the code used to obtain the figure is shown below.

aspect_drawrectangle(2*(X-1),2*(Y-1),2*X,2*Y):- rows(X), cols(Y).
aspect_drawnode(2*X-1,2*Y-1,N):- number(X,Y,N).
aspect_imagenode(2*X-1,2*Y-1,"mine.png",40):- mine(X,Y).

1

2

2

2

3

2

4

1

1

3

4

3

1

3

2

1

1

3

2

3

2

2

1

2

3

2

2

3

3

2

3

3

3

3

2

2

2

2

Figure 5: A minesweeper solved game board generated with ASPECT.

3.5. Scheduling

A scheduling problem involves determining the order of execution of a set of tasks while taking
into account constraints such as: precedence constraints, capacity constraints, etc. The solution
of a scheduling problem can be graphically represented by a Gantt chart. In the following
we will show, with a simple example, how ASPECT can be used to generate Gantt charts. In
our example we consider a very simple scheduling problem that consists of 4 activities each
associated with its own duration and an identifying color: going to the bank (1 hour, green),
going to the store (2 hours, blue), going to the post office (1 hour, red), and going to work (4
hours, yellow). The constraints of the problem state that it is necessary to go to the bank before
the store and it is necessary to go to the post office before work. All activities should take place
between 9 a.m. (begin) and 5 p.m. (end), and the activities obviously should not overlap.
The ASP encoding of the problem consists of tasks(T,Colour) atoms representing the

various tasks to be scheduled where T is a sequential numerical identifier for each task and
Color the colour associated with it. The sequence(T,S,E) atoms encode the solution; in
these atoms T identifies a specific task while S and E are the start and end times of that task,
respectively.

The complete ASPECT code with which we obtained the six solutions of the example problem
described (see Figure 6) is shown below.

aspect_fillrectangle(S-begin,I,E-begin,I+1,Color) :- sequence(T,S,E), task(T,Color).
aspect_drawline(T-begin, 1, T-begin, N+1):- T=begin..end, n_tasks(N).
aspect_drawnode(T-begin, N+2, T):- T=begin..end, n_tasks(N).

9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17

9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17

Figure 6: All six solutions of a simple scheduling problem generated by ASPECT.

3.6. Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) is a classic optimization problem that involves finding
the shortest possible route that a traveling salesperson can take to visit a given set of cities
exactly once and return to his starting point. The objective is to find the Hamiltonian cycle

with the minimum total edge weight. Many instances of this problem include the coordinates
of cities on the plane. Such coordinates in ASP can be represented by atoms as point(C,X,Y).
The solution is usually given as a predicate representing the arcs being followed: supposing
that those arcs are identified by atoms cycle(A,B), where 𝐴 and 𝐵 are the nodes of the graph
with coordinates (𝑋𝐴, 𝑌𝐴) and (𝑋𝐵, 𝑌𝐵) respectively, we can obtain a graphic representation of
(every) solution just by adding the lines:

aspect_drawline(XA,YA,XB,YB):- cycle(A,B), point(A,XA,YA), point(B,XB,YB).
aspect_fillellipse(XA,YA,1,1,gray):- point(_,XA,YA).

to the ASP code of the problem. The first rule will plot the forementioned arcs, while the second
one is in charge of drawing the nodes between the lines, represented as gray filled circles.

As known, optimization problems usually find a plethora of feasible solutions while searching
for the optimal one(s), i.e. the solution(s) optimizing the objective function: using ASPECT,
programmers have the possibility of automatically plotting all the solutions found, either in
separate files or in a single one. A visualization using APSECT of a TSP is shown in Figure 7, in
particular, the first solution found by the ASP solver and the optimal solution are shown.

(a) First solution (b) Optimal solution

Figure 7: Two solution of a TSP produced by ASPECT.

4. Related Work

The difficulty in interpreting answer sets has led to the development over the years of tools,
leveraging different technologies, aimed at producing easier-to-read graphical representations.

ASPViz [7] is a Java program that constructs images from the answer set of a given program.
ASPViz uses the ASP language to define how elements of the problem solution should be
displayed. Atoms of ASPViz language are extracted from the answer set and used to produce a
graphical visualization using the Java SWT graphical toolkit. In addition to rendering answer
sets of a program individually, ASPViz may be used also to create animations and multi-framed
image visualisations.

Although ASPViz offers powerful visualization options like the animation of multiple solution
outputs and the possibility to customize the atoms with external image files, it forces the user to
create a second .aspviz program. In that file, the user has to specify the relationships between
the atoms of the original ASP program and the desired visual representation, together with the
customization options: such process could be cumbersome in some applications, we find that
our approach is simpler for the novice user.

IDPDraw [6] is a tool for visualizing finite structures that can be used to visualize the output of
an ASP solver written in C++.IDPDraw recognizes 8 types of atoms that allow the programmer
to draw elementary geometric shapes (e.g., polygons, ellipses) and define their display properties
(e.g. foreground color, background color, position, etc). IDPDraw atoms are interpreted and
displayed through a user interface based on the Qt library. As in the case of the previous system,
it is possible to create animations by associating each atom with a time argument. ASPIDE [9],
an Integrated Development Environment for ASP, includes IDPDraw as visualization tool. The
sources of IDPDraw are available online3, but they rely on outdated Qt4 libraries which, having
reached the end of life, have been removed from the repositories of the major Linux distributions.

Kara [5] is a tool created following the approach already introduced by ASPVIZ and IDPDraw
as it uses the ASP language itself to define the visualization of answer sets. Unlike the latter,
which position graphic primitives according to static coordinates only, Kara allows for more
high-level specifications, supporting graph structures, grids, and relative positioning of graphical
elements. Kara is written in Java and integrated in the SeaLion [10] integrated development
environment for ASP. The SeaLion executable we obtained via the link4 reported in [10] has as
its latest update May 2017 and we were not able to run it on the latest Ubuntu 22.04.
More recently Dovier et al. [11] developed, for teaching purposes, a Java tool capable of

visualizing the output returned by the ASP solver clingo [3]. However, this tool turns out to be
limited to displaying only problems concerning a grid (e.g. magic square, sokoban, Sam Lloyd’s
puzzles etc.) which are the ones considered in their publication.
A recent publication from last year concerning the visualisation of answer sets presented

clingraph. Clingraph [8] is a tool which aims at visualizing answer sets by means of ASP
language itself. Clingraph is based on ASPViz, which, however, has been completely redesigned
and adapted to work with modern ASP systems. Clingraph was originally designed as a
visualizer for graphs defined as a set of facts but is now able to generate images similar to those
produced by ASPECT. Among other features, it allows the export of images in LATEX code but
lacks the more advanced features provided by ASPECT such as integration with beamer for
the automatic creation of presentations and the possibility of customising LATEX document by
importing external files.

5. Conclusion

We presented ASPECT, a language for describing graphical elements that can be easily provided
as answer sets, letting the user describe complex drawings in an intuitive and declarative way.
The ASPECT syntax consists of special atoms that define the graphical rendering of geometric

3https://wms.cs.kuleuven.be/dtai/pages/software/idpdraw/idpdraw
4https://sourceforge.net/projects/mmdasp/

https://wms.cs.kuleuven.be/dtai/pages/software/idpdraw/idpdraw
https://sourceforge.net/projects/mmdasp/

Tool Name Language Year of
Publication

User
interface

Standalone
software ?

Exportable
file formats

ASPViz [7]
Java
SWT 2008

command
line Yes SVG

IDPDraw [6]
C++
Qt 2009 graphical Yes -

Kara [5] Java 2011 graphical
No (plugin for
SeaLion IDE) SVG

Dovier et al. [11] Java 2016 graphical Yes -

clingraph [8] Python 2022
command
line Yes

JPEG, PNG, GIF,
SVG, LaTeX code

ASPECT Java 2023
command
line Yes

LaTeX code
(w/ Beamer Integration)

Table 5
Comparison of different tools for graphical representation of answer sets.

primitives such as points, lines, polygons, ellipses, etc. Users can combine ASPECT atoms to
generate figures of any complexity as answer sets.
We also presented a preliminary version of the ASPECT interpreter, written in Java, that is

responsible for converting ASPECT atoms into the popular LATEX markup language to produce
vector graphics. A preliminary version of the interpreter for ASPECT is available online at
https://github.com/abertagnon/aspect. Since it uses LATEX as output format, the documents
produced by ASPECT are easy to embed in scientific articles, course handouts, and presentations.
Nonetheless, the LATEX output can also be converted to other (vectorial) graphic formats for
other uses, such as in web pages.
The syntax of ASPECT is inspired by the TikZ language. To date, the graphical primitives

implemented in ASPECT are limited compared to those provided by TikZ especially in terms of
the style properties of geometric primitives. However, the structure of the interpreter is easily
adaptable to allow extension to more TikZ features in the future.
A future extension is to make the ASPECT interpreter independent from clingo and the

pdfTeX extension. The choice to introduce these systems into the pipeline while speeding up
image generation at the same time prevents the user from choosing their favorite ASP solver
and LATEX compiler.
Another extension would involve visualizing a single answer set through a sequence of

graphical representations, for problems whose answer set is a sequence of actions. This would
be useful in planning problems (e.g. Tower of Hanoi, Block world) where atoms include the
timestep at which the action they represent is actually performed.

References

[1] O. Garcia, R. Perez, B. Silverman, H. Austin, R. Baum, L. Brady, R. Cameron, S. Castaneda,
J. Chen, P. Dey, G. DiCristina, A. Elmaghraby, R. Foster, C. Freeman, M. Kirch, A. Lawrence,
A. Manesh, S. Manickam, C. Ramamoorthy, R. Rariden, U. Reichenbach, S. Rosenbaum,
F. Saner, F. Severance, C. Torsone, D. Valentine, H. Van Landingham, R. Vasquez, On

https://github.com/abertagnon/aspect

teaching AI and expert systems courses, IEEE Transactions on Education 36 (1993) 193–197.
doi:10.1109/13.204845.

[2] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. A.
Kowalski, K. A. Bowen (Eds.), Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes),
MIT Press, 1988, pp. 1070–1080.

[3] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Clingo = ASP + control: Preliminary
report, CoRR abs/1405.3694 (2014).

[4] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The DLV system
for knowledge representation and reasoning, ACM Trans. Comput. Logic 7 (2006) 499–562.
URL: https://doi.org/10.1145/1149114.1149117. doi:10.1145/1149114.1149117.

[5] C. Kloimüllner, J. Oetsch, J. Pührer, H. Tompits, Kara: A system for visualising and
visual editing of interpretations for answer-set programs, in: H. Tompits, S. Abreu,
J. Oetsch, J. Pührer, D. Seipel, M. Umeda, A. Wolf (Eds.), Applications of Declarative
Programming and Knowledge Management - 19th International Conference, INAP 2011,
and 25th Workshop on Logic Programming, WLP 2011, Vienna, Austria, September 28-
30, 2011, Revised Selected Papers, volume 7773 of Lecture Notes in Computer Science,
Springer, 2011, pp. 325–344. URL: https://doi.org/10.1007/978-3-642-41524-1_20. doi:10.
1007/978-3-642-41524-1_20.

[6] J. Wittocx, Idpdraw, a tool used for visualizing answer sets, 2009.
[7] O. Cliffe, M. D. Vos, M. Brain, J. A. Padget, ASPVIZ: declarative visualisation and animation

using answer set programming, in: M. G. de la Banda, E. Pontelli (Eds.), Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings,
volume 5366 of Lecture Notes in Computer Science, Springer, 2008, pp. 724–728. URL:
https://doi.org/10.1007/978-3-540-89982-2_65. doi:10.1007/978-3-540-89982-2_65.

[8] S. Hahn, O. Sabuncu, T. Schaub, T. Stolzmann, Clingraph: ASP-based visualization, in:
G. Gottlob, D. Inclezan, M. Maratea (Eds.), Logic Programming and Nonmonotonic Rea-
soning - 16th International Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022,
Proceedings, volume 13416 of Lecture Notes in Computer Science, Springer, 2022, pp. 401–414.
URL: https://doi.org/10.1007/978-3-031-15707-3_31. doi:10.1007/978-3-031-15707-3\
_31.

[9] O. Febbraro, K. Reale, F. Ricca, ASPIDE: integrated development environment for an-
swer set programming, in: J. P. Delgrande, W. Faber (Eds.), Logic Programming and
Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver,
Canada, May 16-19, 2011. Proceedings, volume 6645 of Lecture Notes in Computer Sci-
ence, Springer, 2011, pp. 317–330. URL: https://doi.org/10.1007/978-3-642-20895-9_37.
doi:10.1007/978-3-642-20895-9_37.

[10] J. Oetsch, J. Pührer, H. Tompits, The sealion has landed: An IDE for answer-set pro-
gramming - preliminary report, in: H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel,
M. Umeda, A. Wolf (Eds.), Applications of Declarative Programming and Knowledge
Management - 19th International Conference, INAP 2011, and 25th Workshop on Logic
Programming, WLP 2011, Vienna, Austria, September 28-30, 2011, Revised Selected Pa-
pers, volume 7773 of Lecture Notes in Computer Science, Springer, 2011, pp. 305–324. URL:
https://doi.org/10.1007/978-3-642-41524-1_19. doi:10.1007/978-3-642-41524-1_19.

http://dx.doi.org/10.1109/13.204845
https://doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.1145/1149114.1149117
https://doi.org/10.1007/978-3-642-41524-1_20
http://dx.doi.org/10.1007/978-3-642-41524-1_20
http://dx.doi.org/10.1007/978-3-642-41524-1_20
https://doi.org/10.1007/978-3-540-89982-2_65
http://dx.doi.org/10.1007/978-3-540-89982-2_65
https://doi.org/10.1007/978-3-031-15707-3_31
http://dx.doi.org/10.1007/978-3-031-15707-3_31
http://dx.doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1007/978-3-642-20895-9_37
http://dx.doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/978-3-642-41524-1_19
http://dx.doi.org/10.1007/978-3-642-41524-1_19

[11] A. Dovier, P. Benoli, M. C. Brocato, L. Dereani, F. Tabacco, Reasoning in high schools:
Do it with ASP!, in: C. Fiorentini, A. Momigliano (Eds.), Proceedings of the 31st Italian
Conference on Computational Logic, Milano, Italy, June 20-22, 2016, volume 1645 of
CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp. 205–213. URL: https://ceur-ws.org/
Vol-1645/paper_9.pdf.

https://ceur-ws.org/Vol-1645/paper_9.pdf
https://ceur-ws.org/Vol-1645/paper_9.pdf

	1 Introduction
	2 ASPECT
	2.1 Standard Mode
	2.2 Merge Mode and Free Mode
	2.3 Graph Mode

	3 Examples
	3.1 Graph Coloring
	3.2 N-queens Problem
	3.3 Hitori
	3.4 Minesweeper
	3.5 Scheduling
	3.6 Traveling Salesperson Problem

	4 Related Work
	5 Conclusion

