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Abstract
Let T be an SMT solver with no theory solvers except for Quantifier Instantiation. Given a set of
first-order clauses S saturated by Resolution (with a valid literal selection function) we show that T is
complete if its Trigger function is the same as the literal selection function. So if T halts with a ground
model G, then G can be extended to a model in the theory of S. In addition for a suitable ordering, if all
maximal literals are selected in each clause, then T will halt on G, so it is a decision procedure for the
theory S. Also, for a suitable ordering, if all clauses are Horn, or all clauses are 2SAT, then T solves the
theory S in polynomial time.
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1. Introduction

SMT solvers [1] are efficient at satisfiability problems over several theories with specialized
decision procedures. For first-order theories where a specialized decision procedure has not
been implemented, a background theory can often be represented by quantified first-order
clauses.1 The SMT solver instantiates universally quantified FO clauses into ground clauses,
which are handled by a SAT solver. To decide which instances are useful the SMT solver can
use triggers [2, 3]. A trigger function maps each FO clause to a set of terms in the clause. If the
terms in this set match existing ground terms, that triggers an instantiation.

Researchers have studied practical methods of selecting triggers. If triggers are selected well,
the SMT solver can quickly solve unsatisfiable problems. However, if the problem is satisfiable,
the SMT solver will often run forever or halt with a partial propositional model. If the SMT
solver halts with a partial propositional model, it will not know if that propositional model will
extend to a model of the FO clauses.

This paper is a result of our initial efforts to understand in what instances an SMT solver can
be assured that enough instances have been generated to determine satisfiability. The subject is
first-order logic without equality. We are motivated by completeness results involving selection
functions in resolution-based first-order theorem proving [4]. We show a relationship between
selection functions and the trigger functions of SMT solvers. We have started to extend these
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results to equational logic [5], and future research will be to extend them to specialized theories.
As an example of the problem faced by SMT solvers, consider the following FO theory

represented by clauses, where capital letters are universally quantified variables. This example
shows that even if the FO theory has no disjunction, SMT solvers already have trouble:

Example 1.
𝑔(𝑠(𝑋), 𝑋)

¬𝑔(𝑋,𝑋)

If we give this theory to z3 [6] and assert 𝑔(𝑎, 𝑏), z3 returns "unknown" when using the
default mbqi (model-based quantifier instantiation) [7]. If we turn off mbqi and set 𝑔(𝑠(𝑋), 𝑋)
and 𝑔(𝑋,𝑋) as triggers, z3 will quickly halt and say "unknown".2. The SMT solver will have
generated enough instances to determine satisfiability, but it is not aware of that. SMT solvers
do well with conjunctive normal form problems without uninterpreted function symbols, but
may have trouble with satisfiable problems with uninterpreted function symbols.

We now consider an FO theory that contains disjunction, to discuss trigger selection:

Example 2.
𝐶1 : ¬𝑝(𝑋1, 𝑌1) ∨ 𝑞(𝑓(𝑋1), 𝑌1)

𝐶2 : ¬𝑞(𝑋2, 𝑌2) ∨ 𝑝(𝑋2, 𝑓(𝑌2))

This is another theory that z3 cannot solve when presented with ground clause 𝑝(𝑎, 𝑏). The
previous example only consisted of unit clauses, so there was no question of which literals to
select for triggers. But in this example, we need to decide which literals to select for triggers.
So we now consider three possible trigger selection strategies.

1. If we select 𝑞(𝑓(𝑋1), 𝑌1) and 𝑝(𝑋2, 𝑓(𝑌2)) as triggers, we show whenever an SMT solver
halts without saying "unsatisfiable", the ground model it has created is actually a model of
the FO theory. In fact, for a fragment of FO logic to which this theory with this selection
function belongs, we show that the SMT solver is a polynomial-time decision procedure.

2. If we select ¬𝑝(𝑋1, 𝑌1) and ¬𝑞(𝑋2, 𝑌2) as triggers,3 a halting SMT solver can determine
satisfiability. Unfortunately, given ground clause 𝑝(𝑎, 𝑏) the procedure will not halt.

3. If we select 𝑞(𝑓(𝑋1), 𝑌1) and ¬𝑞(𝑋2, 𝑌2), then the SMT solver will return "unknown",
because ground clauses 𝑝(𝑎, 𝑏) and ¬𝑝(𝑓(𝑎), 𝑓(𝑏)) are unsatisfiable in that theory, but
the SMT solver will not generate any instances. However, if we add the FO clause
¬𝑝(𝑋3, 𝑌3) ∨ 𝑝(𝑓(𝑋3), 𝑓(𝑌3)) to the FO theory, and select either literal in that clause,
the SMT solver is complete.

In the first trigger selection (and the third one with the extra clause), the SMT solver creates
enough instantiations to guarantee satisfiability. Unfortunately, the instantiations will not halt

2We don’t mean to pick on z3. We also ran this on cvc5 [8], veriT [9] and SMTInterpol [10]. They all returned
"unknown" or ran forever.

3To reduce instantiation, we use entire literals as triggers.



for the second one. For all but the second case, there is an ordering where we selected all the
maximal literals in each clause. For the second case, there is no such ordering.

Our purpose is not to create a new inference system, but to understand when existing SMT
solvers could answer "satisfiable" instead of "unknown", such as the above examples. If a set
of FO clauses is saturated under Resolution with a valid selection function (as defined below),
we choose the literals selected during Resolution to be the triggers. If an SMT solver halts
with "unsatisfiable", the problem is unsatisfiable. But if the SMT solver halts without detecting
unsatisfiability, most SMT solvers would say "unknown". However, using our method of trigger
selection, we can know the problem is satisfiable. Furthermore, the partial ground model that
the SMT solver has constructed can be extended to a model of the FO theory. In Example 1, the
FO theory is saturated. In Example 2, the first-order theory is saturated under all three selection
functions, assuming that the additional clause is added in the third case.

If, in addition, a single maximum literal is selected in each clause in the saturation of the FO
theory, the SMT procedure will halt, and therefore the SMT procedure is a decision procedure.
Alternatively, if the order is isomorphic to 𝜔, 4 then selecting all maximal literals will give a
decision procedure. If, in addition, the chosen order is a polynomial ordering which is totalizable
on ground terms, the SMT solver is guaranteed to decide satisfiability in polynomial time if all
clauses are Horn or all clauses contain at most two literals.

In Section 2 of this paper, we give some well-known definitions and some definitions specific
to this paper. In Section 3 we define the inference rules used to model our procedure. Section 4
proves the completeness. Section 5 shows cases where we are guaranteed to have a decision
procedure and where it is guaranteed to run in polynomial time. Section 6 gives related work,
and Section 7 summarizes the paper and gives some important future work. All proofs can be
found in [11].

2. Preliminaries

We consider a set of ground formulas modulo a set of first-order formulas, which are in con-
junctive normal form. We follow standard definitions for Resolution theorem proving [4], plus
some new definitions that are specific to this paper.

We assume we are given a set of variables, which we represent with capital letters, and a
set of uninterpreted function symbols of various arities, represented with lower case letters.
An arity is a non-negative integer. Terms are defined recursively in the following way: each
variable is a term, and if 𝑡1, · · · , 𝑡𝑛 are terms, and 𝑓 is of arity 𝑛 ≥ 0, then 𝑓(𝑡1, · · · , 𝑡𝑛) is a
term. If 𝑃 is a predicate symbol of arity 𝑛, and if 𝑡1, · · · , 𝑡𝑛 are terms, then 𝑃 (𝑡1, · · · , 𝑡𝑛) is an
atom. Any atom or negation of an atom is a literal. A literal is called negative if it is negated,
and positive otherwise. For all literals 𝐿, we define �̄� so that �̄� = ¬𝐿 and ¬�̄� = 𝐿. A clause is a
multiset of literals, representing a disjunction of literals. If 𝐿 is a literal, and Γ is a set of literals,
we will write 𝐿 ∨ Γ to represent {𝐿} ∪ Γ. We use ⊥ to represent the empty clause. We will use
“−” to denote multiset difference. For any object 𝐶 , define 𝑉 𝑎𝑟𝑠(𝐶) as the set of variables in 𝐶 .
If 𝑉 𝑎𝑟𝑠(𝐶) = ∅ we say that 𝐶 is ground, otherwise we say that 𝐶 is non-ground.

4There are only finitely many atoms smaller than any given atom.



A substitution is a mapping from the set of variables to the set of terms, which is almost every-
where the identity. We identify a substitution with its homomorphic extension. Composition of
substitutions 𝜎 and 𝜌 is defined so that 𝑋(𝜎𝜌) = (𝑋𝜎)𝜌 for all variables 𝑋 . If 𝜃 is a substitution
then 𝐷𝑜𝑚(𝜃) = {𝑋 | 𝑋𝜃 ̸= 𝑋}, and 𝑅𝑎𝑛(𝜃) = {𝑋𝜃 | 𝑋 ∈ 𝐷𝑜𝑚(𝜃)}. A substitution 𝜃
matches 𝐴 to 𝐵 if 𝐴𝜃 = 𝐵, and is a unifier of 𝐴 and 𝐵, if 𝐴𝜃 = 𝐵𝜃. 𝜎 is a most general unifier
of 𝐴 and 𝐵, written 𝜎 = 𝑚𝑔𝑢(𝐴,𝐵) if 𝜎 is a unifier of 𝐴 and 𝐵, and for all unifiers 𝜃 of 𝐴 and
𝐵, there is a substitution 𝜌 such that 𝑋𝜎𝜌 = 𝑋𝜃 for all 𝑋 in 𝑉 𝑎𝑟𝑠(𝐴 ∪𝐵). Given a clause 𝐶 ,
define 𝐺𝑟(𝐶) = {𝐶𝜃|𝐶𝜃 is ground }. Given a set of clauses 𝑆, let 𝐺𝑟(𝑆) =

⋃︀
𝐶∈𝑆 𝐺𝑟(𝐶).

We assume an ordering < is a well-founded ordering which is stable, meaning that if 𝑠 < 𝑡
then 𝑠𝜃 < 𝑡𝜃. We assume the ordering is totalizable on all ground terms and atoms. This means
the ordering can be extended to an ordering that is total on ground terms. It can be extended to
literals in any way such that 𝐴 < ¬𝐴 for all atoms 𝐴. We also assume the ordering is an atom
ordering meaning that for all literals 𝐿 and 𝑀 , 𝐿 > 𝑀 implies 𝐿 > �̄� . Clauses are compared
using the multiset ordering. A literal 𝐿 is said to be maximum in a clause 𝐶 if 𝐿 is larger than
all other literals in 𝐶 , and maximal in 𝐶 if no other literal in 𝐶 is larger than 𝐿. An order is a
polynomial ordering if each atom only has polynomially many smaller atoms.

An partial interpretation (or just interpretation) 𝐼 is defined as a consistent set of ground
literals such that 𝐼 |= 𝐿 if and only if 𝐿 ∈ 𝐼 . Therefore, an atom 𝐴 is undefined in 𝐼 if 𝐴 ̸∈ 𝐼 and
¬𝐴 ̸∈ 𝐼 . This differs with some definitions of interpretations where just the true positive literals
are given. Since clauses are multisets representing disjunctions, 𝐼 |= 𝐶 if 𝐼 ∩ 𝐶 ̸= ∅, otherwise
𝐶 is either false or undefined in 𝐼 . If 𝐶 is not ground then we say 𝐼 |= 𝐶 if 𝐼 |= 𝐺𝑟(𝐶). If
𝐼 is an interpretation and 𝑆 is a set of clauses, then 𝐼 is a model of 𝑆 if 𝐼 |= 𝐶 for all 𝐶 ∈ 𝑆.
Interpretations 𝐼1 and 𝐼2 are compatible if there is no literal 𝐿 such that 𝐿 ∈ 𝐼1 and �̄� ∈ 𝐼2. If
𝐼1 and 𝐼2 are compatible then 𝐼1 ∪ 𝐼2 is also an interpretation, furthermore, for any literal 𝐿,
𝐼1 ∪ 𝐼2 |= 𝐿 if and only if 𝐼1 |= 𝐿 or 𝐼2 |= 𝐿.

Given an interpretation 𝐼 and a ground clause 𝐶 , let 𝐹𝑖𝑙𝑡𝑒𝑟(𝐶, 𝐼) = {𝐿 ∈ 𝐶 | 𝐼 ̸|= �̄�}. If 𝑆
is a set of ground clauses, let 𝐹𝑖𝑙𝑡𝑒𝑟(𝑆, 𝐼) = {𝐹𝑖𝑙𝑡𝑒𝑟(𝐶) | 𝐶 ∈ 𝑆 𝐼 ̸|= 𝐶}. i.e., 𝐹𝑖𝑙𝑡𝑒𝑟(𝑆, 𝐼) is
created from 𝑆 by removing all clauses true in 𝐼 , and then removing all literals false in 𝐼 from
the remaining clauses.

Example 3. Consider interpretation 𝐼 = {¬𝑝(𝑎), 𝑝(𝑏)} where 𝑆 is the set of clauses in the
following example:

𝐶1 : 𝑝(𝑎) ∨ ¬𝑝(𝑏) ∨ 𝑝(𝑐)

𝐶2 : ¬𝑝(𝑎) ∨ ¬𝑝(𝑏) ∨ 𝑝(𝑑)

Then 𝐹𝑖𝑙𝑡𝑒𝑟(𝐶1, 𝐼) = 𝑝(𝑐), and 𝐹𝑖𝑙𝑡𝑒𝑟(𝑆, 𝐼) is the set consisting of the unit clause 𝑝(𝑐).

3. Inference System

We want to model an SMT solver without any theories except for a quantified FO theory in
CNF, represented by clauses with universal variables. Given a set of clauses 𝑆, let 𝑔(𝑆) be the
set of all ground clauses in 𝑆, and let 𝑛𝑔(𝑆) be the set of all non-ground clauses in 𝑆. An SMT
solver would build a model from 𝑔(𝑆). Call that model 𝑀𝑔(𝑆). For most of this paper, it will not



be important how that model is built. The SMT solver will use 𝑀𝑔(𝑆) to instantiate the clauses
of 𝑛𝑔(𝑆). We will use inference rules to model the instantiation process.

Let 𝑇𝑟𝑖𝑔 be a function so that for each clause 𝐶 in 𝑛𝑔(𝑆), 𝑇𝑟𝑖𝑔(𝐶) ⊆ 𝐶 and
𝑉 𝑎𝑟𝑠(𝑇𝑟𝑖𝑔(𝐶)) = 𝑉 𝑎𝑟𝑠(𝐶), which determines which parts of 𝐶 are used for instantiation.
Below we show how to choose triggers in such a way that when we have a model, and no more
instantiations can be performed, we can deduce that 𝑆 is satisfiable. The Instantiation rule is
used to instantiate non-ground clauses based on a ground interpretation 𝐼 .

𝐼-Instantiation:
𝐿1 ∨ · · · ∨ 𝐿𝑛 ∨ Γ

(𝐿1 ∨ · · · ∨ 𝐿𝑛 ∨ Γ)𝜃

where

1. 𝐿1 ∨ · · · ∨ 𝐿𝑛 ∨ Γ ∈ 𝑛𝑔(𝑆),
2. 𝑇𝑟𝑖𝑔(𝐿1 ∨ · · · ∨ 𝐿𝑛 ∨ Γ) = {𝐿1, · · · , 𝐿𝑛}
3. there exists 𝐿′

1 · · ·𝐿′
𝑛 in 𝐼 such that 𝐿�̄�𝜃 = 𝐿′

𝑖 for all 1 ≤ 𝑖 ≤ 𝑛

We do not consider equality, so we only require 𝜃 to be a matcher, not an 𝐸-matcher. SMT
solvers allow triggers to be subterms of a literal. But to reduce the number of instantiations, we
only use entire literals as triggers. Furthermore, we only need to match a ground literal in the
model onto the complement of a non-ground literal. This allows the instantiation rule to be
more restrictive than is usually the case for trigger-based instantiation in SMT. Finally, SMT
solvers allow for different possible sets of triggers for the same clause. We only require one set
of triggers for each clause.

A set of clauses 𝑆 is saturated by Instantiation if either 𝑔(𝑆) is unsatisfiable or there exists a
model 𝑀𝑔(𝑆) of 𝑔(𝑆) such that every conclusion of an 𝑀𝑔(𝑆)-Instantiation inference is in 𝑆.

Example 4.
𝐶1 : ¬𝑝(𝑋1, 𝑌1) ∨ 𝑞(𝑓(𝑋1), 𝑌1)

𝐶2 : ¬𝑞(𝑋2, 𝑌2) ∨ 𝑝(𝑋2, 𝑓(𝑌2))

𝐶3 : ¬𝑝(𝑓(𝑎), 𝑓(𝑏))

We define 𝑇𝑟𝑖𝑔1 so that 𝑇𝑟𝑖𝑔1(𝐶1) = {𝑞(𝑓(𝑋1), 𝑌1)} and 𝑇𝑟𝑖𝑔1(𝐶2) = {𝑝(𝑋2, 𝑓(𝑌2))}.
Given the model 𝑀1 = {¬𝑝(𝑓(𝑎), 𝑓(𝑏))} of 𝐶3, we apply the Instantiation rule to create
the clause 𝐶4 = ¬𝑞(𝑓(𝑎), 𝑏) ∨ 𝑝(𝑓(𝑎), 𝑓(𝑏)). Then, we can create a new model 𝑀2 =
{¬𝑝(𝑓(𝑎), 𝑓(𝑏)),¬𝑞(𝑓(𝑎), 𝑏)} of 𝐶3 and 𝐶4. Instantiation then creates 𝐶5 = ¬𝑝(𝑎, 𝑏) ∨
𝑞(𝑓(𝑎), 𝑏), and we create a new model 𝑀3 = {¬𝑝(𝑓(𝑎), 𝑓(𝑏)),¬𝑞(𝑓(𝑎), 𝑏),¬𝑝(𝑎, 𝑏)} of 𝐶3

and 𝐶4. These five clauses are now saturated by Instantiation.
Consider the same set of three clauses with a different trigger function 𝑇𝑟𝑖𝑔2 defined so

that 𝑇𝑟𝑖𝑔2(𝐶1) = {𝑞(𝑓(𝑋1), 𝑌1)} and 𝑇𝑟𝑖𝑔2(𝐶2) = {¬𝑞(𝑋2, 𝑌2)}. Let 𝑀1 be the same
model as before. There are no instantiations, so the three clauses are saturated by Instanti-
ation. Suppose we also had the clause 𝐶6 = 𝑝(𝑎, 𝑏). Then the model of the clauses would
be 𝑀4 = {¬𝑝(𝑓(𝑎), 𝑓(𝑏)), 𝑝(𝑎, 𝑏)}. The set of clauses {𝐶1, 𝐶2, 𝐶3, 𝐶6} is again saturated by
Instantiation, although it is unsatisfiable. In other words, this was not a good choice of triggers.



The theory {𝑝(𝑋1),¬𝑝(𝑋2)}, with no ground clauses, is unsatisfiable, but no instantiations
exist. So there cannot be a set of triggers that guarantees completeness for all formulas. To
address this problem, we require the non-ground clauses to be saturated under the Factoring and
Resolution inference rule defined below. These inference rules depend on a selection function,
which selects the literals in each clause that may be used in an inference. A selection function
maps a clause to a subset of its literals, just like the trigger function. A selection function
𝑆𝑒𝑙 is valid if, for each clause 𝐶 and for each 𝑇 ⊆ 𝑆𝑒𝑙(𝐶) with 𝑉 𝑎𝑟𝑠(𝑇 ) ̸= 𝑉 𝑎𝑟𝑠(𝐶), either
𝑆𝑒𝑙(𝐶)− 𝑇 contains all maximal literals in 𝐶 − 𝑇 , or 𝑆𝑒𝑙(𝐶)− 𝑇 contains a negative literal.

Before we give an intuition of this definition, let us give some properties:

Proposition 1. For any clause 𝐶 and valid selection function 𝑆𝑒𝑙, 𝑉 𝑎𝑟𝑠(𝑆𝑒𝑙(𝐶)) = 𝑉 𝑎𝑟𝑠(𝐶).

Proposition 2. Let 𝑆𝑒𝑙 be a selection function such that for all 𝐶 , 𝑉 𝑎𝑟𝑠(𝑆𝑒𝑙(𝐶)) = 𝑉 𝑎𝑟𝑠(𝐶)
and either (1) 𝑆𝑒𝑙(𝐶) contains only negative literals or (2) 𝑆𝑒𝑙(𝐶) is a singleton set containing the
maximum literal in 𝐶 . Then 𝑆𝑒𝑙 is a valid selection function.

Selection functions normally select all maximal literals or a negative literal. We additionally
require 𝑆𝑒𝑙(𝐶) to contain all the variables in 𝐶 . We also require that if some of the literals from
the selected set are removed from the clause, without covering all the variables, the remaining
selected set must contain all maximal literals in the remaining clause or a negative literal. In
the completeness proof, we will filter our clauses by the ground model, and must ensure that
the filtered clauses still have a valid selection function.

In Example 4 with trigger function 𝑇𝑟𝑖𝑔1, if the selection function is the same as the trigger
function, it is easy to construct an ordering where the selected literal is the largest in 𝐶1 and
𝐶2. So this is a valid selection function. If the trigger function is 𝑇𝑟𝑖𝑔2, the same is true for 𝐶1.
For 𝐶2, 𝑇𝑟𝑖𝑔2(𝐶2) contains only negative literals, so the selection function is valid.

Let us look at one more example. Consider the following set of clauses, with an ordering
where 𝑟(𝑡1) > 𝑞(𝑡2) > 𝑝(𝑡3) for all terms 𝑡1, 𝑡2, 𝑡3.

Example 5.
𝐶1 : ¬𝑝(𝑋1) ∨ ¬𝑞(𝑋1)

𝐶2 : 𝑝(𝑋2) ∨ ¬𝑞(𝑋2)

𝐶3 : ¬𝑝(𝑋3) ∨ 𝑞(𝑋3)

𝐶4 : 𝑝(𝑋4) ∨ 𝑞(𝑋4) ∨ ¬𝑟(𝑌4)

Let 𝑆𝑒𝑙1 be the selection function such that 𝑆𝑒𝑙1(𝐶1) = {¬𝑝(𝑋1)}, 𝑆𝑒𝑙1(𝐶2) = {¬𝑞(𝑋2)},
𝑆𝑒𝑙1(𝐶3) = {𝑞(𝑋3)}, and 𝑆𝑒𝑙1(𝐶4) = {¬𝑟(𝑌4)}. 𝑆𝑒𝑙1 is not valid, because 𝑆𝑒𝑙1(𝐶4) does
not contain all the variables of 𝐶4. So let 𝑆𝑒𝑙2 be a selection function identical to 𝑆𝑒𝑙1 on the
first three clauses, but 𝑆𝑒𝑙2(𝐶4) = {𝑝(𝑋4),¬𝑟(𝑌4)}. This selection function is also not valid
because in clause 𝐶4 if we let 𝐷 = {¬𝑟(𝑌4)}, then 𝑆𝑒𝑙2(𝐶4) −𝐷 = {𝑝(𝑋4)}, and 𝑝(𝑋4) is
neither maximal nor negative in 𝑝(𝑋4) ∨ 𝑞(𝑋4). Finally we define 𝑆𝑒𝑙3 to be the same as 𝑆𝑒𝑙1
on the first three clauses but 𝑆𝑒𝑙3(𝐶4) = {𝑞(𝑋4),¬𝑟(𝑌4)}. This selection function is valid.

Given a valid selection function, our inference system will consist of three inference rules.
We defined Instantiation above. Below we define Resolution and Factoring:



Resolution:
𝐴 ∨ Γ ¬𝐵 ∨∆

(Γ ∨∆)𝜎

where (1) 𝐴∨Γ ∈ 𝑛𝑔(𝑆) , (2) ¬𝐵 ∨∆ ∈ 𝑛𝑔(𝑆), (3) 𝐴 is selected in 𝐴∨Γ, (4) ¬𝐵 is selected
in ¬𝐵 ∨∆, and (5) 𝜎 = 𝑚𝑔𝑢(𝐴,𝐵).

Factoring:
𝐴 ∨𝐵 ∨ Γ

(𝐴 ∨ Γ)𝜎

where (1) 𝐴 ∨𝐵 ∨ Γ ∈ 𝑛𝑔(𝑆) , (2) 𝐴 is selected in 𝐴 ∨𝐵 ∨ Γ, and (3) 𝜎 = 𝑚𝑔𝑢(𝐴,𝐵).
When applying Resolution and Factoring, it is important to remove redundant clauses. In

particular, implementations remove subsumed clauses and tautologies.

Definition 1. A clause 𝐶 subsumes a clause 𝐷 if there is a substitution 𝜎 such that 𝐶𝜎 ⊆ 𝐷. A
clause 𝐶 is a tautology if there is an atom 𝐴 such that 𝐴 ∈ 𝐶 and ¬𝐴 ∈ 𝐶 . A set of clauses 𝑆
(possibly infinite) is saturated by Resolution and Factoring if the conclusion of every Resolution
and Factoring inference in 𝑆 is either a tautology or is subsumed in 𝑆. 𝑆 is completely saturated
if 𝑆 is saturated by Instantiation and saturated by Resolution and Factoring.

In Example 4, with selection and trigger function 𝑇𝑟𝑖𝑔1, the set {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} is
completely saturated. If the selection and trigger function are 𝑇𝑟𝑖𝑔2, the set {𝐶1, 𝐶2, 𝐶3}
is saturated by Instantiation but not saturated by Resolution and Factoring. The result of a
Resolution between 𝐶1 and 𝐶2 is 𝐶7 = ¬𝑝(𝑋7, 𝑌7)∨𝑝(𝑓(𝑋7), 𝑓(𝑌7)). We extend the selection
and trigger function to 𝐶7. Suppose we extend 𝑇𝑟𝑖𝑔2 so that 𝑇𝑟𝑖𝑔2(𝐶7) = {𝑝(𝑓(𝑋7), 𝑓(𝑌7))}.
Then an instantiation will give us 𝐶8 = ¬𝑝(𝑎, 𝑏) ∨ 𝑝(𝑓(𝑎), 𝑓(𝑏)). Extending the model to
{𝑝(𝑎, 𝑏), 𝑝(𝑓(𝑎), 𝑓(𝑏))} allows us to see that {𝐶1, 𝐶2, 𝐶3, 𝐶7, 𝐶8} is completely saturated.

In Example 5, if we add a ground clause 𝐶5 = 𝑟(𝑎), then {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5} is completely
saturated under selection function 𝑆𝑒𝑙2, because every Resolution inference yields a tautology,
even though the set is unsatisfiable. So if we had only required valid selection functions to select
a negative literal or all maximal literals in each clause, we could not prove completeness, even
if we additionally required that the selected literals contain all the variables in the clause. Using
selection function 𝑆𝑒𝑙3, the set of clauses is not saturated under Resolution and Factoring.

4. Completeness Proof

In this section we will prove the completeness of our inference system. Given a set of clauses 𝑆,
the first step in our completeness proof is to filter the ground instances of 𝑛𝑔(𝑆) with a model
𝑀𝑔(𝑆) of 𝑔(𝑆). Let 𝐹 (𝑆) = 𝐹𝑖𝑙𝑡𝑒𝑟(𝐺𝑟(𝑛𝑔(𝑆)),𝑀𝑔(𝑆)).

We explain 𝐹 (𝑆) with an example, where we write 𝑓𝑛(𝑎) to abbreviate 𝑓 applied 𝑛 times to
𝑎. Note that 𝑆 is not saturated under Instantiation in this example, although in the proof we
only construct 𝐹 (𝑆) for completely saturated sets.

Example 6. Let 𝑛𝑔(𝑆) = {¬𝑝(𝑋) ∨ 𝑝(𝑓(𝑋))}. Suppose that we have the model 𝑀𝑔(𝑆) =
{¬𝑝(𝑓(𝑎)), 𝑝(𝑓3(𝑎))} of 𝑔(𝑆). Then 𝐺𝑟(𝑛𝑔(𝑆)) = {¬𝑝(𝑓𝑛(𝑎)) ∨ 𝑝(𝑓𝑛+1(𝑎)) | 𝑛 ≥ 0}. So
𝐹 (𝑆) is the set of clauses {¬𝑝(𝑎), 𝑝(𝑓4(𝑎))} ∪ {¬𝑝(𝑓𝑛(𝑎)) ∨ 𝑝(𝑓𝑛+1(𝑎)) | 𝑛 ≥ 4}.



Instances of subsumed clauses and tautologies in 𝑆 are also subsumed clauses and tautologies
in 𝐹 (𝑆), if they exist in 𝐹 (𝑆).

Lemma 1. Let 𝐷 be a clause in 𝑆. Let 𝜃 be a ground substitution. Let 𝐷′ = 𝐹𝑖𝑙𝑡𝑒𝑟(𝐷𝜃,𝑀𝑔(𝑆)).
Then (a) If 𝐷 is a tautology then either 𝐷′ is not in 𝐹 (𝑆) or 𝐷′ is a tautology. (2) If 𝐷 is subsumed
in 𝑆 then either 𝐷′ is not in 𝐹 (𝑆) or there is a clause 𝐶 ′ in 𝐹 (𝑆) such that 𝐶 ′ ⊆ 𝐷′.

Subsumption and tautology deletion are instances of the concept of redundancy,5 A clause 𝐶
may be redundant in 𝑆 but 𝐹𝑖𝑙𝑡𝑒𝑟(𝐶) not redundant in 𝐹 (𝑆), so our filtering technique does
not cover redundancy in full. However, subsumption and tautology deletion are what is mainly
used in practice to control saturation.

Example 7. Let 𝑆 be a set of clauses such that 𝑛𝑔(𝑆) = {𝑝(𝑋)∨𝑞(𝑋),¬𝑞(𝑋),¬𝑟(𝑋)∨𝑝(𝑋)}
with 𝑀𝑔(𝑆) = {𝑟(𝑎)} and an ordering such that 𝑝(𝑠) < 𝑞(𝑡) < 𝑟(𝑢) for all terms 𝑠, 𝑡, 𝑢. Then
¬𝑟(𝑋)∨𝑝(𝑋) is implied by smaller clauses 𝑝(𝑋)∨𝑞(𝑋) and ¬𝑞(𝑋). But when we apply filtering,
we get clauses {𝑝(𝑎) ∨ 𝑞(𝑎),¬𝑞(𝑎), 𝑝(𝑎)}, and 𝑝(𝑎) is not implied by smaller clauses.

To prove completeness, we will let 𝑆 be a completely saturated set of clauses with 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙.
We show that if ⊥ is not in 𝑆 and 𝑔(𝑆) is satisfiable, then a model of 𝑛𝑔(𝑆) can be constructed
which is compatible with the model of 𝑔(𝑆).

First we need some definitions. For a set of clauses 𝑆, let 𝑆<𝐶 = {𝐷 ∈ 𝑆 | 𝐷 < 𝐶}
be the set of clauses in 𝑆 that are smaller than 𝐶 . We will create an interpretation from a
set of positive literals. So, given a set of positive literals 𝑇 and a set of literals 𝑈 , we define
𝐼𝑛𝑡(𝑇,𝑈) = 𝑇 ∪{¬𝐴 | 𝐴 ̸∈ 𝑇, (𝑈−𝑇 )∩{𝐴,¬𝐴} ≠ ∅} In other words, it is the interpretation
where all the atoms in 𝑇 are true, and every atom in 𝑈 that has not been made true in 𝑇 is false.
For each clause 𝐶 ∈ 𝐹 (𝑆), we will define 𝑃<𝐶 , 𝑀<𝐶 and 𝑃𝐶 co-recursively.

Definition 2. Let 𝐹 (𝑆) be the clause set defined above, and 𝐶 be a clause in 𝐹 (𝑆).

1. Define 𝑃<𝐶 as the set of positive literals
⋃︀

𝐷∈𝐹 (𝑆)<𝐶
𝑃𝐷 , where 𝑃𝐷 is defined below.

2. Define 𝑃𝐹 (𝑆) =
⋃︀

𝐶∈𝐹 (𝑆) 𝑃𝐶 , the union of all the 𝑃𝐶 defined below.
3. Let 𝑀<𝐶 = 𝐼𝑛𝑡(𝑃<𝐶 , 𝐶 ∪

⋃︀
𝐹 (𝑆)<𝐶), which means that 𝑀<𝐶 is the interpretation that

makes true all the atoms in 𝑃<𝐶 , and makes false all other atoms in clauses of 𝐹 (𝑆) that
are smaller than or equal to 𝐶 .

4. Similarly, let 𝑀𝐹 (𝑆) = 𝐼𝑛𝑡(𝑃𝐹 (𝑆),
⋃︀
𝐹 (𝑆)).

Simultaneously we define 𝑃𝐶 = {𝐴} for atom 𝐴 if (1) 𝑀<𝐶 ̸|= 𝐶 , (2) 𝐴 is the largest literal in
𝐶 , (3) 𝐴 is selected in 𝐶 , and (4) 𝐴 only occurs once in 𝐶 . Otherwise 𝑃𝐶 = ∅.

If 𝑃𝐶 = {𝐴}, we say that 𝐶 produces 𝐴.

The completeness proof is similar to the standard proof of completeness of Resolution, except
we deal with filtered clauses, so lifting is more complex. Also, we use Instantiation when the
filtering removes all the selected literals. The next lemma follows from the definition of 𝑃𝐶 .

5A clause is redundant if implied by smaller clauses.



Lemma 2. Let 𝐶 be a clause in 𝐹 (𝑆). Let 𝐿 be a literal in 𝐶 . Then (1) If 𝐿 is not maximum in 𝐶
then 𝑀𝐹 (𝑆) |= 𝐿 if and only if 𝑀<𝐶 |= 𝐿. (2) If 𝐶 produces 𝐿 then 𝐿 ∈ 𝑀𝐹 (𝑆).

For the proof below, we will assume that for every 𝐶 ∈ 𝑆 and 𝐿 ∈ 𝐶 , where 𝐶 ′ =
𝐹𝑖𝑙𝑡𝑒𝑟(𝐶𝜃,𝑀𝑔(𝑆)), then 𝐿𝜃 is selected in 𝐶𝜃 if and only if 𝐿𝜃 ∈ 𝐶 ′ and 𝐿 is selected in 𝐶 .

Theorem 1. Let 𝑆𝑒𝑙 be a valid selection function with 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙. Suppose that 𝑆 is completely
saturated and ⊥ ̸∈ 𝑆 and 𝑔(𝑆) is satisfiable. Let 𝑀𝑔(𝑆) be a model of 𝑔(𝑆) such that 𝑆 is saturated
by 𝑀𝑔(𝑆)-Instantiation. Then 𝑀𝐹 (𝑆) |= 𝐹 (𝑆) where 𝐹 (𝑆) = 𝐹𝑖𝑙𝑡𝑒𝑟(𝐺𝑟(𝑛𝑔(𝑆)),𝑀𝑔(𝑆)).

Proof Sketch 1. As usual in model construction proofs, we prove that 𝑀𝐹 (𝑆) is a model of 𝐹 (𝑆)
by showing that a least counterexample 𝐶 leads to a contradiction. As usual, if a negative is
selected, Resolution leads to a smaller counterexample. If the largest positive is selected, Factoring
leads to a smaller counterexample. However, all selected literal may have been filtered out. In
which case, Instantiation leads to a contradiction. In all cases, the filtering process allows ground
inferences to be lifted.

We can combine 𝑀𝐹 (𝑆) with 𝑀𝑔(𝑆) to get a model of 𝑆.

Corollary 1. Let 𝑆𝑒𝑙 be a valid selection function with 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙. Suppose that 𝑆 is completely
saturated and ⊥ ̸∈ 𝑆 and 𝑔(𝑆) is satisfiable. Let 𝑀𝑔(𝑆) be a model of 𝑔(𝑆) such that 𝑆 is saturated
by 𝑀𝑔(𝑆)-Instantiation. Let 𝐹 (𝑆) = 𝐹𝑖𝑙𝑡𝑒𝑟(𝐺𝑟(𝑛𝑔(𝑆)),𝑀𝑔(𝑆)). Then 𝑀𝐹 (𝑆) is compatible
with 𝑀𝑔(𝑆) and 𝑀𝐹 (𝑆) ∪𝑀𝑔(𝑆) |= 𝑆

5. Decision Procedure and Complexity Results

Next we assume the clauses are saturated by Resolution and Factoring, and find cases where
they can be further finitely saturated by Instantiation. Then SAT Solving plus Instantiation is
a decision procedure for the theory of 𝑛𝑔(𝑆). For example, if the selection function selects a
single maximum literal in each clause.

Theorem 2. Let 𝑆𝑒𝑙 be a valid selection function such that a single maximum literal is selected in
each clause of 𝑛𝑔(𝑆), with 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙. Suppose that 𝑆 is saturated by Resolution and Factoring.
Then 𝑆 can be saturated by Instantiation in finite time.

We also get a decision procedure if the ordering used is order isomorphic to 𝜔.

Theorem 3. Let 𝑆𝑒𝑙 be a valid selection function such that all maximal literals are selected in
each clause, with an ordering that is order isomorphic to 𝜔. Suppose that 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙 and that 𝑆
is saturated by Resolution and Factoring. Then 𝑆 can be saturated by Instantiation in finite time.

If the selection function selects a negative literal, then the Instantiation rule may not halt.

Example 8. Consider Example 4 where 𝑇𝑟𝑖𝑔(𝐶1) = {¬𝑝(𝑋1, 𝑌1)} and 𝑇𝑟𝑖𝑔(𝐶2) =
{¬𝑞(𝑋2, 𝑌2)}. This is saturated by Resolution and Factoring, but Instantiation with ground
clause 𝑝(𝑎, 𝑎) creates infinitely many clauses.



Even if all maximal literals are selected in each clause, there may still be infinitely many
instantiations, as in the following theory, with an ordering such that 𝑝(𝑠) > 𝑞(𝑡) for all 𝑠 and 𝑡.

Example 9.
𝐶 : ¬𝑝(𝑋) ∨ ¬𝑞(𝑌 ) ∨ 𝑞(𝑓(𝑌 ))

Suppose that 𝑆𝑒𝑙(𝐶) = {¬𝑝(𝑋),¬𝑞(𝑌 )}. This is a valid selection function, and 𝑝(𝑋) is the
maximum literal. But suppose we have 𝑝(𝑐) and 𝑞(𝑐) in the ground model. Instantiation will
create 𝑞(𝑓𝑛(𝑐)) for all 𝑛, all literals smaller than 𝑝(𝑐).

We would also like to determine conditions where Instantiation halts in polynomial time, given
that 𝑆 is already saturated by Resolution and Factoring. This requires that only polynomially
many instantiations are computed, and that the SAT solver runs in polynomial time.

To get polynomial time results, we must examine the details of an SMT solver. We assume
the SMT solver is based on a CDCL SAT solver [12]. We assume the SAT solver can decide
the value of a literal, propagate a literal, backjump and learn a literal, but we don’t assume the
Forget or Restart rule.

For Horn clauses, we assume that the initial decision about an atom is to make it false. It is
well-known that satisfiability of ground Horn clauses can be decided in polynomial time, but
we are not aware of any results that CDCL SAT solvers solve Horn clauses in polynomial time.

Theorem 4. Let < be a polynomial ordering. Let 𝑆𝑒𝑙 be a valid selection function such that
all maximal literals are selected in each clause of 𝑛𝑔(𝑆), with 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙. If 𝑆 is saturated by
Resolution and Factoring, and 𝑆 only contains Horn clauses, then the saturation of 𝑆 by CDCL
SAT solving and Instantiation runs in polynomial time if the initial decision for the truth value
of ground atoms is false. Therefore SAT solving plus Instantiation is a polynomial time decision
procedure for the theory of 𝑛𝑔(𝑆), if all ground clauses are Horn clauses.

Clause learning is crucial for 2SAT. Satisfiability of 2SAT can be decided in polynomial time,
but we have not seen any results that CDCL SAT solvers solve 2SAT in polynomial time.

Theorem 5. Let < be a polynomial ordering. Let 𝑆𝑒𝑙 be a valid selection function such that
all maximal literals are selected in each clause of 𝑛𝑔(𝑆), with 𝑇𝑟𝑖𝑔 = 𝑆𝑒𝑙. If 𝑆 is saturated by
Resolution and Factoring, and 𝑆 contains no clauses with more than two literals, then the saturation
of 𝑆 by CDCL SAT solving plus Instantiationin runs in polynomial time. Therefore CDCL SAT
solving plus Instantiation is a polynomial time decision procedure for the theory of 𝑛𝑔(𝑆), if all
ground clauses contain at most two literals.

Example 4 is Horn and 2SAT. Consider selection and trigger function 𝑇𝑟𝑖𝑔1, with 𝑝(𝑠1, 𝑠2) ≤
𝑝(𝑡1, 𝑡2) if 𝑠1 is a subterm of 𝑡1 and 𝑠2 is a subterm of 𝑡2. We do the same for 𝑞. CDCL SAT
solving plus Instantiation will solve this theory in polynomial time.

6. Related Work

The paper [13] discusses how a good selection of triggers will give a decision procedure.
Their approach is somewhat different from ours. The user needs to supply a correctness and



termination proof that the trigger choice will give a decision procedure. Our method is automatic,
and inherits the trigger selection function directly from the selection function used in saturation.
Good trigger selection is discussed from a practical point of view in [14, 15].

Other papers suggest other approaches to quantifiers instead of triggers. Some successful
approaches are Model-Based Quantifier Instantiation [7] for satisfiable problems, and Conflicting
Instances[16, 17] for unsatisfiable problems. Several other approaches have been proposed and
implemented [18, 19, 20, 21, 22, 23]. Our paper only deals with first-order theories without
equality, whereas the above mentioned papers consider other SMT theories.

Other papers have used Saturation under Ordered Resolution [24], as a way to show that a
first-order Theory is a Local Theory[25] meaning that the only instantiations necessary are to
replace variables with terms smaller than initial ground terms. In this approach, all possible
instantiations are made at the beginning. This approach was further extended in [26, 27] to
cover other theories. But these extensions still require instantiating all the instances at the
beginning. Finally, in [28], an approach was implemented where instantiations are only made
when necessary. But that approach is based on the instance generation method of [29, 30], which
is not the same as the SMT method. Finally, in [31], the local theory method was implemented
in an SMT setting. These ideas don’t involve triggers.

Another technique is for an SMT solver to call an FO theorem prover [32, 33, 34]. Our method
is different in that we do not need a first-order theorem prover after saturation of the FO clauses.

7. Conclusion

We analyzed the completeness of the trigger selection function for SMT solvers with an FO theory
𝑇 and no other theories. If 𝑇 is saturated by Resolution and Factoring with a valid selection
function identical to the trigger function, then Saturation by Instantiation gives a model of the
ground clauses, that is also a model of those clauses modulo the first-order theory. Saturation
by Instantiation is guaranteed to halt if the Selection function selects a single maximum literal
in each clause, or if all maximal clauses are selected using an ordering isomorphic to 𝜔. If it is
also a polynomial ordering, then Saturation by Instantiation is guaranteed to halt in polynomial
time if all clauses are Horn Clauses, or if all clauses contain at most two literals.

SMT solvers often return "unknown" on problems that seem to be easily shown to be satisfiable.
We hope implementers of SMT solvers will use our results to return "satisfiable" in more cases.
It requires no change to the SMT process. The only change is in the pre-processing, where the
SMT solver checks if the FO classes are saturated by a valid selection function, and uses the
identical trigger function. At the end, if no contradiction is found, the SAT solver will return
"satisfiable", and also return a model modulo extendable to the FO theory.

We have implemented an SMT solver that, given a satisfiable saturated first-order theory,
will detect satisfiability and return a ground model. We experimented with our SMT solver
using some first-order theories presented in the appendices. Since this is a new SMT solver, we
don’t expect it to be competitive in speed with existing SMT solvers. However, this paper is not
about increasing the speed of an SMT solver. It is about making SMT solvers more precise.

We plan lots of future work on this subject. To make this useful, we need to extend the results
to more theories. We are working on extending it to equality with uninterpreted function



symbols. Later work will be to extend it to other specialized theories.
Even in the non-equational case, there are many unanswered questions. For example, can

this be extended to theories which cannot be saturated under Resolution. These results basically
give Herbrand models. There may be ways to use other models to strengthen these results.
There are several more detailed results that are not answered in this paper. Does the proof
technique work for all cases of redundancy, not just subsumption and tautology deletion? Other
decision procedures may be possible by loosening the restrictions on the ordering.
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