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Abstract
With the development of increasing node numbers in High Performance Computing (HPC), i.e. strong-
scaling, we get the problem that many HPC applications become communication-bound. Thus, there
is a need for optimizing communication. Apart from improving the communication protocols, one can
work on problem-specific communication patterns. A commonly used, efficient communication pattern
for the simulation of homogeneously distributed particle systems is the Shift communication. Aiming
to use the Shift for our own molecular dynamics simulation library, FMSolvr, we modeled it with timed
Petri nets in order to get an estimation of the communication time. For the time analysis we use Max-
Plus Algebra. We put our model’s timing predictions up against an implementation of the Shift and
found that our model is correct. However, our approach is over-modeling the problem.
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1. Introduction

Particle simulations are of interest in many fields of science, e.g. plasma physics, polymer
science, solid state physics, and biophysics. But it is and always was a very time-consuming
matter, because for each simulation timestep all forces that might influence a particle must
be calculated for all particles. This means that one must handle a computational complexity
of 𝒪(𝑁2) for each simulation timestep. With systems of millions or billions of particles, this
leads to unreasonable runtimes in order to simulate a useful time span. Major improvements
regarding the computational complexity can be achieved with fast summation methods like the
Fast Multipole Method (FMM). They can reduce the computational complexity to 𝒪(𝑁 log𝑁)
or even 𝒪(𝑁). The FMM, which is used for our Molecular Dynamics Simulation (MDS) library
FMSolvr1, achieves a complexity of 𝒪(𝑁). For the FMM the simulation space is split into
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small cubic boxes (spatial decomposition with an octree2). With distributing inter-dependent
sub-regions of the simulation space over different nodes, the question of efficient data exchange
arises.

At first, the time cost for computation in High Performance Computing (HPC) was much
higher than for communication. Simulation was computation-bound. But processors became
faster, calculation cheaper, and HPC workstations grew into HPC clusters, until today we
have the problem that strong-scaling leads to communication-boundness regarding inter-node
communication. Thus, communication is a topic of optimization again. There are developments
in the field of communication protocols such as LCI [1] or GASNet [2], but we are also interested
in optimizing communication by using problem-specific communication patterns. Hence, we
did a Systematic Literature Review (SLR) on what had already been done when it comes to
communication in MDS [3], and we found that there is only one communication scheme
that is used throughout all works: Shift communication [4]. It is a very simple but elegant
communication algorithm that achieves a communication complexity (with regard to the number
of messages) of 𝒪(𝑘), where 𝑘 is the range of our near-field interactions in units of box
length (more on this in Sec. 2.2).

Since the Shift appears to be dominant in this field of research, we wanted to examine if it is
suitable for FMSolvr. Given certain system properties and constraints, we modeled the Shift upon
those properties using Timed Petri Nets (TdPN)3. Petri nets appear to be a good choice because
other than for example CSP (Communicating Sequential Processes) they can easily be evaluated
regarding timing behavior with the help of Max-Plus Algebra (MPA, also (max,+) algebra).
Having a formal model of the Shift will allow us to compare the Shift to other communication
schemes. One such comparison that is of special interest to us, is the Team Shift developed by
Driscoll, Geroganas, and Koanantakool [6].

As for the structure of this work: Section 2 will explain the mechanics behind MDS and the
meaning of the terms used in the introduction such as near-field, Section 3 will introduce the
Shift communication, and Section 4 will walk the reader through the necessary theory of TdPNs
and MPA. Then, Section 5 explains how we modeled the Shift based on our system properties
and constraints, and Section 6 will compare the model predictions with the measurements from
the implementation. Finally, Section 7 will give a discussion of the methods and results as well
as an outlook to our future work.

2. Molecular Dynamics Simulation

This section will introduce the reader to the basics of MDS: how to distribute the particles over
the computation nodes in Section 2.1, and the specifics of near-field interactions, which we are
focusing on with this work, in Section 2.2.

2Octree means that we split the simulation space into eight big boxes, then we split those big boxes into eight
smaller boxes, which we split again into eight smaller boxes, and so on, until we have our required granularity of
splitting up the simulation space.

3We choose the abbreviation TdPN because TPN stands for Time Petri Nets, which are a different type of time-
dependent nets [5].
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2.1. Load Distribution

In MDS there are three ways to distribute particles over nodes: atom, force, and spatial de-
composition [4]. Of the three, FMSolvr uses spatial decomposition. The great advantage of
spatial decomposition compared to its two alternatives is that for range-limited interactions (see
next section) communication only needs to happen between computation nodes that hold
neighboring regions, so we have a communication complexity of 𝒪(𝑘) with 𝑘 ≪ 𝑃 , where 𝑃
is the total number of nodes. Compared to this, atom and force decomposition require data of
all other nodes (atom: 𝒪(log𝑃 )) or at least a considerable subset of them (force: 𝒪(log

√
𝑃 ))4.

Spatial decomposition means that we take our simulation space, divide it into small boxes,
and distribute these boxes over our computation nodes. Of course, there are different ways to
divide the space. When one handles sparse, clustered particle systems, one would like to use
methods similar to Barnes-Hut [7], which divides the space into boxes of different sizes in order
to achieve good load balancing5. But if one needs to handle homogeneously distributed particle
systems, then one can divide the space into same-sized cubes ( edge length 𝑏𝑥 = 𝑏𝑦 = 𝑏𝑧 = 𝑏).
This is what we will be looking at.

2.2. Defining the Near-field

When a particle is moving among other particles, it is subject to and the cause of Coulomb
forces (aka. electrostatic forces). The Coulomb force is strong at a short range but its influence
decreases with growing distance (∼ 1/𝑑2), which means that when two particles move apart,
the individual influence that one particle has on another slowly melts into the background noise
of other particles’ force fields. The distance at which the individual particle can no longer be
distinguished from the background is the end of the near-field, this distance is called the cut-off
radius 𝑅cut.

In order to supply for each particle the data of particles within its cut-off radius, a node must
import the data of particles, which surround its box within the distance of 𝑅cut. Figure 1 shows
the import area in relation to the cut-off radius. The node holding the dark-blue box must
communicate with every node that holds a (partly) light-blue box. This means that there is no
difference in the number of communication partners between Figure 1a and 1b. Only with a
radius bigger than the box length, the number of communication partners changes.

In order to determine the number of communication partners of a node, we use 𝑘 = ⌈𝑅cut/𝑏⌉
to calculate the number of boxes covered by the import area in one direction. For Figures 1a
and 1b 𝑘 is one, and for Figure 1c 𝑘 is two. Then the total number of communication partners
𝑐𝑝 of one node in a three-dimensional simulation is defined by

𝑐𝑝 = (2𝑘 + 1)3 − 1 (1)

4For more details on atom and force decomposition as well as their communication complexity, please refer to [4].
5An alternative to Barnes-Hut would be a sparse octree.
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(a) (b) (c)

Figure 1: The three version of the cut-off radius [3]: dark blue is the target box, light blue is the import
area of that box depending on the cut-off radius. (a) 𝑅cut < 𝑏, (b) 𝑅cut = 𝑏, (c) 𝑅cut > 𝑏 with 𝑏 being
the edge length of a box.

3. Communication in MDS – the Shift

With a growing 𝑘, the number of communication partners increases quickly. In order to
ensure an efficient exchange of data, one needs an efficient communication algorithm. Here
is where Shift communication enters the game. A predecessor of the Shift is well-known in
parallel programming [8, Ch.4.2], the MDS version was introduced by [4] in 1993. In three
communication phases the particle data is distributed to all the places where it is needed while
a node only needs to communicate with its direct six neighbors: Left and Right, Front and Back,
Up and Down. Figure 2 depicts the process (for simplicity the terms ’box’ and ’node’ are used
interchangeably):

Figure 2a serves to give the reader an understanding of the surroundings of a box. The whole
simulation space looks like a grid of boxes where this 3× 3 grid is a sub-grid of the whole. To
describe the Shift, we want to focus on the blue and yellow box, so the rest of the grid is made
invisible (Fig. 2b). We will use 𝑘 = 1 for the description.

In the first step of the Shift the node exchanges its data with its direct neighbors Left and
Right (Fig. 2c). At the end of this step the node holds all the row data within 𝑘 = 1. For
the second step it combines the Left and Right data as well as its own into one message and
exchanges it for the package of its Front and Back neighbors (Fig. 2d). Now it hold all the
knowledge about the plane. In the third step of the Shift the accumulated data of the plane is
exchanged for the plane data of the Up and Down neighbors (Fig. 2e). So, in order to get all the
required data for 𝑘 = 1, a node must only exchange six messages with its direct six neighbors.

In case of 𝑘 > 1, the neighbors help daisy-chaining the data further down the row. This
means, the Right neighbor would hand the node the data of the second neighbor to the right
and the Left neighbor of the second left neighbor. The data of the third neighbor to the right
would pass through the second neighbor to the right and the Right neighbor before it arrives
at the target node. So, a node must exchange a total of 6𝑘 packages to receive all the required
data (this means 12𝑘 messages in total). However, the reader might have noticed that a node
must wait for specific data to arrive before it can either pass it on or start the next phase. This
is where time dependency between nodes comes into play.
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(a) (b) (c)

(d) (e)

Figure 2: Shift communication: The data of the blue/yellow box is first distributed along the row (c).
Then, the accumulated data of the row is sent along the column (d). And last, the accumulated data of
the plane is sent along the towers (d). If every node follows this pattern, all nodes receive all the data
they require within 6𝑘 exchanges (12𝑘 messages).

4. Timed Petri Nets and the Max-Plus Algebra

In order to capture the time dependencies between nodes, Petri nets with timed transitions
can be used. A timed transition here represents a message passing process. This section will
do a brief recapture of Timed Petri Nets (TdPNs) and explain how to transfer TdPNs into the
mathematically evaluable form of a max-plus matrix.

4.1. Capturing Time with a Net

A marked Petri net is characterized by a five-tuple 𝒩 = (𝑃, 𝑇,𝐸,𝑊,𝑚0) where 𝑃 and 𝑇 are
places and transitions respectively, 𝐸 are the edges connecting a place with a transition or a
transition with a place, 𝑊 are the multiplicity (weights) assigned to edges, and 𝑚0 is the initial
marking. If we assign each transition 𝑡 ∈ 𝑇 a duration 𝑑 ∈ 𝐷, we gain a TdPN, which is a
six-tuple of 𝒟 = (𝑃, 𝑇,𝐸,𝑊,𝑚0, 𝐷) where 𝐷 is called the duration function6. [5]

To make a practical example we shall look at a node that wants to send data to another node.
The sending process can be captured by a timed transition, while the places will represent
certain internal states of the node. In this case, we have two states: ‘before sending’ and ‘done
sending’. Figure 3a depicts the net with its initial marking, and Figure 3b shows the marking
after the node has finished sending. The time that passed between state one and state two is

6In our case 𝐷 is not a function but simple time values for each transaction.
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𝑃1

𝑡

⟨2⟩

𝑃2

(a)

𝑃1

𝑡

⟨2⟩

𝑃2

(b)

Figure 3: TdPN of a sending process: (a) shows the inital marking before sending, and (b) shows the
marking after sending. 𝑃1 represents the node’s internal state of ‘before sending’ and 𝑃2 the state of
‘done sending’. The transition 𝑡, which represents the sending, takes the time 2.

the time assigned to the transition 𝑡, denoted by the number in angle brackets.

4.2. The Max-Plus Algebra

The Max-Plus Algebra (MPA) comprises of two operations: the maximum operation ⊕ and the
addition ⊗. They are defined as follows:

𝑎⊕ 𝑏 = 𝑏⊕ 𝑎 = max{𝑎, 𝑏}

𝑎⊗ 𝑏 = 𝑏⊗ 𝑎 = 𝑎+ 𝑏 .

The addition (⊗) has priority over the maximum (⊕) if not ordered otherwise by brackets.
MPA also knows a neutral element for the maximum, the zero element 𝜀 = −∞, and a neutral
element for the addition, the identity element 𝜂 = 0, for which holds:

𝜀⊕ 𝑥 = 𝑥

𝜂 ⊗ 𝑥 = 𝑥 .

Equivalent to the sum
∑︀

and the product
∏︀

in linear algebra, MPA defines an accumulative
maximum and sum:

𝑛⨁︁
𝑖=0

𝑐𝑖 = max{𝑐0, 𝑐1, ..., 𝑐𝑛}

𝑛⨂︁
𝑖=0

𝑑𝑖 = 𝑑0 + 𝑑1 + ...+ 𝑑𝑛 .

And just like in linear algebra, MPA can be applied to matrices. Taking two matrices 𝐴 = [𝑎𝑖𝑗 ]
and 𝐵 = [𝑏𝑖𝑗 ] of size 𝑛×𝑚, the maximum is an element-wise maximum defined as

𝐴⊕𝐵 = [𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗 ] .

Taking a matrix 𝐴 = [𝑎𝑖𝑗 ] of size 𝑛×𝑚 and a matrix 𝐵 = [𝑏𝑖𝑗 ] of size 𝑚× 𝑛, the MPA matrix
plus operation is defined as

𝐴⊗𝐵 =

[︃
𝑚⨁︁
𝑘=1

𝑎𝑖𝑘 ⊗ 𝑏𝑘𝑗

]︃
.
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We also find a neutral element for the MPA matrix plus operation, the identity matrix 𝐼 , which
is defined as

𝐼 =

⎡⎢⎢⎢⎢⎣
𝜂 𝜀 · · · 𝜀

𝜀 𝜂
...

...
. . .

...
𝜀 · · · · · · 𝜂

⎤⎥⎥⎥⎥⎦ .

In regard to vectors, the MPA matrix-vector addition (⊗) has an important role in analyzing
Petri nets. For a matrix A of size 𝑛×𝑚 and a vector �⃗� of length 𝑚, it is defined as

𝐴⊗ �⃗� =

[︃
𝑚⨁︁
𝑘=1

𝑎𝑖𝑘 ⊗ 𝑥𝑘

]︃
.

For more detailed information or as a reference for the next section, please find [9] or [10].

4.3. Max-Plus and Timed Petri Nets

MPA is a tool to transform TdPN into a mathematically evaluable matrix form. For the transfor-
mation we use a matrix 𝐴 of size |𝑃 | × |𝑃 | (|𝑃 | is the total number of places in the net), and if
there is a transition that connects place 𝑝𝑥 with place 𝑝𝑦 , the matrix element 𝐴𝑦𝑥 gets the time
value 𝑑 that the transition takes, otherwise it gets the value 𝜀 = −∞ [11].

Let us extend the example of a node sending a message. Now, we have two nodes that want
to send each other a message. Let us assume they cannot send and receive at the same time,
then one must send after the other. If one node wants to send, it needs the “ok” of the other
node, so in order for the transition to fire, both nodes must provide a token: the sending node
to signal that it has data ready, the receiving node to signal that it is ready to receive that data.
The respective Petri net is shown in Figure 4a. Place 𝑃0 is the internal state of node 𝑛0 that
means ‘data ready’, and 𝑃1 is 𝑛0’s state ‘done sending’. Place 𝑃2 is the internal state of node 𝑛1

that means ‘ready to receive’ while 𝑃3 is 𝑛1’s state ‘done receiving’. Equivalently, the sending
process of node 𝑛1 is shown in Figure 4b. When we combine the two nets into one TdPN, we
obtain Figure 4c, the net of a classical ping-pong message exchange. One can see that the two
nodes have timing dependencies.

Our final Petri net has six places, so our connection matrix 𝐴 is of size 6× 6. When we fill in
the connections between places like described in the first paragraph of this section and assume
that 𝑑𝑖 = 1, we get the connection matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝑑0 𝜀 𝜀 𝑑0 𝜀 𝜀
𝜀 𝑑4 𝜀 𝜀 𝑑4 𝜀
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
𝑑0 𝜀 𝜀 𝑑0 𝜀 𝜀
𝜀 𝑑4 𝜀 𝜀 𝑑4 𝜀

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
1 𝜀 𝜀 1 𝜀 𝜀
𝜀 1 𝜀 𝜀 1 𝜀
𝜀 𝜀 𝜀 𝜀 𝜀 𝜀
1 𝜀 𝜀 1 𝜀 𝜀
𝜀 1 𝜀 𝜀 1 𝜀

⎤⎥⎥⎥⎥⎥⎥⎦ .
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𝑛0

𝑃0 𝑃1

𝑛1

𝑃2 𝑃3

𝑡0

⟨𝑑0⟩

(a)

𝑛0

𝑃0 𝑃1

𝑛1

𝑃2 𝑃3𝑡1

⟨𝑑1⟩

(b)

𝑛0

𝑃0 𝑃1 𝑃2

𝑛1

𝑃3 𝑃4 𝑃5

𝑡0

⟨𝑑0⟩

𝑡4

⟨𝑑4⟩

(c)

Figure 4: TdPN of a ping-pong message exchange between two nodes: (a) shows the net of node 𝑛0

sending and 𝑛1 receiving, (b) shows the net of node 𝑛1 sending and 𝑛0 receiving, and (c) combines the
two individual TdPNs to the net of a ping-pong message exchange. The transitions are named after the
place of the sending node; transition 𝑡𝑖 takes time 𝑑𝑖.

What we would like to find now is the longest path. This can be achieved by MPA adding (⊗)
the connection matrix with itself. 𝐴𝑙 is able to return the longest path of length 𝑙 (with 𝑙 ∈ N)
and is defined as

𝐴𝑙 = 𝐴⊗𝐴⊗ ...⊗𝐴 =

𝑙⨂︁
𝑖=1

𝐴 .

But we want the overall longest path, which is returned by the star matrix 𝐴* defined as

𝐴* = 𝐼 ⊕𝐴⊕𝐴2 ⊕ ...⊕𝐴𝑚

where 𝑚 ≥ |𝑃 | − 1, because this guaranties that all possible connections are included even in
the case of a node ring. Now we can MPA add (⊗) our input vector to the star matrix and get as
the result the times when the places of the net are reached. Let us assume that node 𝑛0 starts
sending immediately and node 𝑛1 is immediately ready to receive, then our input vector is a
zero vector �⃗� = 0⃗. By performing MPA matrix-vector addition 𝐴* ⊗ �⃗� we get an output vector

8
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�⃗� that tells us what state is reached after what time7:

𝐴* ⊗ �⃗� =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜂 𝜀 𝜀 𝜀 𝜀 𝜀
1 𝜂 𝜀 1 𝜀 𝜀
2 1 𝜂 2 1 𝜀
𝜀 𝜀 𝜀 𝜂 𝜀 𝜀
1 𝜀 𝜀 1 𝜂 𝜀
2 1 𝜀 2 1 𝜂

⎤⎥⎥⎥⎥⎥⎥⎦⊗

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

0
1
2
0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦ = �⃗� .

Vector �⃗� shows that the states represented by place 𝑃0 and 𝑃3 are immediately reached (due
to our assumption that both nodes are ready at time 0), that the states that are represented by
place 𝑃1 and 𝑃4 (‘𝑛0 done sending’ and ‘𝑛1 done receiving’) are reached after one time unit,
and that the states represented by place 𝑃2 and 𝑃5 (‘𝑛0 done receiving’ and ‘𝑛1 done sending’)
are reached after two time units. If we compare this to our TdPN in Figure 4c, the reader will
find that the numbers are congruent with the paths through the net.

5. Modeling the Shift

In this section we will give a detailed description of how we modeled the Shift on the basis
of our system properties. Therefore, we will summarize our system properties and additional
constraints and then show the Petri net model for the first dimension (row) and how to extend
it to the second and third dimension (column and tower).

5.1. System Properties

The communication on the JURECA-DC cluster is location invariant8. This means that it does
not matter if two communication nodes are placed in the same rack or on different racks. The
physical distance of nodes has a neglectable impact on the latency of the exchanged message.

For our implementation, we constrain the system by demanding that sender and receiver
must have a handshake for the transfer. For small messages below 256 kB9, MPI does not
demand a handshake but uses the eager protocol (see OpenMPI eager [12]). This means a
Send call returns immediately because the sender knows that the receiver has enough buffer to
receive the message without explicit agreement to reception. We do not want this behavior (for
now), because it causes different timing behavior on the sending and receiving side. Instead we
demand a transfer where both partners must shake hands, a rendezvous. To achieve this we
used MPI_Ssend, which forces a rendezvous for all message sizes.

7A special case are non-deterministic Petri nets. In that case the output vector delivers the worst case times to reach
a place.

8We avoid the more correct term of place invariance because it might cause confusion due to a different meaning
in the context of Petri nets.

9We measured the MPI eager threshold on our cluster and it contradicts the commonly found value of 12 kB. We
do not know why, but our measurements show a clear jump at 256 kB.

9



Theresa Werner et al. CEUR Workshop Proceedings 1–15

5.2. The Petri Net for One Dimension

First, we will look at the Petri net for a one-dimensional Shift communication. As we already
introduced with the examples in Section 4, each node is represented by a number of places that
stand for different states which the node reaches with progressing time (see example: ready
to send → done sending = ready to receive → done receiving). In order to send a message, a
sending node needs the agreement of the receiving node that the latter is ready to receive data.
Together they can enable the transition that represents the sending process. The firing of the
transition takes a certain time and produces a token for the sending node, which means that the
sending is finished, and a token for the receiving node, which means that the data is received.

In order to avoid non-determinism (for now), we dictate a communication pattern: the nodes
can either start with all transactions to the right and then switch to finish the transactions to the
left or vice versa. Figure 5 shows the first pattern for 𝑘 = 1. Places, which are in a horizontal
line, represent the states of one node 𝑛𝑖. The transactions are indexed with the number of the
preceding place of the sending node; the durations have been omitted since we have location
invariance, i.e. all transitions take the same time. For the nodes 𝑛2 and 𝑛3 the presented section
of the whole net is sufficient for a MPA analysis of the time dependencies for 𝑘 = 1. The number
of nodes required for the analysis is increasing quickly with a growing 𝑘. It can be put into a
formula in the following way10:

𝑛net = 8𝑘 − 2 .

5.3. Multiple Dimensions

For the other two phases (column and towers), the nets look identical to the first dimension,
only the transition times change due to higher message load. One net of the column dimension
requires 𝑛net neighboring nets from the row dimension. Equivalently, one net of the tower
dimension will need just as many neighboring column TdPNs. The different phases can be
handled independently with the output of the previous phase being the input for the next one.
For this work we limited our analysis to the first phase to see whether the model can reflect the
actual time behavior.

6. Model Meets Reality

In this section we will present the results of the theoretical analysis with MPA and the actual
measurements from the implementation.

For the MPA analysis we used Python to generate and analyze the matrices. The input for the
transition durations is the average message passing time between nodes of the cluster because
we wanted to see whether measuring the average latency and feeding it into the matrix would
be enough to gain an accurate prediction for the communication time. With an OpenMPI ping-
pong message (using MPI_Ssend) we measured the average message passing time between
nodes using 1,000 ping-pongs. The results of the ping-pong measurements for different message
sizes are listed in Table 4 in the Appendix.

10The formula results from analyzing the nets for 𝑘 ∈ [1, 5].
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Figure 5: Section of the TdPN that is relevant in order to evaluate the dependencies of the Shift com-
munication in the first dimension (along the row, 𝑘 = 1). The transitions are named after the place of
the sending node; all transitions take the same time due to location invariance of the cluster. The net
continues on the top and bottom end.

The implementation of the Shift was done with OpenMPI 4.1.2 (GCC 11.2.0) on the JURECA-
DC cluster (InfiniBand network). We used MPI_Ssend for all send routines in order to force a
rendezvous for each message. The amount of part-taking nodes 𝑃 appears to be neglectable
(see Tables 5-7 in Appendix), so we will focus on the measurements performed with 64 nodes to
get the full spectrum of 𝑘-values.

The results from the MPA analysis compared to the implementation measurements can be
found in Tables 1-3. The predictions are within the standard deviation 𝜎 of the measurements,
so the model can be considered correct for the range of 𝑘-values that we used. However, we

11
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Table 1
MPA analysis vs. implementation measure-
ments for 10 bytes load.

𝑘 measured predicted
latency [ns] 𝜎 [ns] MPA [ns]

1 11,360 4,332 9,216
2 19,478 1,765 18,432
3 30,071 8,554 27,648
4 39,338 11,080 36,864
5 48,424 10,598 46,080
6 58,701 16,412 55,296
7 66,476 9,267 64,512
8 75,920 10,316 73,728
9 88,762 24,108 82,944

10 97,072 25,594 92,160

Table 2
MPA analysis vs. implementation measure-
ments for 1,000 bytes load.

𝑘 measured predicted
latency [ns] 𝜎 [ns] MPA [ns]

1 13,804 5,294 12,184
2 22,493 3,715 24,368
3 34,814 6,499 36,552
4 45,422 8,145 48,736
5 55,956 11,090 60,920
6 68,121 20,231 73,104
7 78,428 15,781 85,288
8 93,193 21,057 97,472
9 102,292 18,898 109,656

10 114,215 20,178 121,840

Table 3
MPA analysis vs. implementation measure-
ments for 100,000 bytes load.

𝑘 measured predicted
latency [ns] 𝜎 [ns] MPA [ns]

1 62,708 7,353 59,772
2 127,668 19,557 119,544
3 191,647 29,054 179,316
4 263,956 65,629 239,088
5 319,701 65,497 298,860
6 467,980 492,450 358,632
7 448,284 83,874 418,404
8 565,866 389,992 478,176
9 585,111 109,965 537,948

10 671,048 169,343 597,720

can also see that the prediction is more accurate for message sizes of 10 and 1,000 bytes than
for 100,000 bytes.

7. A Word at the End

This section is the conclusion of our work and discusses our approach to modeling, our model,
our measurements, and our result. Last, it gives an outlook on what we want to do next.

12



Theresa Werner et al. CEUR Workshop Proceedings 1–15

7.1. Discussion

7.1.1. Measurements

We noticed that the predictions are less accurate for the message size of 100,000 bytes. Our
thought is that for messages of this size we can see network saturation effects which we do not
have when we perform a single ping pong measurement. A way to improve the model here
would be to create network noise while measuring the ping pong.

Another thing we noticed it that if we limit the ping pong measurements and the Shift
measurements to the 20% smallest values (the best cases), the prediction becomes stunningly
accurate (differences of a few hundred nanoseconds). However, we cannot name a reason for
the 20% threshold, so this needs further evaluation.

7.1.2. Model

Our model can be considered correct. However, the MPA matrices are growing exponentially
with the 𝑘-value, which makes them time consuming to evaluate. Moreover, we are over-
modeling our system. Our model incorporates more detail than what is necessary for the
analysis. The ability to assign different times to all transitions in order to model slower and
faster nodes is not necessary due to location invariance of the cluster. Here, we reduced the
model’s complexity to a simple calculation of average message latency multiplied by the number
of message exchanges/number of rendezvous.

By using a duration function that is dependent on the bandwidth and traffic in the network
instead of duration values, a model like ours could be helpful to analyze the influence of network
congestion. It would also be more suitable for analyzing the timing behavior that results from
the lack of location invariance, i.e. different duration values per node pair.

We chose Petri nets in the first place because of their ability to include time easily and handle
non-determinism, which we will need in the future once we switch to an implementation with
MPI_Isend. However, TdPNs do not seem like a suitable approach for our problem or our
cluster due to the reasons mentioned above.

7.2. Future Work

For the presented analysis, we forced MPI not to use the eager protocol but the rendezvous
protocol, which is increasing the latency. A future model will incorporate the eager protocol.
Also, non-determinism in the form of e.g. MPI_Isend will be included since it might be able
to reduce communication time by introducing flexibility in the case where a communication
partner is not instantly available.
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A. Additional Tables

Table 4
Average message passing time in relation to message load.

Load [byte] Latency [ns]

0 2138
5 2137

10 2304
50 2843

100 2864
250 2890
260 3018
500 2937

Load [byte] Latency [ns]

1,000 3046
5,000 4002

10,000 4925
50,000 10883

100,000 14943
250,000 27267
260,000 28489
500,000 47305

Table 5
MPA analysis vs. implementation measurements for 10 bytes load.

𝑘 𝑃 = 64 [ns] 𝑃 = 32 [ns] 𝑃 = 16 [ns] 𝑃 = 8 [ns] 𝑃 = 4 [ns] MPA [ns]

1 11360 11018 10896 10841 10830 9216
2 19478 19574 19464 19449 19458 18432
3 30071 29551 29312 29212 - 27648
4 39338 38851 38554 38438 - 36864
5 48424 48565 48140 - - 46080
6 58701 58706 58066 - - 55296
7 66476 66580 66072 - - 64512
8 75920 76233 75631 - - 73728
9 88762 87499 - - - 82944
10 97072 96654 - - - 92160
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Table 6
MPA analysis vs. implementation measurements for 1,000 bytes load.

𝑘 𝑃 = 64 [ns] 𝑃 = 32 [ns] 𝑃 = 16 [ns] 𝑃 = 8 [ns] 𝑃 = 4 [ns] MPA [ns]

1 13804 13322 13219 13107 13068 12184
2 22493 22681 22659 22685 22676 24368
3 34814 34783 34515 34483 - 36552
4 45422 45164 44848 44778 - 48736
5 55956 56301 55993 - - 60920
6 68121 68140 67347 - - 73104
7 78428 78255 77623 - - 85288
8 93193 92577 91433 - - 97472
9 102292 102080 - - - 109656
10 114215 113395 - - - 121840

Table 7
MPA analysis vs. implementation measurements for 100,000 bytes load.

𝑘 𝑃 = 64 [ns] 𝑃 = 32 [ns] 𝑃 = 16 [ns] 𝑃 = 8 [ns] 𝑃 = 4 [ns] MPA [ns]

1 62708 63796 64679 64538 64387 59772
2 127668 128520 132292 131663 131256 119544
3 191647 191821 191611 191115 - 179316
4 263956 260298 260356 259143 - 239088
5 319701 320535 321957 - - 298860
6 467980 439503 435429 - - 358632
7 448284 451280 452199 - - 418404
8 565866 548509 550349 - - 478176
9 585111 583438 - - - 537948
10 671048 665027 - - - 597720
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