
Automated Analysis of Halo2 Circuits
Fatemeh Heidari Soureshjani

1,2
, Mathias Hall-Andersen

3
,

MohammadMahdi Jahanara
2
, Jeffrey Kam

2
, Jan Gorzny

2
and Mohsen Ahmadvand

2

1Computer Engineering and Software Engineering Department, Polytechnique Montréal, Montreal, Quebec, Canada
2Quantstamp, Inc., USA
3Department of Computer Science, Aarhus University, Denmark

Abstract
Zero-knowledge proof systems are becoming increasingly prevalent and being widely used to secure

decentralized financial systems and protect the privacy of users. Given the sensitivity of these applications,

zero-knowledge proof systems are a natural target for formal verification methods. We describe methods

for checking one such proof system: Halo2. We use abstract interpretation and an SMT solver to

check various properties of Halo2 circuits. Using abstract interpretation, we can detect unused gates,

unconstrained cells, and unused columns. Using an SMT solver, we can detect under-constrained

circuits (in the sense that for the same public input they have two efficiently computable satisfying

assignments). This is the first work we are aware of that applies lightweight formal methods to PLONKish

arithmetization and Halo2 circuits.

Keywords
Zero-Knowledge Proof Systems, Halo2, Formal Methods, Abstract Interpretation, SMT

1. Introduction

A zero-knowledge proof system is a protocol that allows a prover to convince a verifier that

certain statement is true without revealing any other information [1]. Recently, a specific

type of these proof systems which are classed as a so-called zk-SNARK (defined below) have

gained popularity in part due to their applications in scaling blockchain systems and building

privacy-preserving applications.

This popularity comes from three desirable properties of zk-SNARK systems: that they are

zero-knowledge, that their proofs are succinct, and that these protocols are non-interactive. A

proof system is zero-knowledge if the verifier gains no knowledge beyond the correctness of the

statement being proved, and it is succinct if verifying the proof takes time poly-logarithmic in

the computation. The proof system is non-interactive if the prover can generate the proof in

one round and any verifier can check this proof and be convinced of the outcome.

21st International Workshop on Satisfiability Modulo Theories, July 5-6, 2023, Rome, Italy
$ fatemeh.heidari-soureshjani@polymtl.ca (F. H. Soureshjani); mathias@hall-andersen.dk (M. Hall-Andersen);

mohammad@quantstamp.com (M. Jahanara); jeffrey@quantstamp.com (J. Kam); jan@quantstamp.com (J. Gorzny);

mohsen@quantstamp.com (M. Ahmadvand)

� 0000-0003-2197-8078 (F. H. Soureshjani); 0000-0002-0195-6659 (M. Hall-Andersen); 0009-0009-4483-406X

(M. Jahanara); 0000-0002-4332-0026 (J. Kam); 0000-0003-1435-8508 (J. Gorzny); 0009-0006-2125-2225

(M. Ahmadvand)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fatemeh.heidari-soureshjani@polymtl.ca
mailto:mathias@hall-andersen.dk
mailto:mohammad@quantstamp.com
mailto:jeffrey@quantstamp.com
mailto:jan@quantstamp.com
mailto:mohsen@quantstamp.com
https://orcid.org/0000-0003-2197-8078
https://orcid.org/0000-0002-0195-6659
https://orcid.org/0009-0009-4483-406X
https://orcid.org/0000-0002-4332-0026
https://orcid.org/0000-0003-1435-8508
https://orcid.org/0009-0006-2125-2225
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

A zero-knowledge proof system that has all three properties is often called a zero-knowledge
Succinct Non-interactive ARguments of Knowledge or zk-SNARK for short. Example zk-SNARKs

include Groth16 [2], Halo [3], and PLONK [4].

The properties of zk-SNARKs described above make zk-SNARKs attractive and useful for

blockchain applications. First, zero-knowledge proof systems may be used to enable private

and anonymous transactions on these trustless ledgers. For example, Tornado Cash [5] is a

zero-knowledge application to anonymize transactions on the Ethereum blockchain [6]. Second,

the non-interactive and succinct properties of such a system may be used to scale these systems

even when the zero-knowledge property is not desired. That is, succinctness is valuable even

when all inputs to the proof system are assumed to be public. Succinct proofs enable scaling of

blockchains like Ethereum as computation can be performed off-chain, but verified on-chain. So-

called rollups (also called validating bridges [7] or commit-chains [8]) are protocols that conform

to this idea of separating execution and verification. Rollups which utilize zero-knowledge

proof systems are called zero-knowledge rollups1
. Example of zero-knowledge rollups include

the Polygon zkEVM, StarkNet, and Scroll, among others.

zk-SNARKs are often used to prove statements of the format “For function 𝑓 and public input
𝑥, I know a private witness 𝑤 such that 𝑓(𝑥,𝑤) = 𝑦”. A suitable artihmetization of the function

is necessary as the SNARK proves a NP relation, often over a finite field. This can be done

directly for simple functions, or using a compiler from a Domain-Specific Language (DSL) for

more complex functions like those that represent the execution of virtual machines. Examples

of zero-knowledge DSLs include Circom [9] and ZoKrates [10]. The use of these DSLs enable

developers to build zero-knowledge applications by abstracting away the explicit notion of

computing the function 𝑓 described above.

Unsurprisingly, zero-knowledge applications may contain bugs. First, developers writing

such zero-knowledge applications in a DSL may introduce bugs directly. Second, there may

be errors in the resulting arithmetization introduced by the DSL compiler (e.g., bugs in Leo
2

and Noir
3
). To make matters worse, for complicated applications, these proof systems translate

computations to arithmetizations too large to be manually checked.

To overcome this challenge, the zero-knowledge application community has turned to tooling.

Automated tools like Ecne
4
, Picus

5
, and QED

2
[11] exist for checking Rank-1 Constraint System

(R1CS) arithmetizations. These tools often check various notions of correctness, but pay special

attention to whether or not the resulting system is under-constrained: if it has multiple valid

efficiently computed assignments to satisfy the constraints (this is defined formally in Section

3.2). Under-constrained circuits could have allowed user funds to be stolen in Tornado Cash

[12] or allowed repeated spending of tokens in the Aztec network [13], though both instances

have been corrected.

Other representations exist and often build on the PLONK [4] proof system; these are said

to use PLONKish arithmetization. Oversimplifying, this representation transforms a compu-

1

We note that the term zero-knowledge rollup is a misnomer: the zero-knowledge part is often not important; more

accurately these systems only value the computational integrity proofs generated by the zero-knowledge framework.

2

https://github.com/AleoHQ/leo/issues/2042

3

https://github.com/noir-lang/noir/issues/358

4

https://github.com/franklynwang/EcneProject

5

https://github.com/Veridise/Picus

https://github.com/AleoHQ/leo/issues/2042
https://github.com/noir-lang/noir/issues/358
https://github.com/franklynwang/EcneProject
https://github.com/Veridise/Picus

tation to a circuit, consisting of a set of gates. Each circuit is represented as a table of values

and polynomials constraining the table’s rows. A more detailed description is provided in

Section 2. To the best of our knowledge, no automated tools exists to check applications built

using PLONKish arithmetizations. This work describes a proof of concept
6

for automatically

checking such applications for correctness for the Halo2
7

proof system, which uses PLONKish

arithmetization.

We describe approaches for push button analysis and outline how our tool can be adopted

to check custom properties. We use a form of abstract interpretation [14] to check PLONKish

arithmetizations. We search for unused gates and columns, as well as table entries which are

assigned but not constrained. Unused gates and columns may be bugs as the developer may have

intended to reference them. Entries which are assigned but not constrained may be a bug, and

are instances of under-constrained circuits. Due to the severity of under-constrained circuits

and the fact that our abstract interpretation approach may return false negatives, we provide

another method to check if a circuit is under-constrained. We employ a Satisfiability Modulo

Theories (SMT) solver (see e.g., [15]) to try to find multiple satisfying models (i.e., private inputs)

for a circuit and a (fixed) public input in order to determine if it is under-constrained. Finally,

we outline how to check custom properties by making the necessary modifications to calls to

the SMT solver.

The paper is outlined as follows. Section 2 details the Halo2 proof system. Section 3 outlines

methods for analyzing Halo2 circuits using abstract interpretation (Section 3.1) and SMT solvers

(Section 3.2). Section 4 discusses related work and limitations of our work. Section 5 concludes

the paper.

2. Halo2

Halo2 is a popular zero-knowledge proof system implemented in Rust. It uses PLONKish

arithmetization to express functions or applications as circuits, as originally introduced by

PLONK [4]. PLONK has various extensions (e.g., HyperPLONK [16], TurboPLONK [17], and

UltraPLONK [18]) which adds more expressive custom gates to the proof system, combines

PLONK with so-called lookup tables [19], and provides more efficient proving mechanisms for

the same type of arithmetization.

PLONKish circuits are represented as tables of values from a finite field. Entries of the table

are called cells. Circuits are made up of gates, which are constraints applied to sub-tables (a

set of cells) across the table. Table columns have three main types: instance, advice, and fixed.

Instance columns store public input, advice columns store private witness (private inputs and

intermediate values used by the prover in the circuit), and fixed columns store fixed values

that are part of the description of the circuit. The values of the table are constrained by three

types of constraints: gate constraints and equality constraints, which we now define, and those

from lookups, which we describe in Section 3.2.1. Gate constraints are generic polynomial

constraints defined by the circuit designer. We will use 𝑔(⟨𝑤⟩) to denote a gate constraint on

⟨𝑤⟩, which represents an encoding of the witness 𝑤 along with (unnamed) public inputs. Each

6

Available at https://github.com/quantstamp/halo2-analyzer

7

https://github.com/zcash/halo2

https://github.com/quantstamp/halo2-analyzer
https://github.com/zcash/halo2

Selector (𝑠) Instance (𝑏) Advice (𝑎) Fixed (𝐶)

1 15 5 3
Established at Public input; Private witness; Public constant;
circuit configuration. known to prover known only to known to prover.

and verifier. prover and verifier.

Table 1
A very small Halo2 circuit’s table, filled with real values. The corresponding polynomial constraint is
equation (1). The table is filled to demonstrate that the prover knows an assignment 𝑎 = 5 such that
𝐶 ·𝑎 = 3 ·5 = 15 = 𝑏 (which implies 𝐶 ·𝑎− 𝑏 = 0, as required). That is, the prover knows the necessary
factor 𝑎 such that 𝐶 · 𝑎 = 𝑏. Since 𝑠 = 1, the gate is on.

gate constraint applies to a number of adjacent rows of the gate. Therefore a circuit whose

table representation has several rows may have several polynomial constraints, all of which

should be simultaneously satisfied. Equality constraints (a.k.a. permutation constraints or copy
constraints) can enforce specific group of cells to have equal values across rows and columns.

We refer to the table and its corresponding constraints as the constraint system.

With Halo2, gates are enabled by selector variables (or simply selectors). A selector is a binary

variable that is multiplied to the polynomial constraint for each row: it is 0 if the gate is off or 1
if it is on. We will use 𝑠 to denote a selector variable, and as a result, a polynomial constraint 𝑔
on a gate is more accurately

8
represented as 𝑓(⟨𝑤⟩, 𝑠) = 𝑠 · 𝑔(⟨𝑤⟩) for a witness 𝑤.

We say that a polynomial vanishes if it evaluates to 0 over all rows. All polynomial constraints

in a Halo2 proof system should vanish over all rows for a valid witness and public input pair.

This is done either by setting the irrelevant selector variables to 0, or by providing (possibly

secret) assignments to the table cells that result in the polynomial’s evaluation to 0.

We illustrate the computation of a Halo2 gate in the following example. Suppose we have the

following polynomial gate constraint, whose table is shown in Table 1:

𝑓(⟨𝑎, 𝑏, 𝐶⟩, 𝑠) = 𝑠 · (𝐶 · 𝑎− 𝑏). (1)

The variables have the following interpretations: 𝑠 is the selector (if it is 0 then the polynomial

evaluates to 0), 𝑎 is the input of the gate, 𝑏 is the output of the gate, and 𝐶 is a parameter

used to configure the gate (a constant in the circuit). The gate computes the following relation:

𝑏 = 𝐶 · 𝑎 (so that the polynomial is 0 even when 𝑠 = 1). Thus the gate in this example is a

multiplication by a constant gate.

A region in Halo2 is a logical collection of cells with a set of enabled gates (as indicated

by the selectors). This work operates by collecting all the gates and regions using a custom

implementation of the Halo2 Layouter trait, which normally is responsible for the place-

and-route behaviour of compiling the circuit. This functionality is responsible for mapping

the regions to rows to minimize the number of required rows to enforce the constraints; it

essentially solves a packing problem. This is done because there is a limit to the number of rows

used, though we can increase the number of columns at will by adding some complexity to the

proof system. Our implementation of this trait, AnalyticalLayouter, will simply record the

8

Recall that a gate is technically applied to all rows, and so this is actually the Hadamard product.

details of every region. Since we never need to actually generate a proof, an optimal packing is

not necessary.

Finally, we note that the Halo2 Rust library offers a Circuit trait, the standard interface

that should be implemented by any circuit object. We are also interested in one method of the

Circuit trait, synthesize. The synthesize function is responsible both for creating the

constraint system and witness generation. This is relevant for Section 3.2.

3. Analyses

In this section, we describe various analyses that can be performed on Halo2 circuits.

3.1. Unused Gates, Unused Columns, and Assigned but Unconstrained Cells

We first describe how to find unused gates and columns, as well as assigned but unconstrained

cells, for a PLONKish circuit using a form of abstract interpretation (see e.g. [14]).

For a given computation, we have the set of enabled selectors, which determine which gates

are to be used. We can assume that we have dummy values within cells (for reasons that will

become clear later). For a set of selector variables set to 1, we have a set of corresponding

polynomials; thus we have a set of polynomials for each gate that is turned on. Recall that if

the circuit is satisfied, then every polynomial of every gate should vanish over every region

according to the Halo2 proof system. Note that every gate which is turned off automatically

vanishes, as it is multiplied by its zero-valued selector.

At evaluation time, we do not have a witness 𝑤 and therefore we can’t evaluate the gate

polynomials (and doing so would always yield 0 anyway). What we do have is the selector values

and constants which enables us to abstractly evaluate every polynomial of every gate in every

region for concrete values of selector and constants. Thus, we can replace the polynomial’s

variables with abstract ones (and this is why the cells may be assumed to have dummy values).

This approach abstracts away the exact values of variables so that each is either zero or non-zero,

and consider their abstract evaluation within polynomials. In turn, some polynomials can be

determined to be identically zero.

The first check we can implement via the abstract interpretation defined above is for unused

custom gates. After running synthesis with the AnalyticalLayouter we have assignments

for selector variables 𝑠 and any constants 𝐶 (but not for any witnesses, like 𝑎 and 𝑏) in a gate

polynomial like equation (1). As such we cannot fully evaluate a gate polynomial but we can

determine if it is identically zero, i.e. evaluates to zero for every witness variable assignment. In

order to do this, we replace every variable in a polynomial with an abstract variable type that

is one of {Variable, NonZero, Zero}. Then, we can abstractly evaluate every polynomial

and possibly determine if it is identically zero. Figure 1 shows an example of evaluating a

sum in a polynomial using abstract interpretation with the variable types described above in

Rust. Multiplication is defined similarly. For evaluating selector variables within the library, we

can use Zero if the selector is set to zero and NonZero otherwise; similarly we can check if a

constant is zero or not and use the appropriate abstract variable type. Negation has no effect on

whether a variable is in fact Zero or NonZero.

1 Expression::Sum(left, right) => {
2 let res1 = eval_abstract(left, selectors);
3 let res2 = eval_abstract(right, selectors);
4 match (res1, res2) {
5 (AbsResult::Variable, _) => AbsResult::Variable, // could be anything
6 (_, AbsResult::Variable) => AbsResult::Variable, // could be anything
7 (AbsResult::NonZero, AbsResult::NonZero) => AbsResult::Variable, // could be zero or

non-zero
8 (AbsResult::Zero, AbsResult::Zero) => AbsResult::Zero,
9 (AbsResult::Zero, AbsResult::NonZero) => AbsResult::NonZero,

10 (AbsResult::NonZero, AbsResult::Zero) => AbsResult::NonZero,
11 }
12 }

Figure 1: An example of evaluating a sum in a polynomial using abstract interpretation.

The use of abstract interpretation is fast but comes at the cost of accuracy. Our system may

return that a polynomial is not identically zero, when in fact it is (i.e., a false negative).

Finally, as the set of gates and their polynomials are provided by the appropriate Rust trait

for Halo2, we can use abstract interpretation as defined above to check for:

• Unused (Custom) Gates: check that for every gate’s polynomials there exists a region

in which it is not identically zero. Unused gates are likely bugs because the developer

likely intended to reference each gate that they created.

• Unconstrained Cells: check that for every assigned cell in the region, it occurs in

a polynomial which is not identically zero over this region. Unconstrained cells are

almost certainly a bug, as the system may be under-constrained (see also Section 3.2). For

example, the designer may have forgotten to enable a selector.

• Unused Columns: check that every column occurs in some (not identically zero) polyno-

mial. Unused columns may be a bug (perhaps the columns were meant to be referenced),

or enable an optimization by removing unused columns.

3.2. Under- and Over-constrained Circuits

In the context of PLONKish circuits, we define the properties of being under- and over-

constrained, before showing how to detect such circuits using an SMT solver.

Let 𝐶 be a PLONKish circuit. We call 𝐶 under-constrained if there exist an assignment 𝑥 to

instance columns of 𝐶 , and two set of assignments 𝑤 and 𝑤′
for its advice columns, where both

{𝑥,𝑤} and {𝑥,𝑤′} satisfy constraints of 𝐶 .

Being under-constrained is a usually a sign of error by circuit designers; most likely, the

arithmetization is not faithful to the intended function. One common example is calculating

value of a cell in the table as part of witness generation in synthesize but failing to select

(or activate) the right gates to enforce a constraint over this cell. This may enable a malicious

prover to create valid proofs that will be accepted by the verifier but should not be. Recall that

under-constrained circuits have been a source of errors for real-world protocols. While some

circuits may be under-constrained intentionally, we assume that users of this tool expect their

circuit to have a single assignment for every valid input.

A PLONKish circuit 𝐶 is over-constrained if for some assignment 𝑥 to instance columns of

𝐶 , no assignments to the advice columns of 𝐶 enable the system to have a solution, but the

developer expects there to be one. Note that the last part of the definition is necessary, as

otherwise some circuits would always be over-constrained. As a trivial example, consider a

circuit that states that for any positive integer 𝑥 as input, there are two (distinct) advice columns

entries that are positive integer and add up to 𝑥. For 𝑥 ≥ 2, this circuit can be satisfied (in

multiple ways), but for 𝑥 = 1 this is not the case, and it would not be meaningful to call the

circuit over-constrained for this input value.

Example 3.1. We provide an example where the aim is to check if a public input 𝑥 is in the set

{0, 1, 2, 3}. The code aims to implement the following constraints over a suitable Halo2 table:

𝑏0 · (𝑏0 − 1) = 0 (2)

𝑏1 · (𝑏1 − 1) = 0 (3)

𝑏0 + 2 · 𝑏1 − 𝑥 = 0 (4)

This set of constraints is uniquely satisfied if 𝑥 ∈ {0, 1, 2, 3}, but is not satisfiable otherwise.

We provide an example of an under-constrained implementation of the previous system in

Figure 2. The meta object is an instance of a ConstraintSystem, which creates Halo2 gates.

In this example, lines 1-5 create the gate implementing constraint (2), lines 6-10 create the gate

implementing constraint (3), and lines 11-17 create the gate implementing constraint (4). Line 2

gets a variable b1 to be used in the gate from the advice column in the current row
9

because

of the function cur called on the Rotation object. Line 3 gets the selector value from the

configuration, that is, if this gate will be used. Finally line 4 encodes the expression d ·a · (1−a),
making new copies of a as required by Rust. The expression on line 4 will be assumed to be

equal to zero in the Halo2 library.

Lines 1-5 and 6-10 are similar; so similar, that the developer could copy-and-paste lines 1-5

to get lines 6-10 with small changes. However, in this example, the necessary modifications

are not completed: the gate’s name was updated on line 6, but the variable name b1 was not

updated on line 7. As a result, lines 6-10 actually encode the same constraint as lines 1-5.

Line 16 encodes the expression d · (a+ 2b− c) which represents 𝑏0 + 2𝑏1 = 𝑥 as the proof

system will enforce that the expression is equal to zero, along with the selector factor d. Note

that although line 14 uses x from an advice column, it can be enforced to have the same value

as the public input elsewhere in the code, e.g., by using the constrain_instance function

and the appropriate public instance column, elsewhere in the code.

Throughout this example, we can ignore the selector values d as we will assume all gates

are used and this is the only configuration of interest. With that in mind, we can see that the

system will be under-constrained: when we set 𝑥 = 3, there are two ways to assign values to

the advice columns so that the system is satisfied: {𝑏0 = 1, 𝑏1 = 1} and {𝑏0 = 3, 𝑏1 = 0}. In

short, the hasty developer did not constraint 𝑏0 to be in {0, 1}.

9

If the rotation referenced prev or next or something else, we would change the index of the corresponding variable

in the generated output to reference the concrete cell, rather than the relative one. For example, if B-7 is the

variable for the 7th row of the B column but the rotation was next, we add a constraint that B-7=B-8.

1 meta.create_gate("b1_binary_check", |meta| {
2 let a = meta.query_advice(b1, Rotation::cur());
3 let d = meta.query_selector(s);
4 vec![d * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
5 });
6 meta.create_gate("b0_binary_check", |meta| {
7 let a = meta.query_advice(b1, Rotation::cur());
8 let d = meta.query_selector(s);
9 vec![d * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]

10 });
11 meta.create_gate("equality", |meta| {
12 let a = meta.query_advice(b0, Rotation::cur());
13 let b = meta.query_advice(b1, Rotation::cur());
14 let c = meta.query_advice(x, Rotation::cur());
15 let d = meta.query_selector(s);
16 vec![d * (a + Expression::Constant(Fr::from(2)) * b - c)]
17 });

Figure 2: An erroneously under-constrained set of gates in Halo2. The variable b1 on line 7 should in
fact be b0.

We now describe how to identify an under-constrained or over-constrained system in Halo2

using cvc5 [20]. We use the cvc5 solver as there is a finite field solver incorporated into it

[21], facilitating a more direct conversion of polynomials to solver constraints. We focus on

detecting under-constrained systems, but are able to check over-constrained systems for free.

The idea is to extract the polynomial constraints, convert them to a model that can be checked

for satisfiability in an SMT solver, and then determine if there are multiple satisfying models.

3.2.1. From Halo2 to SMT

We outline the conversion of Halo2 constraints into the format required by an SMT solver.

First, we build constraints based on the polynomials built in Halo2. Within our configuration,

we can find all gates 𝒢𝑖 within a region. Let 𝒢 be the set of all gates 𝒢𝑖 (that is, 𝒢 = {𝒢𝑖 |
𝒢𝑖 is a gate}). For each gate 𝒢𝑖, we can collect each polynomial 𝒫𝑖,𝑗 defined within it: let

𝒫𝑖 = {𝒫𝑖,𝑗 | 𝒫𝑖,𝑗 is a polynomial in 𝒢𝑖}; finally, let 𝒫 = ∪𝑖𝒫𝑖.

The polynomials are created in two major steps within the proof system: circuit configuration

and when circuits are synthesized. The result provides a set of polynomials based on selectors set

during these steps, as well as constraints that enforce values and the relationship between values

in the table. Specifically, we enforce values given from a particular input and any witnesses.

Next, we build SMT constraints based on the polynomials in the set 𝒫 . For all polynomials

𝒫𝑖,𝑗 ∈ 𝒫 collected from constraint system, we add an assert statement, where𝒫𝑖,𝑗 is converted

to an expression accepted by the SMT input language (SMT-LIB [22]). An example of an equality

constraint is shown in Figure 3. A variable A-i-j-k is the value of column A in region 𝑖, row

𝑗, and column 𝑘; A-1-1-1 is the first entry of the first row and column in the first region.

We create an instance S of an SMT solver. To this solver, we add each of the assertions created

1 (set-logic QF_FF)
2 (declare-fun A-1-1-1 () (_ FiniteField 307))
3 (assert (= A-1-1-1 (as ff0 (_ FiniteField 307)))

Figure 3: Example SMT output generated by our tool in the format of SMT-LIB [22]. The finite field
logic (Quantifier Free Finite Field) is declared on line 1. In this example, the field is over the prime
307. Line 2 declares a variable for the model, and line 3 declares a sample equality constraint that
A-1-1-1 = 0, as ff0 represents zero in the finite field (not shown).

1. Extract Polynomials & Build Solver

2. SAT? 4. Add Constraints

3. Over-constrained

Yes

No
5. SAT?

6. Under-constrained 7. Not under-constrained

Yes No

Figure 4: The process used to detect under- and over-constrained systems in our tool.

from the set 𝒫𝑖,𝑗 , and thus the initial set of constraints in the solver is

𝒞 =
⋀︁
𝑖,𝑗

(𝒫𝑖,𝑗 = 0),

along with all copy constraints, constraints necessary to enforce equality due to rotations, and

constraints related to lookups.

Halo2 handles lookup tables by adding a fixed column for each column in the lookup ta-

ble. Within the constraint system, there is a lookups component which has an argument
field, which comprises two vectors: input_expressions and table_expressions. The

input_expressions vector determines which advice columns are constrained to occur in

the lookup table. The table_expressions vector includes the column indexes of the fixed

columns, which should equal the advice columns extracted from input_expressions. Using

these vectors, we can determine which advice entry should occur in which fixed column index.

Then, we implement the search in the lookup table as a constraint. For that, we need to have

the actual values for the lookup table columns. We can extract this by running the Halo2 mock

prover, which gives us a two-dimensional vector (Fixes) that includes each fixed column’s

values. The lookup can then be modelled as a constraint as a disjunction of conjunctions. Each

conjunction is the constraint required by the fixed columns, mapped to entries in the advice

columns. Since any values satisfying such a constraint is valid, we take the disjunction over

Advice 𝐴0 Fixed 𝐹0

... c89efdaa

... 7f8b6b08
𝑎𝑖 2a80e1ef
... 13600b29
... ceebf77a

Table 2
A small range check modelled as a lookup in a Halo2 circuit table (only the relevant columns are shown).
In this case, we want the 𝑖 row of the advice column𝐴0, 𝑎𝑖 to be one of the values in the only fixed column
𝐹0. We add the following constraint to the solver: (𝑎𝑖 = 𝑐89𝑒𝑓𝑑𝑎𝑎) ∨ (𝑎𝑖 = 7𝑓8𝑏6𝑏08) ∨ ... ∨ (𝑎𝑖 =
𝑐𝑒𝑒𝑏𝑓77𝑎).

Advice 𝐴0 Advice 𝐴1 Advice 𝐴2 Fixed 𝐹0 Fixed 𝐹1 Fixed 𝐹2

...
...

... 000 000 000
...

...
... 000 001 001

𝑎0,𝑖 𝑎1,𝑖 𝑎2,𝑖
...

...
...

...
...

... 111 111 000

Table 3
A lookup in a Halo2 circuit table with constraints on the fixed columns (only the relevant columns
are shown). In this case, the entry of 𝐹2 at row 𝑖 is the bit-wise exclusive or function (XOR) applied
to the values of row 𝑖 in 𝐹0 and 𝐹1. In this case, we want the 𝑖 row of the advice columns 𝐴0, 𝐴1,
and 𝐴2 to be a valid XOR for entries which have three bits. We add the following constraint to the
solver: (𝑎0,𝑖 = 000 ∧ 𝑎1,𝑖 = 000 ∧ 𝑎2,𝑖 = 000) ∨ (𝑎0,𝑖 = 000 ∧ 𝑎1,𝑖 = 001 ∧ 𝑎2,𝑖 = 001) ∨ ... ∨ (𝑎0,𝑖 =
111 ∧ 𝑎1,𝑖 = 111 ∧ 𝑎2,𝑖 = 000).

all possible valid conjunctions. We illustrate via examples. A simple range look up is shown

in Table 2; in this case, the inner conjunction does not exist; it has only one term. A more

complicated example is shown in Table 3, which illustrates the need for the internal conjunction.

We now describe the process used to determine if a system is under- or over-constrained.

This process is illustrated in Figure 4. The solver S is queried to see if it can find a satisfying

assignment, and if so, a model that satisfies S (i.e., an assignment to the variables of the

polynomials) is generated. If no such model is found, the system is over-constrained (and hence

not under-constrained). If a model has been obtained, the system may not be under-constrained.

We seek to find another, different model to also satisfy the system. Therefore, we add a set of

constraints that ensure that at least one variable in the model must be different.

Let {𝛼1, 𝛼2, ..., 𝛼𝑛} be variables that are constraining public inputs, and let {𝛽1, 𝛽2, ..., 𝛽𝑚}
be the variables that do not constrain public inputs. Let {�̂�1, �̂�2, ..., �̂�𝑛} (respectively {�̂�1, �̂�2, ...,
�̂�𝑚}) be the set of values assigned by the satisfying model to the constraining (respectively

non-constraining) variables. Then we have that 𝛼𝑖 = �̂�𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and 𝛽𝑗 = �̂�𝑗 for

1 ≤ 𝑗 ≤ 𝑚 in the model. We create a new solver S’ whose constraint set is

𝒞′ = {𝒞 ∧ (𝛽1 ̸= �̂�1 ∨ 𝛽2 ̸= �̂�2 ∨ ... ∨ 𝛽𝑚 ̸= �̂�𝑚)} (5)

If S’ is satisfiable, we have proved that the circuit is under-constrained.

3.2.2. Fuzzing

Our system can be configured to also generate multiple public inputs. We ask for a satisfying

assignment to the circuit, and if one is found, we ask if another satisfying assignment is possible

for this particular public input assignment. If it is, we stop, as we have shown that the circuit is

under-constrained. If not, we check if the circuit can be satisfied by another public input, and

repeat until no more assignments can be found or we run out of time. This way the system acts

as a sort of “fuzzer,” allowing developers to explore assignments. We outline this process now.

Let 𝒞 be the constraints for the circuit, as defined in Section 3.2. Then, we iterate over possible

assignments to 𝒞 to try to find a public input for which the circuit would be under-constrained.

Let 𝒞0 = 𝒞. Then, at iteration 𝑖 ≥ 0, we ask a solver S to determine if 𝒞𝑖 is satisfiable; if not,

the circuit is over-constrained or we have exhausted all valid public inputs. The loop stops if 𝒞𝑖
is not satisfiable.

We may therefore assume 𝒞𝑖 is satisfiable with a public input assignment set {�̂�𝑖
1, �̂�

𝑖
2, ..., �̂�

𝑖
𝑛}

and witness assignment set {�̂�𝑖

1, �̂�
𝑖

2, ..., �̂�
𝑖

𝑚}. Then we ask a solver to determine if

𝒞′
𝑖 = {𝒞𝑖∧(𝛽1 ̸= �̂�

𝑖

1∨𝛽2 ̸= �̂�
𝑖

2∨ . . .∨𝛽𝑚 ̸= �̂�
𝑖

𝑚)∧(𝛼1 = �̂�𝑖
1∧𝛼2 = �̂�𝑖

2∧ . . .∧𝛼𝑛 = �̂�𝑖
𝑛)} (6)

is satisfiable. If 𝒞′
𝑖 is also satisfiable, we have shown that the circuit is under-constrained

as we have two assignments to private witness for a single assignment to the variables of

{�̂�𝑖
1, �̂�

𝑖
2, ..., �̂�

𝑖
𝑛}.

Otherwise, we determine a new public input to try for constraint set 𝒞𝑖+1 by preventing any

future solver calls from using the public input assignment {�̂�𝑖
1, �̂�

𝑖
2, ..., �̂�

𝑖
𝑛}. Explicitly, we have

𝒞𝑖+1 = {𝒞𝑖 ∧ (𝛼1 ̸= �̂�𝑖
1 ∨ 𝛼2 ̸= �̂�𝑖

2 ∨ . . . ∨ 𝛼𝑛 ̸= �̂�𝑖
𝑛)}. (7)

Now the process repeats with 𝒞𝑖+1.

3.2.3. General Property Checking

The use of an SMT solver to detect under- and over-constrained circuits allows Rust-savy users

to check other properties in some situations.

As an example, we illustrate another way we could find that the previous example is under-

constrained. Suppose that instead of asking for two satisfying models, we are conscious of the

need for 𝑏0 and 𝑏1 to be binary variables and want to see if it is ever the case that a satisfying

model would violate these constraints. In this case, we could ask the SMT solver to take the

constraint set 𝒞 and also add a constraint ℬ which says 𝑏0 ̸= 1 ∧ 𝑏0 ̸= 0 ∧ 𝑏1 ̸= 0 ∧ 𝑏1 ̸= 1.

Assuming the solver does not time out, the result is either satisfiable or unsatisfiable. If 𝒞 ∧ ℬ is

satisfiable, it is not the case that both 𝑏0 and 𝑏1 are always binary variables. If the solver finds

that these sets of constraints are unsatisfiable, this means that it is always the case that 𝑏0 and

𝑏1 are binary variables (assuming 𝒞 is satisfiable on its own). If the SMT solver is unable to find

a satisfiable example, the answer may not be known.

4. Related Work and Discussion

In this section, we comment on related work and discuss future directions of our work.

4.1. Related Work

As mentioned in Section 1, Ecne and Picus are tools for checking intermediate representations of

proof systems that use a so-called Rank-1 Constraint System (R1CS) intermediate representation.

These are not compatible with the Rust files used in the Halo2 proof system without additional

effort. For instance, R1CS only supports quadratic polynomials while Halo2 polynomials may

have arbitrary degree. Vella and Alt [23] presents a similar tool to check R1CS circuits, which

uses SMT solvers to reach conclusions over large finite fields. More recently, Pailoor et al. [11]

describe the QED
2

system for automated detection of under-constrained systems in R1CS using

the same cvc5 solver. Their approach performs so called semantic reasoning over R1CS equations

to determine if there is a unique solution, and may be more general then our approach. Their

approach may apply to Halo2 circuits with some modification, though they point out that it

may not benefit from their uniqueness constraint propagation.

Thomas [24] provides a specification language, Orbis, for zk-SNARK programming. This

work is complementary as it provides a way to write Halo2 circuits, but does not comment on

how to check the correctness of Halo2 circuits written via any means. The tooling described

in this work may also be used for circuits generated from Orbis in the event that the Orbis

compiler is not trustworthy.

Chin et al. [25] describe Leo, a language for formally verifying zero-knowledge applications.

Leo aims to provide stronger guarantees for applications written in a custom zero-knowledge

language, rather than relatively easy analysis of applications using the Halo2 library. As a result,

the Leo language aims to solve problems beyond the scope of this paper.

4.2. Discussion

We now discuss the limitations and future directions for this work.

First, the use of an SMT solver likely means that this approach will not scale. Future work is

required to generate example circuits or find real-world circuits that can be analyzed, in order

to determine an approximate number of constraints and variables that can be checked by the

solver before timing out. This may still be of use, as our approach can be applied to sub-circuits

of an arithmetized function. Repositories of circuits like Circom
10

(used to create the ZkBench

circuits of [11]) or those used to evaluate Ecne and Picus, do not exist for Halo2 to provide a

corpus of circuits to evaluate our tool on. In fact, once a corpus of Halo2 circuits are collected,

10

https://github.com/iden3/circomlib

https://github.com/iden3/circomlib

𝑘-bits time (ms) 𝑘-bits time (ms) 𝑘-bits time (ms)
2 18.940541 16 71.075625 64 730.086875
4 28.063583 32 161.558958 128 4478.517416
8 36.888

Table 4
Run times for the analysis in Section 3.2 on generalized circuits of Example 3.1.

one could compare the approach of [11] to our approach. Another option is to apply this tool to

the open-source collection of Halo2 circuits in the Privacy-Scaling Exploration zkEVM
11

.

Pilspector
12

uses SMT solvers to analyse state machines written in the Polynomial Identity

Language (PIL) language. It looks for nondeterminism in PIL descirptions which are in turn

used by the eSTARK proof system [26]. Another interesting direction to consider is to compare

their approach to encoding lookups with the approach taken by this tool.

As a starting point for the evaluation, we ran our tool on generalizations of Example 3.1.

We analysed circuits for decomposing numbers into 𝑘 bits for 𝑘 ∈ {2, 4, 8, 16, 32, 64, 128}.

Our evaluation chooses a random assignment to the public input and looks for two witness

assignments (using the fuzzing approach, but limited to a single iteration). The run times

are reported in Table 4; they were computed using a Apple MacBook Pro with an M1 Pro

processor with 10 cores and 16GB of RAM. The time increases with the number of bits in the

decomposition, which corresponds (roughly) to the number of variables in the model.

Second, there are likely additional issues for Halo2 that can be detected automatically. A

collection of bugs related to zero-knowledge bugs is being maintained
13

, though not all may

be applicable to Halo2 application developers or the Halo2 proof system itself. We could also

check that best practices are used in Halo2 programming, adding functionality akin to a linter,

in future work.

5. Conclusion

We have presented methods to detect several issues in the Halo2 codebase using techniques

and tooling which integrate directly into the Rust implementation. Our tool can find instances

of under- and over-constrained circuits, as well unused gates, unconstrained cells, and unused

columns. All of these issues may indicate an error with the circuits implemented by a Halo2

circuit developer. Our work is a proof-of-concept and incomplete: additional work is necessary

to determine how well it scales, and if further analyses can be included. However, it demonstrates

that Halo2 circuits are not beyond the realm of automated analysis.

Acknowledgements. The authors would like to thank Hanifa Boucheneb, Igor Braga, Martin

Derka, and the anonymous SMT 2023 reviewers for their helpful comments on the codebase,

future directions of this work, and drafts of this paper.

11

https://github.com/privacy-scaling-explorations/zkevm-circuits

12

https://github.com/Schaeff/pilspector/

13

https://github.com/0xPARC/zk-bug-tracker

https://github.com/privacy-scaling-explorations/zkevm-circuits
https://github.com/Schaeff/pilspector/
https://github.com/0xPARC/zk-bug-tracker

References

[1] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof

systems, SIAM J. Comput. 18 (1989) 186–208. URL: https://doi.org/10.1137/0218012.

[2] J. Groth, On the size of pairing-based non-interactive arguments, in: M. Fischlin, J. Coron

(Eds.), Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,

2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, Springer,

2016, pp. 305–326. URL: https://doi.org/10.1007/978-3-662-49896-5_11.

[3] S. Bowe, J. Grigg, D. Hopwood, Halo: Recursive proof composition without a trusted setup,

IACR Cryptol. ePrint Arch. (2019) 1021. URL: https://eprint.iacr.org/2019/1021.

[4] A. Gabizon, Z. J. Williamson, O. Ciobotaru, PLONK: permutations over lagrange-bases for

oecumenical noninteractive arguments of knowledge, IACR Cryptol. ePrint Arch. (2019)

953. URL: https://eprint.iacr.org/2019/953.

[5] A. Pertsev, R. Semenov, R. Storm, Tornado cash privacy solution version 1.4, 2019. URL:

https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf.

[6] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, 2014. URL:

https://ethereum.github.io/yellowpaper/paper.pdf.

[7] P. McCorry, C. Buckland, B. Yee, D. Song, SoK: Validating bridges as a scaling solution for

blockchains, IACR Cryptol. ePrint Arch. (2021) 1589. URL: https://eprint.iacr.org/2021/1589.

[8] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez, A. Gervais, Commit-chains: Secure,

scalable off-chain payments, IACR Cryptol. ePrint Arch. (2018) 642. URL: https://eprint.

iacr.org/2018/642.

[9] M. Bellés-Muñoz, J. B. Melé, V. Daza, J. L. Muñoz-Tapia, New privacy practices for

blockchain software, IEEE Softw. 39 (2022) 43–49. URL: https://doi.org/10.1109/MS.2021.

3086718.

[10] J. Eberhardt, S. Tai, ZoKrates - scalable privacy-preserving off-chain computations, in: IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax,

NS, Canada, July 30 - August 3, 2018, IEEE, 2018, pp. 1084–1091. URL: https://doi.org/10.

1109/Cybermatics_2018.2018.00199.

[11] S. Pailoor, Y. Chen, F. Wang, C. Rodríguez, J. V. Gaffen, J. Morton, M. Chu, B. Gu, Y. Feng,

I. Dillig, Automated detection of underconstrained circuits for zero-knowledge proofs,

Cryptology ePrint Archive, Paper 2023/512, 2023. URL: https://eprint.iacr.org/2023/512.

[12] Tornado Cash, Tornado.cash got hacked. By us., 2019. URL: https://tornado-cash.medium.

com/tornado-cash-got-hacked-by-us-b1e012a3c9a8.

[13] M. Connor, Disclosure of recent vulnerabilities, 2021. URL: https://hackmd.io/

@aztec-network/disclosure-of-recent-vulnerabilities.

[14] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints, in: R. M. Graham, M. A.

Harrison, R. Sethi (Eds.), Conference Record of the Fourth ACM Symposium on Principles

of Programming Languages, Los Angeles, California, USA, January 1977, ACM, 1977, pp.

https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/953
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2021/1589
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642
https://doi.org/10.1109/MS.2021.3086718
https://doi.org/10.1109/MS.2021.3086718
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://doi.org/10.1109/Cybermatics_2018.2018.00199
https://eprint.iacr.org/2023/512
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://hackmd.io/@aztec-network/disclosure-of-recent-vulnerabilities
https://hackmd.io/@aztec-network/disclosure-of-recent-vulnerabilities

238–252. URL: https://doi.org/10.1145/512950.512973.

[15] C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, Satisfiability modulo theories, in:

A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, volume 185

of Frontiers in Artificial Intelligence and Applications, IOS Press, 2009, pp. 825–885. URL:

https://doi.org/10.3233/978-1-58603-929-5-825.

[16] B. Chen, B. Bünz, D. Boneh, Z. Zhang, HyperPlonk: Plonk with linear-time prover and

high-degree custom gates, IACR Cryptol. ePrint Arch. (2022) 1355. URL: https://eprint.iacr.

org/2022/1355.

[17] A. Gabizon, Z. J. Williamson, The turbo-PLONK program syntax for specifying snark

programs, 2019. URL: https://docs.zkproof.org/pages/standards/accepted-workshop3/

proposal-turbo_plonk.pdf.

[18] Zac, Aztec’s ZK-ZK-Rollup, looking behind the cryp-

tocurtain, 2021. URL: https://medium.com/aztec-protocol/

aztecs-zk-zk-rollup-looking-behind-the-cryptocurtain-2b8af1fca619.

[19] A. Gabizon, Z. J. Williamson, plookup: A simplified polynomial protocol for lookup tables,

IACR Cryptol. ePrint Arch. (2020) 315. URL: https://eprint.iacr.org/2020/315.

[20] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,

M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng,

C. Tinelli, Y. Zohar, cvc5: A versatile and industrial-strength SMT solver, in: D. Fisman,

G. Rosu (Eds.), Tools and Algorithms for the Construction and Analysis of Systems - 28th

International Conference, TACAS 2022, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,

Proceedings, Part I, volume 13243 of Lecture Notes in Computer Science, Springer, 2022, pp.

415–442. URL: https://doi.org/10.1007/978-3-030-99524-9_24.

[21] A. Ozdemir, G. Kremer, C. Tinelli, C. W. Barrett, Satisfiability modulo finite fields, IACR

Cryptol. ePrint Arch. (2023) 91. URL: https://eprint.iacr.org/2023/091.

[22] C. Barrett, P. Fontaine, C. Tinelli, The Satisfiability Modulo Theories Library (SMT-LIB),

www.SMT-LIB.org, 2016.

[23] L. C. Vella, L. Alt, On satisfiability of polynomial equations over large prime fields, in:

D. Déharbe, A. E. J. Hyvärinen (Eds.), Proceedings of the 20th Internal Workshop on

Satisfiability Modulo Theories co-located with the 11th International Joint Conference

on Automated Reasoning (IJCAR 2022) part of the 8th Federated Logic Conference (FLoC

2022), Haifa, Israel, August 11-12, 2022, volume 3185 of CEUR Workshop Proceedings,
CEUR-WS.org, 2022, pp. 114–127. URL: http://ceur-ws.org/Vol-3185/extended9913.pdf.

[24] M. Thomas, Orbis specification language: a type theory for zk-SNARK programming,

IACR Cryptol. ePrint Arch. (2022) 1003. URL: https://eprint.iacr.org/2022/1003.

[25] C. Chin, H. Wu, R. Chu, A. Coglio, E. McCarthy, E. Smith, Leo: A programming language

for formally verified, zero-knowledge applications, IACR Cryptol. ePrint Arch. (2021) 651.

URL: https://eprint.iacr.org/2021/651.

[26] H. M. Ardevol, M. Guzmán-Albiol, J. B. Melé, J. L. Muñoz-Tapia, eSTARK: Extending starks

with arguments, IACR Cryptol. ePrint Arch. (2023) 474. URL: https://eprint.iacr.org/2023/

474.

https://doi.org/10.1145/512950.512973
https://doi.org/10.3233/978-1-58603-929-5-825
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://medium.com/aztec-protocol/aztecs-zk-zk-rollup-looking-behind-the-cryptocurtain-2b8af1fca619
https://medium.com/aztec-protocol/aztecs-zk-zk-rollup-looking-behind-the-cryptocurtain-2b8af1fca619
https://eprint.iacr.org/2020/315
https://doi.org/10.1007/978-3-030-99524-9_24
https://eprint.iacr.org/2023/091
www.SMT-LIB.org
http://ceur-ws.org/Vol-3185/extended9913.pdf
https://eprint.iacr.org/2022/1003
https://eprint.iacr.org/2021/651
https://eprint.iacr.org/2023/474
https://eprint.iacr.org/2023/474

	1 Introduction
	2 Halo2
	3 Analyses
	3.1 Unused Gates, Unused Columns, and Assigned but Unconstrained Cells
	3.2 Under- and Over-constrained Circuits
	3.2.1 From Halo2 to SMT
	3.2.2 Fuzzing
	3.2.3 General Property Checking

	4 Related Work and Discussion
	4.1 Related Work
	4.2 Discussion

	5 Conclusion

