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Abstract
Consider an (𝑚+ 1)-ary relation ℛ over the set N of natural numbers. Does there exist an arithmetical

formula 𝜙(𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅), not involving universal quantifiers, negation, or implication, such

that the representation and univocity conditions, viz.,

ℛ(�⃗�) ⇐⇒ ∃𝑥1 · · · ∃𝑥𝜅 𝜙(�⃗�, 𝑥1, . . . , 𝑥𝜅) and

∃𝑥1 · · · ∃𝑥𝜅 ∀ 𝑦1 · · · ∀ 𝑦𝜅
[︀
𝜙(�⃗�, 𝑦1, . . . , 𝑦𝜅) =⇒ &

𝜅
𝑖=1

(︀
𝑦𝑖 = 𝑥𝑖

)︀ ]︀
,

are met by each tuple �⃗� = ⟨𝑎0, . . . ,𝑎𝑚⟩ ∈ N𝑚+1
?

A priori, the answer may depend on the richness of the language of arithmetic: Even if solely addition

and multiplication operators (along with the equality relator and with positive integer constants) are

adopted as primitive symbols of the arithmetical signature, the graph ℛ of any primitive recursive

function is representable; but can representability be reconciled with univocity without calling into play

one extra operator designating either the dyadic operation ⟨𝑏 , 𝑛⟩ ↦→ 𝑏𝑛 or just the monadic function

𝑛 ↦→ 𝑏𝑛 associated with a fixed integer 𝑏 > 1? As a preparatory step toward a hoped-for positive answer

to this question, one may consider replacing the exponentiation operator by a dyadic relator designating

an exponential-growth relation (a notion made explicit by Julia Bowman Robinson in 1952).

We will discuss the said univocity, aka ‘single-fold-ness’, issue—first raised by Yuri V. Matiyasevich

in 1974—, framing it in historical context.
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1. Introduction

The notions of being listable, exponential Diophantine, and polynomial Diophantine were

proved, in the decade 1960/1970, to capture the same family of relations on the set N of natural
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numbers (see [1, 2]). Listability had been characterized mathematically decades earlier in various

equivalent manners (we will recall one in Sec. 4); the other two notions can be characterized

through arithmetical formulae concerning N. To be specific, consider an arithmetic that offers

constants denoting 0, 1, 2 and maybe other positive integers, variables ranging overN , operators

designating addition, multiplication, and exponentiation, and the equality relator; then:

Definition 1. A relation 𝒟 ⊆ N𝑚+1
on natural numbers is called [polynomial] Diophantine

if there are arithmetical terms 𝐷′
and 𝐷′′

involving variables, 𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅, constants,

and the addition and multiplication operators, such that the biimplication
1

⟨𝑎0, . . . 𝑎𝑚⟩ ∈ 𝒟 ⇐⇒ ∃𝑥1 · · · ∃𝑥𝜅 𝐷′(𝑎0, . . . ,𝑎𝑚, 𝑥1, . . . , 𝑥𝜅) = 𝐷′′(𝑎0, . . . ,𝑎𝑚, 𝑥1, . . . , 𝑥𝜅)

holds for all 𝑎0, . . . 𝑎𝑚 in N . If also exponentiation—with variables in the exponent—is allowed to

occur in 𝐷′
and 𝐷′′

, then 𝒟 is said to be exponential Diophantine.

A function 𝑓 from N𝑚
to N is termed likewise if its graph, namely the relation

{⟨𝑎1, . . . , 𝑎𝑚, 𝑎0⟩ : 𝑓(𝑎1, . . . , 𝑎𝑚) = 𝑎0} is Diophantine or, resp., exponential Diophantine.

A valid biimplication of the form just shown is called a Diophantine representation (resp.,

an exponential Diophantine representation) of 𝒟. Any listable relation admits an exponential

Diophantine representation, as was first proved in [1]: this celebrated result, known as the

Davis-Putnam-Robinson (or just DPR) theorem, underwent two improvements with respect

to its original statement which we will now recall. In [3], Martin D. Davis managed to bring

exponential specifications to the more generic format
2

�⃗� ∈ 𝒟 ⇐⇒ ∃𝑢 ∃ 𝑣 ∃ �⃗� [𝐷(�⃗�, �⃗�, 𝑢) = 0 & J(𝑢 , 𝑣) ] ,

where 𝐷 is a polynomial (multivariate, with coefficients in Z), hence devoid of exponentiation,

while exponentiation is superseded by any fixed exponential-growth relation (a notion

that Julia Robinson proposed in [4] and slightly improved in [5]), i.e., a relation J such that⃦⃦⃦⃦
⃦⃦ ∀𝑢 ∀ 𝑣

[︀
J(𝑢 , 𝑣) =⇒ 𝑣 ⩽ 𝑢𝑢 & 𝑢 > 1

]︀
and

∀ ℓ ∃𝑢 ∃ 𝑣
[︀
J(𝑢 , 𝑣) & 𝑢ℓ < 𝑣

]︀
. (†)

In [6], Yuri V. Matiyasevich managed to bring exponential representations to the format
3

�⃗� ∈ 𝒟 ⇐⇒ ∃𝑢 ∃ 𝑣 ∃ �⃗� [𝐷(�⃗�, �⃗�, 𝑢) = 0 & 2𝑢 = 𝑣 ] ,

where 𝐷 is a polynomial, while ensuring single-fold-ness, henceforth dubbed univocity, that

is: there is at most one solution to the constraint 𝐷(�⃗�, �⃗�, 𝑢) = 0 & 2𝑢 = 𝑣, for any �⃗�.

Now and then our focus will zoom in on finite-fold specifications, which are the ones

admitting at most a finite number of solutions for each tuple �⃗� of actual parameters.

Examples of exponential-growth relations are:

E1 =
{︀
⟨𝑢 , 2𝑢⟩ : 𝑢 ∈ N ∖ {0, 1}

}︀
and E2 =

{︀
⟨𝑢 , 𝐹2𝑢⟩ : 𝑢 ∈ N ∖ {0, 1}

}︀
,

1

Bold symbols often differentiate, henceforth, actual from formal parameters; to wit, values from variables.

2

Here and below, �⃗� and �⃗� shorten 𝑎0, . . . ,𝑎𝑚 and 𝑥1, . . . , 𝑥𝜅, respectively.

3

Or even to the more elegant format �⃗� ∈ 𝒟 ⇐⇒ ∃𝑢 ∃ �⃗� [𝐷(�⃗�, �⃗�) = 4𝑢 + 𝑢 ] , see also [7, pp. 137–138].



where 𝐹 is the Fibonacci progression defined by the recurrence 𝐹0 = 0 , 𝐹1 = 1 , and 𝐹𝑖+2 =
𝐹𝑖 + 𝐹𝑖+1 for 𝑖 ∈ N . The relation E1 suggests the feasibility of an amalgamation—nowhere

described in the literature, as far as the authors know—between the cited results of [3] and

[6]; as for E2, it was precisely by exhibiting a polynomial Diophantine representation of it

that Matiyasevich revealed the existence of an alike representation of exponentiation itself [2].

Aiming at unearthing the sought amalgamation, we will closely examine (see Sec. 6) Davis’ and

Matiyasevich’s said reductions.

Polynomial Diophantine univocity—or, at worse, finitefold-ness—is the true challenge; this

is why we also seek a relation that can play, in this respect, a role analogous to E2: a relation

M which in addition to satisfying exponential growth, as well as any other requirements that

might emerge from the amalgamated theorem (a potential such requirement is tagged (‡) in

Sec. 7) admits a finite-fold, hopefully univocal, polynomial specification. After a suggestion

provided by [8] (and then reiterated in [9, 10]), in Sec. 8 we candidate for such a role six relations

associated with six special quaternary quartic equations, at least one of which we should prove

to have only finitely many solutions—which, quite regrettably, we have been unable to do so far.

————————

The paper is organized as follows. Sec.2 illustrates, through a gallery of short examples, which

kind of relations on N can be represented univocally by means of Diophantine polynomials

without resorting to overly sophisticated tools. It is contended that when univocity does not

come for free, it can be built into such a representation by insertion of clauses that insist on

the minimality of the values to be assigned to the “unknowns” 𝑥1, . . . , 𝑥𝜅; minimality can

be enforced by means of bounded universal quantifiers, but can these quantifiers be recast

just in terms of addition, multiplication, and existential quantification? Sec. 3 shows that a

number-theoretic construct somehow related to bounded universal quantification does, in fact,

admit a univocal exponential Diophantine representation: the construct we are referring to is

the function 𝑝(𝑎, 𝑏, 𝑐) =
∏︀𝑐

𝑘=1(𝑎 + 𝑏 · 𝑘), and clues about its kinship to bounded universal

quantification are deferred to a later section. Sec. 4 digresses into presenting a special format,

known as the Davis normal form, which can be used to represent the graph of any primitive

recursive function. This is, in essence, a technique for specifying any listable relation in a manner

that seemingly deviates from a Diophantine representation, as it involves one bounded universal

quantifier. Sec. 4 also recaps a variant of the Davis normal form, enforcing univocity, derived by

Yu. Matiyasevich from his momentous finding that every listable relation is Diophantine. All

prerequisites are ripe enabling us to produce, in Sec. 5, a univocal exponential representation

of any Diophantine—hence of any listable—relation 𝒟, through reduction of the bounded

universal quantifier to the said construct 𝑝(𝑎, 𝑏, 𝑐). At this point one of Matiyasevich’s variants,

embodying univocity, of the DPR theorem has been reached; in Sec. 6 we recall a more refined

one, in which exponentiation is relegated, within a representation of 𝒟, into a single literal of

the form 2𝑢 = 𝑣. Two questions are then raised in Sec. 7: Could a suitable condition M (𝑢, 𝑣)
supersede this literal in the general representation scheme? And also: Can we manage to place

a finite-fold Diophantine relation M (𝑢, 𝑣) in this role? The truly original part of this paper is

Sec. 8, where we review the entire catalog of our candidate M ’s.



2. Sampler of Univocal (or Nearly so) Diophantine Specifications

Let us start with motivating examples of univocal (polynomial first, then exponential) Diophan-

tine specifications of various relations over N . Before doing so, we observe that Diophantine

relations can safely be nested one inside another; moreover, we can unconditionally admit the

conjunction connective ‘&’ in the specification language, in view of the equivalence[︀
∃ �⃗� 𝑃 ′(�⃗�, �⃗�) = 𝑃 ′′(�⃗�, �⃗�)

]︀
&

[︀
∃ �⃗� 𝑄′(�⃗�, �⃗�) = 𝑄′′(�⃗�, �⃗�)

]︀
⇐⇒

∃ �⃗� ∃ �⃗�
[︀
𝑃 ′(�⃗�, �⃗�)2 + 𝑃 ′′(�⃗�, �⃗�)2 +𝑄′(�⃗�, �⃗�)2 +𝑄′′(�⃗�, �⃗�)2 = 2 ·

(︀
𝑃 ′(�⃗�, �⃗�) · 𝑃 ′′(�⃗�, �⃗�) +𝑄′(�⃗�, �⃗�) ·𝑄′′(�⃗�, �⃗�)

)︀]︀
.

While these broadenings of the specification language do not affect univocity, the disjunction

connective can be brought into play but should be handled with care: simple-minded use of

the rewriting rule 𝑃 ′ = 𝑃 ′′ ∨ 𝑄′ = 𝑄′′ ⇝ 𝑃 ′ ·𝑄′ + 𝑃 ′′ ·𝑄′′ = 𝑃 ′ ·𝑄′′ + 𝑃 ′′ ·𝑄′
might, in fact,

endanger univocity. E.g., restating 𝑎 = 0 ∨ ∃𝑥 𝑏 = 𝑥+ 1 as ∃𝑥 𝑎 · 𝑏 = 𝑎 · (𝑥+ 1) would not

work, because 𝑥 could take any value in N when 𝑎 = 0 ; this violation of univocity can easily be

cured, though: we can overload the first disjunct with the requirement 𝑥 = 0 before eliminating

the propositional connectives, thus getting ∃𝑥 (𝑎+ 𝑥) · 𝑏 = (𝑎+ 𝑥) · (𝑥+ 1) .

Using ‘:=’ to mean “stands for”, we now provide the specifications of some basic relations

among which divisibility, ‘|’, coprimality, ‘⊥’, and the graphs of integer quotient ‘÷’ and

remainder operation ‘% ’:

𝑎 ∈ ∅ := 𝑎 = 𝑎+ 1 ; 𝑎∈{𝑏0, . . . , 𝑏ℓ} :=
⋁︀

𝑖⩽ℓ 𝑎 = 𝑏𝑖 ;

𝑎 ⩽ 𝑏 := ∃𝑥 𝑎+ 𝑥 = 𝑏 ; 𝑎 < 𝑏 := 𝑎+ 1 ⩽ 𝑏 ;
𝑎 ̸= 𝑏 := 2 · 𝑎 · 𝑏 < 𝑎2 + 𝑏2 ; 𝑞 = □ := ∃𝑥 𝑥2 = 𝑞 ;
𝑑 ̸= □ := ∃𝑥 (𝑥2 < 𝑑 & 𝑑 ⩽ 𝑥2 + 2 · 𝑥) ;

𝑏1 max 𝑏2 = 𝑎 := 𝑎 ∈ {𝑏1, 𝑏2} & 𝑏1 ⩽ 𝑎 & 𝑏2 ⩽ 𝑎 ;
𝑏÷ 𝑎 = 𝑞 := ∃ 𝑟

(︀
𝑎 · 𝑞 + 𝑟 = 𝑏 & 𝑟 < 𝑎

)︀
; 𝑏 % 𝑎 = 𝑟 := ∃ 𝑞

(︀
𝑎 · 𝑞 + 𝑟 = 𝑏 & 𝑟 < 𝑎

)︀
;

𝑎 ⊥ 𝑏 := ∃𝑥1 ∃𝑥2 ∃ 𝑦1 ∃ 𝑦2
(︀
𝑥1 · 𝑎+ 𝑦1 · 𝑏 = 𝑥2 · 𝑎+ 𝑦2 · 𝑏+ 1

)︀
;

𝑎 ∤ 𝑏 := ∃ 𝑞 ∃ 𝑟
(︀
𝑎 · 𝑞 + 𝑟 + 1 = 𝑏 & 𝑟 + 1 < 𝑎

)︀
;

𝑎 | 𝑏 := ∃ 𝑞 𝑎 · 𝑞 = 𝑏 ; 𝑠 ≡ 𝑟 mod 𝑝 := 𝑝 | ±(𝑠− 𝑟) .

Among these, the specifications lacking univocity are the ones of ‘|’ (insofar as 𝑎 · 𝑞 = 𝑏 holds

for any 𝑞 when 𝑎 = 𝑏 = 0), of ‘mod’ (unless one imposes 𝑝 ̸= 0), and of ‘⊥’. To fix them, put:

𝑎 ⊥ 𝑏 := ∃𝑥 ∃ 𝑦
(︀
𝑎2 𝑥2 + 1 = 𝑏2𝑦2 + 2 · 𝑎 · 𝑥 & 𝑥 < 𝑏

)︀
; 𝑎 | 𝑏 := (𝑎+ 𝑏) · (𝑏 % 𝑎) = 0 .

The former states that the equation 𝑎 𝑥± 𝑏 𝑦 = 1 has a solution (necessarily unique) such that

𝑥 < 𝑏 ; the definiens of the latter is plainly rewritable in primitive symbols, retaining univocity.

Generally speaking, univocity can be enforced in an existential definition that lacks

it by insisting on the minimality of the values assigned to the existential variables,

but this brings into play bounded universal quantifiers;
4

and it is far from obvious

(see Sec. 5 below) how these can be disempowered into arithmetical constructs. As

4

Bounded quantifiers can be introduced as usual; in particular: ∀ 𝑣 ⩽ 𝑤 𝜙 := ∀ 𝑣 ( 𝑣 ⩽ 𝑤 =⇒ 𝜙) and

∃ 𝑣 ⩽ 𝑤 𝜙 := ∃ 𝑣 (𝑥 ⩽ 𝑦 & 𝜙 ).



an illustration of this point, consider the following Diophantine specification (alter-

native to the one proposed above) of the property of not being a perfect square:

𝑑 ̸= □ := ∃𝑥 ∃ 𝑦 ∃ 𝑧
[︀
𝑥2 = 𝑑 · (𝑦 + 1)2 + 1 & 𝑑 = 𝑧 + 1

]︀
.

The theory of Pell equations (see, e.g., [11, Sec. 3.4]) ensures the correctness of this characteriza-

tion; however, the number of solving triples is infinite for each non-square number and it is

daredevil to introduce univocity by reformulating the definiens as

∃𝑥 ∃ 𝑦 ∃ 𝑧
[︀

𝑥2 = 𝑑 · (𝑦 + 1)2 + 1 & 𝑑 = 𝑧 + 1 & ∀𝑥′ < 𝑥 ∀ 𝑦′ < 𝑦
(︀
𝑥′2 ̸= 𝑑 · (𝑦′ + 1)2 + 1

)︀ ]︀
.

3. Sampler of Univocal Exponential Diophantine Specifications

Suppose now that an exponentiation operator is adopted as a primitive arithmetical construct,

along with a symbol designating the integer value 2 . Then addition and multiplication can be

viewed as derived constructs and no other constant 𝑚 is essential (since 𝑚 = 1 + · · ·+ 1), as

the following univocal exponential Diophantine specifications make evident:

𝑎 = 0 := ∃ 𝑡 ∃𝑢
(︀
𝑢𝑎 = 𝑡 = 2𝑎 & 2𝑡 = 𝑢

)︀
;

𝑎 = 1 := ∃ 𝑡 ∃𝑢 ∃ 𝑣
(︀
2𝑎 = 𝑡 = 2𝑢 & 2𝑣 = 𝑡 & 𝑢𝑣 = 𝑎

)︀
;

𝑎 · 𝑏 = 𝑐 := ∃𝑥 ∃ 𝑦
(︀
2𝑎 = 𝑥 & 2𝑐 = 𝑦 & 𝑥𝑏 = 𝑦

)︀
;

𝑎+ 𝑏 = 𝑐 := ∃𝑢 ∃ 𝑣 ∃𝑤
(︀
2𝑎 = 𝑢 & 2𝑏 = 𝑣 & 2𝑐 = 𝑤 & 𝑢 · 𝑣 = 𝑤

)︀
,

i.e., 𝑎+ 𝑏 = 𝑐 := ∃𝑢 ∃ 𝑣 ∃𝑤 ∃𝑥 ∃ 𝑦
(︀
2𝑎 = 𝑢 & 2𝑏 = 𝑣 & 2𝑐 = 𝑤 & 2𝑢 = 𝑥 & 2𝑤 = 𝑦 & 𝑥𝑣 = 𝑦

)︀
.

It is an easy task to figure out from the above table the following fact, that states more

explicitly—and enhances with univocity—what is observed in [1, p. 427]:

Lemma 1. Any exponential Diophantine specification ∃𝑥1 · · · ∃𝑥𝜅 𝜙(𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅),
whose matrix 𝜙 is devoid of quantifiers and only involves the logical connectives =, & , ∨ , can be

recast as

∃𝑥1 · · · ∃𝑥𝜅 ∃ 𝑦0 · · · ∃ 𝑦ℓ
[︀
𝑦0 = 2 & & 𝑖⩽𝑠 𝑏

𝑛𝑖
𝑖 = 𝑐𝑖

]︀
,

where 𝑏0, . . . , 𝑏𝑠, 𝑛0, . . . , 𝑛𝑠, 𝑐0, . . . , 𝑐𝑠 are variables drawn from the set

{𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅, 𝑦0, . . . , 𝑦ℓ}, and where 𝑏𝑖 , 𝑛𝑖 , 𝑐𝑖 are distinct signs for each 𝑖 .

If the source specification is univocal, so is the “flattened” one resulting from this recasting. ⊣

Very early on [4, pp.446–447], J. Robinson noted that binomial coefficient and factorial function

are existentially definable in terms of exponentiation. The following univocal specifications are

reminiscent of hers, but we rely, as for the factorial, on the modernized variant provided in [11,

pp. 145–146]. The well-known binomial theorem justifies the first specification recalled here:

(︀
ℓ
𝑖

)︀
= 𝑎 := ∃𝑢

[︀
𝑎 =

(︀
(𝑢+ 1)ℓ ÷ 𝑢𝑖

)︀
% 𝑢 & 𝑢 = 2ℓ + 1

]︀
; 𝑗! = 𝑎 := 𝑎 =

[︂(︀
(2 𝑗)𝑗

)︀𝑗 ÷ (︂
(2 𝑗)𝑗

𝑗

)︂]︂
.

Constructs more general than 𝑐! are the falling factorial

∏︀
𝑘<𝑐(𝑎− 𝑘) with 𝑎 ⩾ 𝑐 , and the

related raising factorial

∏︀𝑐
𝑘=1(𝑎+ 𝑘) . Concerning an even more general construct, we have:



Lemma 2 (Originating from [12, Lemma 2.2]—Enhanced, here, with univocity). Given 𝑎, 𝑏, 𝑐, 𝑑,

the relationship ∏︀𝑐
𝑘=1(𝑎+ 𝑏 · 𝑘) = 𝑑

holds if and only if there exist—and are uniquely determined—𝑚, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 such that(︁
𝑏 · 𝑐 = 0 & 𝑑 = 𝑎𝑐 & 𝑚 = 𝑝 = 𝑞 = 𝑟 = 𝑠 = 𝑡 = 0

)︁
∨

[︁
𝑏 · 𝑐 = 𝑡+ 1 &

𝑚 = 𝑏 · (𝑎+ 𝑏 · 𝑐)𝑐 + 1 & 𝑏 · 𝑞 = 𝑎+𝑚 · 𝑝 &

[︀
𝑏𝑐 · 𝑐!

(︀
𝑞+𝑐
𝑐

)︀]︀
% 𝑚 = 𝑑 &[︀

(𝑞 + 𝑟 + 1 = 𝑚 & 𝑠 = 0) ∨ (𝑞 = 𝑚+ 𝑟 & 𝑝+ 𝑠+ 1 = 𝑏)
]︀ ]︁

.

Proof. The first disjunct, regarding the case 𝑏 = 0 ∨ 𝑐 = 0, does not deserve explanation; the

second refines the existential specification of

∏︀𝑐
𝑘=1(𝑎+ 𝑏 𝑘) ,

∃𝑚 ∃ 𝑞 ∃ 𝑝
(︂
𝑚 = 𝑏 (𝑎+ 𝑏 𝑐)𝑐 + 1 & 𝑏 𝑞 = 𝑎+𝑚 𝑝 &

[︂
𝑏𝑐 𝑐!

(︂
𝑞 + 𝑐

𝑐

)︂]︂
% 𝑚 = 𝑑

)︂
,

proved in [11, pp. 147–149] for the case 𝑏 > 0 & 𝑐 > 0 . That specification leaves 𝑝 and 𝑞
under-determined; we are now ensuring univocity by indicating that if one tried to assign a

smaller value to 𝑞, then either the value of 𝑞 itself or the corresponding value of 𝑝 would turn

out to be negative. ⊣

In Sec. 4, we will exploit three computable functions admitting univocal exponential specifi-

cations; they are an injection from N2
onto N and its associated projections (see [13, Sec. 3.8]):

𝜛(𝑎 , 𝑏) = 𝑐 := 2𝑎 (2 𝑏+ 1) = 𝑐+ 1 ;
𝜆(𝑐) = 𝑎 := 2𝑎 | 𝑐+ 1 & 2𝑎+1 ∤ 𝑐+ 1 ;
𝜌(𝑐) = 𝑏 := ∃𝑥 2𝑥 (2 𝑏+ 1) = 𝑐+ 1 .

These definitions yield, for all 𝑎, 𝑏, 𝑐 ∈ N , that:

𝜛(𝑎 , 𝑏) = 𝑐 ⇐⇒ 𝜆(𝑐) = 𝑎 & 𝜌(𝑐) = 𝑏 ,
𝑎 < 𝑎′

& 𝑏 < 𝑏′ =⇒ 𝜛(𝑎 , 𝑏) < 𝜛(𝑎′ , 𝑏) & 𝜛(𝑎 , 𝑏) < 𝜛(𝑎 , 𝑏′) .

4. Listable Sets and the Davis Normal Form

Intuitively speaking, a set R ⊆ N𝑚+1
is listable if there is an effective procedure for making a

list (with repetition allowed) of the elements of R . Computability theory provides the notion of

recursively enumerable (r.e.) set as a formal counterpart—satisfactory, by the Church–Turing

thesis—of this intuitive notion. Here is one among various equivalent ways of characterizing it:

Characterization 1. An (𝑚+ 1)-ary relation R on N is called r.e. if either R = ∅ or there are

primitive recursive functions 𝑟0, . . . , 𝑟𝑚 from N to N such that

R = {⟨𝑟0(𝑖), . . . , 𝑟𝑚(𝑖)⟩ : 𝑖 ∈ N} .

As this definition suggests, we mainly refer to monadic functions henceforth; hence we can

rely on an ad hoc characterization of primitive recursiveness, that we borrow from [13, Sec. 4.9]:



Characterization 2. Put n(𝑥) = 0 and s(𝑥) = 𝑥 + 1 for each 𝑥 ∈ N. Primitive recursive

functions are all and only those functions from N to N that either belong to the initial endowment

n( ) , s( ) , and 𝜆( ) , 𝜌( ) (see above, end of Sec. 3), or are obtainable from that endowment through

repeated use of the following three operations:

1. composing 𝑓( ) and 𝑔( ) into the function 𝑓 ∘ 𝑔 that sends every 𝑥 to 𝑓
(︀
𝑔(𝑥)

)︀
;

2. pairing 𝑓( ) and 𝑔( ) into the function 𝑓 ⊗ 𝑔 that sends every 𝑥 to 𝜛
(︀
𝑓(𝑥), 𝑔(𝑥)

)︀
(see p. 6);

3. obtaining by recursion from 𝑓( ) and 𝑔( ) the function

ℎ(𝑥) :=

⎧⎪⎨⎪⎩
0 if 𝑥 = 0 ,

𝑓
(︀
𝑥−1
2

)︀
if 𝑥 ∈ { 1, 3, 5, 7, . . . } ,

𝑔
(︀
ℎ
(︀
𝑥
2

)︀)︀
if 𝑥 ∈ { 2, 4, 6, 8, . . . } .

We then have:

Theorem 1. The graph

ℱ(a , 𝑏) ⇐⇒ 𝐹 (a) = 𝑏

of any primitive recursive function 𝐹 from N into N can be specified by means of an arithmetical

formula 𝜙 within which all universal quantifiers are bounded and negation does not occur (nor

does implication; usage of the conjunction and disjunction connectives & , ∨ is subject to

no restraints, also existential quantification can be used with no restraints, because we are

assuming as a primitive sign ∃ as well as ∀).

Proof. The graphs of the initial functions n( ) , s( ) , 𝜆( ), and 𝜌( ) can be specified, respectively,

by a+𝑏 = a , a+1 = 𝑏 , ∃ 𝑝∃𝑥
(︀

Pow(𝑏, 𝑝) & 𝑝 ·(2𝑥+1) = a+1
)︀

, and ∃𝑥∃ 𝑝
(︀

Pow(𝑥, 𝑝) & 𝑝 ·
(2 𝑏+ 1) = a + 1

)︀
, where Pow (a, 𝑏) is a formula describing the graph of 2a

—this function gets

the value 1 when a = 0 and gets the value 2 · 2𝑡 when a = 𝑡+ 1 . By exploiting the Chinese

remainder theorem in the manner explained in [5, pp. 79–80],
5

we get the specification

Pow (a, 𝑏) := ∃𝑢 ∃ 𝑑
[︁

1 = 𝑢 %
(︀
1 + 𝑑

)︀
& 𝑏 = 𝑢 %

(︀
1 + (a + 1) · 𝑑

)︀
&

∀𝑡 ⩽ a

(︁
𝑢 %

(︀
1 + (𝑡+ 2) · 𝑑

)︀
=

2 ·
[︀
𝑢 %

(︀
1 + (𝑡+ 1) · 𝑑

)︀]︀ )︁]︁
.

As for the mechanisms enabling the immediate construction of primitive recursive functions

out of 𝑓( ) and 𝑔( ) that are supposed to satisfy the induction hypothesis, we so specify the

graph of 𝑓 ∘ 𝑔 : ∃ 𝑦
(︀
𝑔(a) = 𝑦 & 𝑓(𝑦) = 𝑏

)︀
,

graph of 𝑓 ⊗ 𝑔 :

⎧⎨⎩ ∃𝑥 ∃ 𝑦 ∃ 𝑝
[︁

𝑓(a) = 𝑥 & 𝑔(a) = 𝑦 &

Pow(𝑥, 𝑝) & 𝑝 · (𝑦 + 𝑦 + 1) = 𝑏+ 1
]︁
,

5

A corollary, originating from Gödel (1931), of the Chinese remainder theorem says: Consider integers 𝑎0, . . . , 𝑎𝑛

such that 0 ⩽ 𝑎𝑖 < 𝑞 holds for each 𝑖 , and put 𝑞𝑖 = 1 + 𝑛 ! · 𝑞 · (𝑖+ 1) . Then 𝑎0 = 𝑎 % 𝑞0, . . . , 𝑎𝑛 = 𝑎 % 𝑞𝑛
hold together for a sole 𝑎 <

∏︀
𝑗⩽𝑛 𝑞𝑗 .



and then conclude by so specifying the outcome of recursion:

∃𝑢 ∃ 𝑑 ∃𝑚
[︁

0 = 𝑢 %
(︀
1 + 𝑑

)︀
& 𝑏 = 𝑢 %

(︀
1 + (a + 1) · 𝑑

)︀
& 𝑚 = a ÷ 2 &

∀𝑡 ⩽ 𝑚
(︁
𝑓(𝑡) = 𝑢 %

(︀
1 + (2 · 𝑡+ 2) · 𝑑

)︀
&

𝑔
(︀
𝑢 %

(︀
1 + (𝑡+ 2) · 𝑑

)︀
= 𝑢 %

(︀
1 + (2 · 𝑡+ 3) · 𝑑

)︀ )︁]︁
.

Needless to say, here the Chinese remainder theorem is at work again. ⊣

In light of the elicitation Char. 1 of listability, Thm. 1 can easily be generalized into:

Theorem 2. Every listable (property or) relation on N can be specified by means of an arithmetical

formula wherein all universal quantifiers are bounded and neither negation nor implication occurs.

In [5, pp. 93–96], a syntactic manipulation algorithm is described that transforms any arith-

metical formula 𝜙 endowed with the features stated in Thm. 1 (and in Thm. 2), and whose

free variabes are 𝑎0, 𝑎1, . . . , 𝑎𝑚 , into a Diophantine polynomial 𝑅(ℎ, 𝑦, 𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅)
such that:

𝜙(𝑎0, . . . , 𝑎𝑚) ⇐⇒ ∃ℎ ∀ 𝑦 ⩽ ℎ ∃𝑥1 ⩽ ℎ · · · ∃𝑥𝜅 ⩽ ℎ
[︀
𝑅(ℎ, 𝑦, 𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅) = 0 ].

This special format is called Davis normal form, because it was first brought to light (originally

lacking bounds on the inner existential quantifiers) in [14, Part III]. We will now report on a

perfectioning of this format, that Yuri Matiyasevich put forward after establishing that the a

priori distinct notions of r.e. set and Diophantine set amount to one another (cf. [2]).

Ancillary to that, let us introduce the Cantor functions cℓ, with ℓ ∈ N ∖ {0} :

c1(𝑢1) := 𝑢1 ,

c𝑞+2(𝑢1, . . . , 𝑢𝑞+2) := c𝑞+1

(︂
𝑢1, . . . , 𝑢𝑞,

(𝑢𝑞+1 + 𝑢𝑞+2)
2 + 3 · 𝑢𝑞+1 + 𝑢𝑞+2

2

)︂
.

It thus turns out that each cℓ is a monotone injection of Nℓ
onto N . Yu. Matiyasevich stated:

Lemma 3 ([15, pp. 303–304]). To each Diophantine polynomial 𝐷(𝑎0, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅),
there correspond Diophantine polynomials 𝑃 (ℎ, 𝑦, 𝑎0, . . . , 𝑎𝑚, 𝑥0, 𝑥1, . . . , 𝑥𝜅) ⩾ 0 and

𝐸(𝑎0, . . . , 𝑎𝑚, ℎ) ⩾ 0 such that the following biimplications hold (where �⃗� and �⃗� shorten

𝑎0, . . . , 𝑎𝑚 and 𝑥0, 𝑥1, . . . , 𝑥𝜅, respectively):
6

∃𝑥1 · · · ∃𝑥𝜅 𝐷(�⃗�, 𝑥1, . . . , 𝑥𝜅) = 0 ⇐⇒ ∃ℎ ∀ 𝑦 ⩽ ℎ ∃ �⃗� 𝑃 (ℎ, 𝑦, �⃗�, �⃗�) = 0
⇐⇒ ∃!ℎ ∀ 𝑦 ⩽ ℎ ∃ �⃗� 𝑃 (ℎ, 𝑦, �⃗�, �⃗�) = 0
⇐⇒ ∃ℎ ∀ 𝑦 ⩽ ℎ ∃! �⃗� 𝑃 (ℎ, 𝑦, �⃗�, �⃗�) = 0

⇐⇒ ∃ℎ ∀ 𝑦 ⩽ ℎ ∃𝑥0 ⩽ 𝐸(�⃗�, ℎ) ∃𝑥1 ⩽ 𝐸(�⃗�, ℎ) · · · ∃𝑥𝜅 ⩽ 𝐸(�⃗�, ℎ) 𝑃 (ℎ, 𝑦, �⃗�, �⃗�) = 0 .

Proof. We will define 𝑃 (ℎ, 𝑦, �⃗�, 𝑥0, 𝑥1, . . . , 𝑥𝜅) so that 𝑃 = 0 enforces univocally (also with

respect to the new existential variables, ℎ and 𝑥0) the condition

c𝜅(𝑥1, . . . , 𝑥𝜅) = 𝑦 &

[︀(︀
𝑦 < ℎ & 𝐷(�⃗�, 𝑥1, . . . , 𝑥𝜅) ̸= 0

)︀
∨

(︀
𝑦 = ℎ & 𝐷(�⃗�, 𝑥1, . . . , 𝑥𝜅) = 0

)︀]︀
.

6

The sign ‘∃!’ (read: “there exists a sole”) can be introduced as usual: ∃! 𝑣 𝜙 := ∃𝑢 ∀ 𝑣 (𝜙 ⇐⇒ 𝑣 = 𝑢 ).



For this purpose, we put
7

𝑃 := 22
𝜅

·
(︀
𝑦 − c𝜅(𝑥1, . . . , 𝑥𝜅)

)︀2
+[︀

(ℎ− 𝑦) ·𝐷2(�⃗�, 𝑥1, . . . , 𝑥𝜅)− 𝑥0 − 1
]︀2 ·

[︀
(ℎ− 𝑦)2 +𝐷2(�⃗�, 𝑥1, . . . , 𝑥𝜅) + 𝑥0

]︀
.

It is then clear that the variables ℎ, 𝑥1, . . . , 𝑥𝜅, and 𝑥0 on the right-hand side of the claimed

biimplications designate, respectively: the first 𝑢 such that the 𝜅-tuple ⟨�̂�1, . . . , �̂�𝜅⟩ for which

c𝜅(�̂�1, . . . , �̂�𝜅) = 𝑢 holds solves the equation 𝐷(�⃗�, 𝑥1, . . . , 𝑥𝜅) = 0 (in the unknowns

𝑥1, . . . , 𝑥𝜅); for each 𝑦 ⩽ ℎ, the 𝜅-tuple ⟨𝑥𝑦,1, . . . , 𝑥𝑦,𝜅⟩ such that c𝜅(𝑥𝑦,1, . . . , 𝑥𝑦,𝜅) = 𝑦;

the accordance between positivity of ℎ− 𝑦 and non-nullity of 𝐷(�⃗�, 𝑥𝑦,1, . . . , 𝑥𝑦,𝜅). When the

left-hand side of each claimed biimplication is satisfied by specific 𝑎𝑖’s, we can hence determine—

and they are unique—a value for ℎ and, corresponding to each 𝑦 , values 𝑥𝑦,𝑗 ’s that do to the

case of the right-hand side; conversely, if ℎ satisfies the right-hand side for given 𝑎𝑖’s, then the

corresponding 𝑥ℎ,1, . . . , 𝑥ℎ,𝜅 are such that 𝐷(�⃗�, 𝑥ℎ,1, . . . , 𝑥ℎ,𝜅) = 0 . To end, we must address

the issue of setting a suitable bound 𝐸(�⃗�, ℎ) on the variables 𝑥𝑗 . Since no 𝑥𝑦,𝑗 with 𝑗 > 0 can

exceed ℎ, we will enforce 𝐸(�⃗�, ℎ) ⩾ ℎ; to also take into proper account the values 𝑥𝑦,0 , we

put 𝐸(�⃗�, ℎ) := ℎ ·
(︀
1 + ̃︀𝐸(�⃗�, ℎ)

)︀
, where

̃︀𝐸(�⃗�, ℎ) results from the polynomial 𝐷2(�⃗�, ℎ, . . . , ℎ)
through replacement of each one of its coefficients, 𝑘, by the absolute value |𝑘| . ⊣

5. Reducing Bounded Universal Quantifiers to Exponentiation

The proof that the family of exponential Diophantine relations is closed under bounded universal

quantification can be developed in many different ways (see [16, Chap.6]). Here we resume part

of the development (Lemmas 4 e 5) from the recent monograph [11]—see also [17, pp. 252–256],

in turn stemming from [1, pp. 433–435]—; the other part (Lemma 3 above and Lemma 6 below)

is instead adapted from [6], in order to ensure univocity.

Lemma 4. (Cf. [11, p.154]). To each Diophantine polynomial 𝑃 (ℎ , 𝑦 , 𝑎1 , . . . , 𝑎𝑚 , 𝑥1 , . . . , 𝑥𝜅)
there correspond Diophantine polynomials 𝑄(ℎ , 𝑢 , 𝑎1 , . . . , 𝑎𝑚) such that the following hold:

• 𝑄(ℎ , 𝑢 , 𝑎1 , . . . , 𝑎𝑚) > ℎmax𝑢 ;

• 𝑄(ℎ , 𝑢 , 𝑎1 , . . . , 𝑎𝑚) ⩾ |𝑃 (ℎ , 𝑦 , 𝑎1 , . . . , 𝑎𝑚 , 𝑥1 , . . . , 𝑥𝜅)|
when 𝑦 ⩽ ℎ and 𝑥1 , . . . , 𝑥𝜅 ⩽ 𝑢 .

Proof. (Just a clue). The trick is similar to the one used at the end of the proof of Lemma 3. ⊣

Lemma 5 (From [11, pp. 150–153]). If 𝑃 and 𝑄 are as in Lemma 4 then, given ℎ, 𝑢, 𝑎1, . . . , 𝑎𝑚 ,

∀ 𝑦 ⩽ ℎ ∃𝑥1 ⩽ 𝑢 · · · ∃𝑥𝜅 ⩽ 𝑢 𝑃 (ℎ , 𝑦 , 𝑎1 , . . . , 𝑎𝑚 , 𝑥1 , . . . , 𝑥𝜅) = 0

will hold if and only if there exist 𝑡 , 𝑧 , 𝑤1 , . . . , 𝑤𝜅 such that

(1) 𝑡 = 𝑄(ℎ , 𝑢 , 𝑎1 , . . . , 𝑎𝑚) ! ;

(2) 1 + (𝑧 + 1) 𝑡 =
∏︀

𝑦⩽ℎ

(︀
1 + (𝑦 + 1) 𝑡

)︀
;

(3) 𝑃 (ℎ , 𝑧 , 𝑎1 , . . . , 𝑎𝑚 , 𝑤1 , . . . , 𝑤𝜅) ≡ 0 mod 1 + (𝑧 + 1) 𝑡 ;

7

The factor 22
𝜅

abundantly suffices to elide the denominator of the polynomial c𝜅 .



(4) 1 + (𝑧 + 1) 𝑡
⃒⃒⃒ ∏︀

𝑗⩽𝑢(𝑤𝑖 − 𝑗) , for 𝑖 = 1, . . . , 𝜅 . ⊣

Lemma 6. Out of any given Diophantine polynomial 𝐷(𝑎1, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅) , one

can construct three polynomials, 𝑃 (ℎ, 𝑦, 𝑎1, . . . , 𝑎𝑚, 𝑥0, 𝑥1, . . . , 𝑥𝜅) , 𝐸(𝑎1, . . . , 𝑎𝑚, ℎ) , and

𝑄(ℎ, 𝑢, 𝑎1, . . . , 𝑎𝑚), each producing values in N when its variables range over N, such that

∃𝑥1 · · · ∃𝑥𝜅 𝐷(𝑎1, . . . , 𝑎𝑚, 𝑥1, . . . , 𝑥𝜅) = 0 holds if and only if there exist uniquely deter-
mined ℎ , 𝑢 , 𝑡 , 𝑧 , 𝑤0 , . . . , 𝑤𝜅 , 𝑔0 , . . . , 𝑔𝜅 , 𝑓0 , . . . , 𝑓𝜅 , and 𝑒 satisfying the following expo-

nential Diophantine conditions:

(1) 𝑢 = 𝐸(𝑎1, . . . , 𝑎𝑚, ℎ) & 𝑡 = 𝑄(ℎ , 𝑢 , 𝑎1 , . . . , 𝑎𝑚) ! ;

(2) 𝑒 = 1 + (𝑧 + 1) 𝑡 & 𝑒 =
∏︀ℎ+1

𝑦=1

(︀
1 + 𝑦 𝑡

)︀
;

(3) 𝑒 | 𝑃 (ℎ , 𝑧 , 𝑎1 , . . . , 𝑎𝑚 , 𝑤0 , 𝑤1 , . . . , 𝑤𝜅) ;

(4) 𝑔𝑖 + 𝑢 = 𝑤𝑖 & 𝑒
⃒⃒⃒ ∏︀

𝑗⩽𝑢

(︀
𝑔𝑖 + 𝑗

)︀
, for 𝑖 = 0, 1, . . . , 𝜅 ;

(5)

⋁︀
𝑖⩽𝜅

[︁(︀
& 𝑗<𝑖 𝑔𝑗 = 𝑓𝑗 + 𝑒

)︀
& 𝑔𝑖 + 𝑓𝑖 + 1 = 𝑒 & &

𝜅
𝑗=𝑖+1 𝑓𝑗 = 0

]︁
.

Proof. From 𝐷—assuming without loss of generality that 𝑚 > 0—we obtain 𝑃 and 𝐸 as in

Lemma 3, then we get 𝑄 from 𝑃 as in Lemma 4 (there is but one extra variable, 𝑥0). Now we

can apply Lemma 5, with 𝑢 = 𝐸(𝑎1, . . . , 𝑎𝑚, ℎ), and this accounts for the conditions (1)–(4).

By means of the 𝑔𝑖, we are requiring that 𝑤𝑖 ⩾ 𝑢; this is a legitimate request, in the light

of the proof of Lemma 5, whose congruence 𝑃 (𝑢 , 𝑧 , 𝑎1 , . . . , 𝑎𝑚 , 𝑤0 , 𝑤1 , . . . , 𝑤𝜅) ≡ 0
mod 𝑒 is rewritten as a divisibility constraint between natural numbers here, by taking the fact

𝑃 (ℎ , 𝑧 , 𝑎1 , . . . , 𝑎𝑚 , 𝑤0 , 𝑤1 , . . . , 𝑤𝜅) ⩾ 0 into account; moreover, within that proof we had

represented each 𝑤𝑖 − 𝑥𝑦,𝑖 in the form 𝑤𝑖 − 𝑗 with 0 ⩽ 𝑗 ⩽ 𝑢, here we are representing it in

the form 𝑔𝑖 + 𝑗 with 0 ⩽ 𝑗 ⩽ 𝑢.

As Lemma 3 suggests, in order to make the specification (1)–(4) univocal, it is enough to bring

into play new unknowns 𝑓0, . . . , 𝑓𝜅 subject to the constraint (5). That is, we are choosing as

representative of the infinitely many (𝜅+ 1)-tuples ⟨𝑤0, . . . , 𝑤𝜅⟩ suitable to encode the list of

tuples ⟨𝑥0,𝑖, . . . , 𝑥ℎ,𝑖⟩ (𝑖 = 0, . . . , 𝜅) as described within the proof of Lemma 5, the one whose

components cannot be lowered by the amount 𝑒 without at least one among them becoming

smaller than 𝑢 . ⊣

Knowing that each listable has a representation ∃ �⃗� 𝐷(�⃗� , �⃗�) = 0 , we can view Lemma 6 as

enriching the DPR theorem [1] with single-fold-ness; in short:

Theorem 3 (Matiyasevich, 1974). Each listable set has a univocal exponential Diophantine

representation.

6. Exponentiation as a Notable Quotient

Denote by ⟨𝑦𝑖(𝑎)⟩𝑖∈N the endless, strictly ascending, sequence consisting of all non-negative

integer solutions to the Pell equation
8

(𝑎2 − 1) 𝑦2 + 1 = □ with 𝑎 ∈ N ∖ {0, 1} ;

8

Once more, ‘𝑄 = □’ means that 𝑄 must be a perfect square.



also put 𝑥𝑖(𝑎):=
√︁

(𝑎2 − 1)𝑦2
𝑖 (𝑎) + 1. Then:

Lemma 7. The following law determines uniquely the values of 𝑢, 𝑣 :

(︀
(𝑏 ⩾ 1 ∨ 𝑛 = 0) & 𝑎 > 𝑏𝑛

)︀
=⇒

⎡⎢⎢⎣ 𝑏𝑛 = 𝑐 ⇐⇒ ∃𝑢 ∃ 𝑣
(︂
𝑢2 − (𝑎2 𝑏2 − 1) 𝑣2 = 1 &

𝑥𝑛(𝑎) ⩽ 𝑢 < 𝑎 𝑥𝑛(𝑎) & 𝑐 = 𝑢÷ 𝑥𝑛(𝑎)

)︂
⎤⎥⎥⎦ .

Moreover, if 𝑏 ⩾ 1 & 𝑤 ⩾ 3 (𝑐+1)(𝑛+1) , then 𝑏𝑛 = 𝑐 ⇐⇒ 𝑐 = 𝑦𝑛+1(𝑏𝑤 + 1)÷𝑦𝑛+1(𝑤) .

Proof. Concerning the first claim, the proof can be traced back to [4, Lemmas 9 and 10] (see

also [3, Lemma 3]). Concerning the second claim, see [15, p. 308]. ⊣

Through the first claim of Lemma 7, Martin Davis got a very neat and general restatement

of the DPR theorem, where a single literal involving an exponential-growth relation J(𝑢 , 𝑣)
supersedes exponentiation. Together with J( , ) , Davis’ technique exploits a Diophantine

relation D( , , ) on N, such that
9

• ∀ 𝑏 ∀𝑛 ∀ 𝑣 ∀ 𝑡
[︀
𝑣 > 𝑡 & D(𝑏, 𝑛, 𝑡) =⇒ 𝑣 > 𝑏𝑛

]︀
and

• ∀ 𝑏 ∀𝑛 ∃ 𝑡 D(𝑏, 𝑛, 𝑡) ,

along with the Diophantine relation

E (𝑏, 𝑛, 𝑐, 𝑎, ℓ) := ∃𝑢 ∃ 𝑣 ∃𝑤
[︀ (︀

𝑏 = 𝑢 = 𝑣 = 𝑐 = 0 & 𝑛 = 𝑤 + 1
)︀

∨(︀
𝑢2 − (𝑎2 𝑏2 − 1) 𝑣2 = 1 & 𝑤 = 0 &

ℓ ⩽ 𝑢 < 𝑎 ℓ & 𝑐 = 𝑢÷ ℓ
)︀ ]︀

.
It can be shown that

& 𝑖⩽𝑠 𝑏
𝑛𝑖
𝑖 = 𝑐𝑖 ⇐⇒ (∃ 𝑎 , 𝑡0, . . . , 𝑡𝑠, ℓ0, . . . , ℓ𝑠) & 𝑖⩽𝑠

[︂
D(𝑏𝑖, 𝑛𝑖, 𝑡𝑖) & 𝑎 > 𝑡𝑖 &

E (𝑏𝑖, 𝑛𝑖, 𝑐𝑖, 𝑎, ℓ𝑖) & ℓ𝑖 = 𝑥𝑛𝑖
(𝑎)

]︂
,

whence 𝑥𝑛𝑖(𝑎) can be eliminated thanks to the following:

Lemma 8 (Cf. [18, Lemma A.2]). Suppose that 𝑎 > 1, 𝑎 > 𝑛, and 𝑥𝑎(𝑎) > ℓ . Then,

ℓ = 𝑥𝑛(𝑎) ⇐⇒ ∃ 𝑟 ℓ2 − (𝑎2 − 1)
(︀
𝑛+ (𝑎− 1) 𝑟

)︀2
= 1 .

Ultimately, one gets the following proposition, whose proof we omit:

Lemma 9. If J( , ) is an exponential-growth relation and each 𝑏𝑖, 𝑛𝑖, 𝑐𝑖 is either a variable or a

non-negative integer constant, then we have

& 𝑖⩽𝑠 𝑏
𝑛𝑖
𝑖 = 𝑐𝑖 ⇐⇒ (∃ 𝑎, 𝑑, 𝑡0, . . . , 𝑡𝑠, ℓ0, . . . , ℓ𝑠, 𝑟0, . . . , 𝑟𝑠)

[︂
J(𝑎 , 𝑑) &

& 𝑖⩽𝑠

[︁
D(𝑏𝑖, 𝑛𝑖, 𝑡𝑖) & 𝑎 > 𝑡𝑖 & 𝑎 > 𝑛𝑖 &

E (𝑏𝑖, 𝑛𝑖, 𝑐𝑖, 𝑎, ℓ𝑖) & ℓ𝑖 < 𝑑 &

ℓ2𝑖 = (𝑎2 − 1)
[︀
𝑛𝑖 + (𝑎− 1) 𝑟𝑖

]︀2
+ 1

]︁ ]︂
.

9

For definiteness, one could take D(𝑏, 𝑛, 𝑡) := Q(𝑏 + 𝑛 + 2, 𝑡) , where Q(𝑤, 𝑢) is as in [7, p. 155], namely:

Q(𝑤, 𝑢) := (∃𝑥 , 𝑦)

[︂
𝑢 ⩾ 𝑤 𝑥 & 𝑥 > 1 & 𝑥2 − (𝑤2 − 1) (𝑤 − 1)2 𝑦2 = 1

]︂
.



Therefore, in view of Lemma 1:

Theorem 4 (Davis, 1963). Each listable subset of a Cartesian power N𝑚+1
admits a specification

of the form ∃𝑢 ∃ 𝑣 ∃ �⃗�
[︀
𝐷(�⃗�, �⃗�, 𝑢, 𝑣) = 0 & J(𝑢 , 𝑣)

]︀
, where 𝐷 is a Diophantine polynomial

and J is any exponential-growth relation.

In one respect, this achieves more than Thm. 3; in fact, here we have a generic exponential-

growth relation in place of exponentiation. But, regrettably, univocity is not ensured.

Matiyasevich made a leap towards a reconciliation between Thm. 3 and Thm. 4 in [15, pp. 308–

309]. In his theorem, reported below, the specific relation 2𝑢 = 𝑣 occurs instead of a generic

J(𝑢 , 𝑣) ; and in its proof (which we omit) the second claim of Lemma 7 plays a decisive role:

Theorem 5 (Exponentiation, from dyadic to monadic). A univocal exponential Diophantine

specification of any relation &
𝑠
𝑖=1 𝑏

𝑛𝑖
𝑖 = 𝑐𝑖 (where 𝑏𝑖, 𝑛𝑖, 𝑐𝑖 are as said above) is:

∃𝑢 ∃ 𝑣 ∃ 𝑒1 ∃ 𝑓1 ∃ 𝑔1 ∃ℎ1 · · · ∃ 𝑒𝑠 ∃ 𝑓𝑠 ∃ 𝑔𝑠 ∃ℎ𝑠

[︀
ℒ1 & ℒ2 &

&
𝑠
𝑖=1 [( 𝑏𝑖 = 0 & ℒ3,𝑖 ) ∨ ( 𝑏𝑖 > 0 & ℒ4,𝑖 & ℒ5,𝑖 & ℒ6,𝑖 & ℒ7,𝑖 )]

]︀
,

where

ℒ1 := 𝑢 = 20
∑︀𝑠

𝑖=1 (𝑐𝑖 + 1)(2 𝑏𝑖 + 1)(𝑛2
𝑖 + 1) ,

ℒ2 := 2𝑢 = 𝑣 ,
ℒ3,𝑖 := [(𝑛𝑖 = 0 & 𝑐𝑖 = 1 ) ∨ (𝑛𝑖 > 0 & 𝑐𝑖 = 0 )] & 𝑒𝑖 = 𝑓𝑖 = 𝑔𝑖 = ℎ𝑖 = 0 ,
ℒ4,𝑖 := 𝑐𝑖 = 𝑓𝑖 ÷ ℎ𝑖 ,

ℒ5,𝑖 := 𝑒2𝑖 −
(︀
(𝑏𝑖 𝑢+ 1)2 − 1

)︀
𝑓2
𝑖 = 1 & 𝑔2𝑖 −

(︀
𝑢2 − 1

)︀
ℎ2
𝑖 = 1 ,

ℒ6,𝑖 := 𝑓𝑖 ≡ 𝑛𝑖 + 1mod (𝑏𝑖 𝑢) & ℎ𝑖 ≡ 𝑛𝑖 + 1mod (𝑢− 1) ,
ℒ7,𝑖 := 𝑓𝑖 < 𝑣 & ℎ𝑖 < 𝑣 .

Consequently, every listable subset of a Cartesian power N𝑚+1
admits a univocal representation

∃𝑢 ∃ 𝑣 ∃ �⃗�
[︀
𝐷(𝑎0 , . . . , 𝑎𝑚 , �⃗�, 𝑢, 𝑣) = 0 & 2𝑢 = 𝑣

]︀
, where 𝐷 is a Diophantine polynomial.

7. Two elusive issues

We are after a generalized variant of Thm. 5 which has, in place of its

ℒ1 & 2𝑢 = 𝑣 & &
𝑠
𝑖=1 [( 𝑏𝑖 = 0 & ℒ3,𝑖 ) ∨ ( 𝑏𝑖 > 0 & ℒ4,𝑖 & ℒ5,𝑖 & ℒ6,𝑖 & ℒ7,𝑖 )] ,

a suitable formula 𝐷( �⃗� , �⃗� , 𝑢 , 𝑣 ) = 0 & M (𝑢 , 𝑣) , where 𝐷 is a Diophantine polynomial in

the parameters �⃗� and

• M is a dyadic relation subject to particular requirements—probably stronger than

exponential-growth. Moreover,

• a concrete such M should be exhibited that admits a finite-fold—hopefully univocal—

Diophantine polynomial specification.

The achievement of these two goals would answer positively an issue raised in [6] and [8]:

“open problem: Is there a finitefold (or better a singlefold) Diophantine definition of 𝑎 = 𝑏𝑐 ?”

As regards which requirement should be imposed on M , [9, p. 749] suggests the following

(without explaining, though, why this would be adequate to ensure that the relation 2𝑢 = 𝑣—and

therefore any listable set—has a finite Diophantine specification if M (𝑢 , 𝑣) has one):



⃦⃦⃦⃦
Integers 𝛼 > 1 , 𝛽 ⩾ 0 , 𝛾 ⩾ 0 , 𝛿 > 0 exist such that to each 𝑤 ∈ N ∖ {0}
there correspond 𝑢, 𝑣 such that: M (𝑢 , 𝑣) , 𝑢 < 𝛾 𝑤𝛽

, and 𝑣 > 𝛿 𝛼𝑤
hold.

(‡)

As for a concrete choice of M , the most promising candidate at the time when [8] was published

was an exponential-growth relation, M7, associated in a certain manner with the quaternary

quartic equation 9 · (𝑢2 + 7 𝑣2)2 − 7 · (𝑟2 + 7 𝑠2)2 = 2 that had been spotlighted in [19].

The proposed M7 would admit a finite-fold Diophantine polynomial specification if the said

equation only had a finite number of integer solutions. Below, we will spotlight a few other

quaternary quartics that may candidate as rule-them-all equations.

8. Candidate rule-them-all equations: how helpful can they be?

In [19], Martin Davis argued that Hilbert’s 10th problem would turn out to be algorithmically

unsolvable if his quaternary quartic just recalled could be shown to admit only one solution in

N (an expectation, btw, that came to an end in the early 1970s). In [18, 7, 20], by following Davis’

same construction pattern, we increased the number of Diophantine equations that candidate as

“rule-them-all equations” to six. Each such equation is associated with one of the eight so-called

Heegner numbers 𝑑 ̸= 1; today we know that, if any of the equations

Number 𝑑 Associated quaternary quartic equation

2 2 ·
(︀
𝑟2 + 2 𝑠2

)︀2 − (︀
𝑢2 + 2 𝑣2

)︀2
= 1

3 3 ·
(︀
𝑟2 + 3 𝑠2

)︀2 − (︀
𝑢2 + 3 𝑣2

)︀2
= 2

7 7 ·
(︀
𝑟2 + 7 𝑠2

)︀2 − 32 ·
(︀
𝑢2 + 7 𝑣2

)︀2
= −2

11 11 ·
(︀
𝑟2 + 𝑟 𝑠 + 3 𝑠2

)︀2 − (︀
𝑣2 + 𝑣 𝑢+ 3𝑢2

)︀2
= 2

19 19 · 32 ·
(︀
𝑟2 + 𝑟 𝑠 + 5 𝑠2

)︀2 − 132 ·
(︀
𝑣2 + 𝑣 𝑢+ 5𝑢2

)︀2
= 2

43 43 ·
(︀
𝑟2 + 𝑟 𝑠 + 11 𝑠2

)︀2 − (︀
𝑣2 + 𝑣 𝑢+ 11𝑢2

)︀2
= 2

associated with the respective Pell equations 𝑑 𝑦2 + 1 = □ turned out to admit only a finite

number of solutions inZ, then every listable set—first and foremost the set of all triples ⟨𝑏, 𝑛, 𝑐⟩ ∈
N3

such that 𝑏𝑛 = 𝑐—would admit a finite-fold polynomial Diophantine representation.

If the equation associated with 𝑑 has a finite overall number of solutions, then the following

dyadic relation M𝑑 over N admits a polynomial Diophantine representation:

𝑑 ∈ {2, 7} : M𝑑(𝑝, 𝑞) := ∃ ℓ > 4
[︁
𝑞 = ̃︀𝑦2ℓ(𝑑) & 𝑝 | 𝑞 & 𝑝 ⩾ 2ℓ+1

]︁
,

𝑑 ∈ {3, 11, 19, 43} : M𝑑(𝑝, 𝑞) := ∃ ℓ > 5
[︁
𝑞 = ̃︀𝑦22 ℓ+1(𝑑) & 𝑝 | 𝑞 & 𝑝 ⩾ 22 ℓ+2

]︁
,

where ⟨̃︀𝑦𝑖(𝑑)⟩𝑖∈N is the endless, strictly ascending, sequence consisting of all solutions in N to

the said equation 𝑑 𝑦2 +1 = □ . Independently of representability, each M𝑑 turns out to satisfy

Julia Robinson’s exponential growth criteria and Matiyasevich’s condition (‡) seen above.

It is very hard to guess whether the number of solutions to any of the six quartics shown

above is finite or infinite. For quite a while the authors hoped that Matiyasevich’s surmise that

each r.e. set admits a single-fold polynomial Diophantine representation could be established

by just proving that the sole solution to the quartic 2 ·
(︀
𝑟2 + 2 𝑠2

)︀2 − (︀
𝑢2 + 2 𝑣2

)︀2
= 1 in

N is ⟨�̄�, �̄�, �̄�, 𝑣⟩ = ⟨1, 0, 1, 0⟩ ; but a couple of days after [20] was published on arXiv, Evan



O’Dorney (University of Notre Dame) and Bogdan Grechuk (University of Leicester) sent us

kind communications that they had found two, respectively three, non-trivial solutions to this

equation. Their first solution is

𝑟1 = 8778587058534206806292620008143660818426865514367,
𝑠1 = 1797139324882565197548134105090153037130149943440,
𝑢1 = 5221618295817678692343699483662704959631052331713,
𝑣1 = 6739958317343073985310999451965479560858521871624;

the components of the third solution are numbers of roughly 180 decimal digits each.

It must be mentioned that Apoloniusz Tyszka radically disbelieves Matiyasevich’s finite-fold

representability conjecture
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which has been, throughout, (and firmly remains) our polar star.

Conclusion

One of the questions Yu. Matiyasevich raised, at the outset of his seminal paper [6] on the

Diophantine single-/finite-fold representability issue, was:

Suppose a proof is available that each

𝐷𝑎(𝑥1, . . . , 𝑥𝜅) = 0 , 𝑎 ∈ N ,

in some indexed family of equations has at most one solution in N . Can we extract

from it an effective bound C𝑎 ensuring, when 𝑥1 = 𝑣1 , . . . , 𝑥𝜅 = 𝑣𝜅 is such

solution, that 𝑣1, . . . ,𝑣𝜅 ⩽ C𝑎 ?

As we have recalled and explained among the conclusions of [7], his answer was negative in

general, assuming the signature underlying the 𝐷𝑎’s comprises exponentiation. Matiyasevich

calls “noneffectivizable estimates” [15, 10] this and more general limiting results that follow

from the univocal representability, in terms of exponentiation, of any r.e. set. Analogous limiting

results about polynomial Diophantine equations would follow if it turned out that any r.e. set

admits a finite-fold representation in merely polynomial terms; can such a representation be

carried out? This entire paper has revolved around this question, to whose hoped-for positive

answer the material outlined in Sec. 8 (cf. [20] for a reasoned account) might prove useful.

Matiyasevich also discussed in [22] (see [7, pp. 151–152] for a quick account) intriguing

consequences that establishing the finite-fold Diophantine representability of any r.e. set would

entail about the Diophantine characterization of the probability of selecting by chance a program

that terminates on every input.

This paper is a companion of [7]. Two differences are: (1) In accordance with the historical

path [1, 6] great emphasis is placed on the kinship between exponentiation and bounded

universal quantification. (2) Novel candidate rule-them-all equations have entered into play.

10

See, among many, https://arxiv.org/abs/0901.2093. As pointed out in [21, p. 711], even [8, p. 360] suggests a

possibility that “would eliminate the possibility of singlefold definitions for all Diophantine sets”.

https://arxiv.org/abs/0901.2093
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