
Parameterised CSA-nets
Mohammed Alahmadi1

1School of Computing, Newcastle University
Science Square, Newcastle upon Tyne, NE4 5TG, United Kingdom

Abstract
Communication Structure Acyclic Nets (CSA-nets) are a Petri net-based model used to represent the
execution behaviour of Complex Evolving Systems (CESs). CSA-nets consist of sets of acyclic nets that
communicate with each other through a set of buffer places. However, this can generate an excessive
number of buffer places, making the model hard to visualize and analyse. Additionally, having several
components that perform similarly can result in the development of a complicated model. This paper
introduces two extensions for CSA-nets, which are used to depict the relationships between interacting
systems’ components represented by sets of acyclic nets. Specifically, it introduces a way of folding buffer
places to address the issue of a large number of buffer places. In addition, it introduces parameterisations
for CSA-nets using multi-coloured tokens to extend places to accept multiple tokens distinguished by
parameters. The combination of these techniques should lead to improved visualization and analysis of
large and complex CSA-nets. We apply mechanisms found in the domain of coloured Petri nets.

Keywords
Petri net, acyclic net, communication structured acyclic net, parameterisation, folding, visualisation

1. Introduction

Today’s world is associated with large amounts of data stored in servers, hard drives, and the
cloud, among other places. Regardless of the discipline, modern technologies need to be able to
process this data, whether it relates to education, health, crime, or anything else. In particular,
there are enormous amounts of data available, and this quantity is only going to continue to grow
due to advances in digital sensors, communications, and storage that generate vast amounts of
data. This needs the integration and interaction of several subsystems, including data storage,
processing, analysis, and visualization, among others.

A complex evolving system (CES) is composed of a large number of subsystems that interact
with each other concurrently. Such a system is often characterized by a dynamically changing
structure and features, as well as having intricate and large behavioral patterns. In other words,
when new features are added, the behavior of the entire system may be affected. That is, these
systems are highly complex in terms of interpreting their behavior and visualizing it [1][2].

Structured occurrence nets (SONs)[3][4][5] are a Petri net-based model for representing the
execution behavior of CESs. They are an extension of occurrence nets, which represent the
causality and concurrency information relating to a single system execution [4]. Communication
Structured Occurrence Net (CSO-net) consists of several acyclic nets linked through different

PNSE’23, International Workshop on Petri Nets and Software Engineering, June 26-27, 2023, Lisbon, Portugal
" m.s.h.alahmadi2@ncl.ac.uk (M. Alahmadi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

167

mailto:m.s.h.alahmadi2@ncl.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Mohammed Alahmadi CEUR Workshop Proceedings 167–182

types of formal relationships [3]. It provides full and clear record of all causal dependencies
between the events involved in a single ‘causal history’. That is, only cycles involving buffer
places are allowed. CSO-nets exhibit backward determinism and forward determinism [3, 5].
However, we also consider CSA-nets with only forward nondeterminism.These nets are intended
to capture information about (i) the interaction between actual/expected behaviors and (ii) the
collected evidence to be analyzed. Moreover, they can represent the different actions of dynamic
evolving systems [3]. Each component acyclic net represents a local view of the system’s behavior,
which is generally easy to interpret. However, an analogous representation at the global system
level leads to complex visualizations, especially in evolving systems. This decreases the system’s
interpretability.

The particular formal model used in this paper is communication structured acyclic nets
(CSA-nets) and is used in [6][7], which are generalizations of CSO-nets where the individual
acyclic nets are linked by buffer places capable of modeling both asynchronous and synchronous
communication between different subsystems. In other words, events are used to link the acyclic
nets with each other through buffer places. Figure 1 shows an example of a CSA-net with two
‘horizontal’ occurrence nets (the upper one exhibiting concurrency) connected by two buffer
places, q1 and q2. The idea is that these places establish communication links. When the buffer
places are used asynchronously, the CSA-net can generate, for example, the step sequence d,ab,ec.
Additionally, when they are used synchronously, the step sequence da,b,ce can be executed. In
other words, there is an instantaneous transfer of tokens generated by a and b to transition c
thanks to the connections through buffer places. This feature can be used to model synchronous
communication between the component occurrence nets in particular. Nodes linked by arcs are
one of the common graphical representations in the field of visualization. This technique is
widely applied in different areas, such as bioinformatics, software engineering, VLSI circuits,
and networking. Improving the representation of CSA-nets would lead to better comprehension
of the problem under investigation. In particular, it could help investigators detect causality
and dynamic behaviors between events, which would, in turn, aid in analyzing such systems.
However, as the size of data being represented grows, the number of nodes increases even more
rapidly. Consequently, such a large number of nodes often make the model under investigation
difficult to follow and understand, resulting in comprehension difficulties.

One example of CES systems where there is a large amount of data is cybercrime investigation.
In such cybercrime applications, the generated data is of high importance, and high-quality
analysis is needed. Proper visualization of CSA-nets with a large amount of data would result
in a much better understanding for the investigators and the possibility of linking crime events
and locations with data representations that help detect crime. This is done through extracting
valuable knowledge from large and complex data and identifying useful information from a
variety of data sources. A major specific benefit to cybercrime investigation is that such analysis
allows early detection of crimes, hence crime prevention. The current work is an attempt in this
direction, i.e., visualization improvement [1, 2].

CSA-nets visualization framework allows for the analysis of complex systems. The hurdle is
that managing large amounts of data is not an easy task. In other words, with the high number of
components (acyclic nets), there is a large number of buffer places leading to difficult analysis
and visualization. What also adds to this complexity is that CSA-nets are limited to presenting
only one token in a transition at any given time, which, in turn, limits its ability to represent, e.g.,

168



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

p1

d

p2

a

p3

e

p4

p5

b

p6

c

p7 p8

q1 q2

Figure 1: A CSA-net model.

several similar processes at the same time. In general, system parameterisation is used to examine
how changing input parameters affects the output of a system. By defining a set of different
parameters, one can obtain a corresponding set of different outputs without the need to rebuild
the system model every time. This advantage allows for the preparation of the system model
once and its execution several times, providing insights into the relationship between inputs and
outputs. It also simplifies the system tracing process by automatically changing the results of one
parameter when other parameters are changed.

This paper aims to improve the visualization of CSA-nets by addressing two issues. First, it
extends the work done in [8] by providing the necessary formalization of the concept of master
buffer places. This concept adds a folding mechanism to CSA-nets and addresses the issue of a
large number of buffer places. Second, we introduce a new class of CSA-nets called parameterised
CSA-nets that extends the single-token concept. This idea aims to allow places to accept multiple
tokens distinguished by parameters.

2. Preliminaries

This section presents notions related to acyclic nets and communication structured acyclic nets.

2.1. Acyclic nets

An acyclic net is a triple acnet = (P,T,F), where P(= Pacnet) and T (= Tacnet) are disjoint finite
sets of places and transitions, respectively, and F(= Facnet) is the flow relation included in
(P×T )∪ (T ×P) such that: (i) P is nonempty; (ii) F is acyclic; and (iii) for every t ∈ T , there
are p,q ∈ P such that pFt and tFq. For every node x ∈ P∪T ,

preacnet (x) = {z | zFx} and postacnet (x) = {z | xFz}

and similarly for sets of nodes.

169



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

The markings of acnet, denoted by markings(acnet), are the subsets of P. Hence, the nets we
are dealing with are safe. 1 The default initial marking is Minit

acnet = {p ∈ P | preacnet (p) = ∅},
and the steps are

steps(acnet) = {U ∈ 2T | ∀t ̸= u ∈U : preacnet (t)∩preacnet (u) =∅} .

Graphically, places are represented by circles, transitions by boxes, arcs between the nodes repre-
sent the flow relation, and markings are indicated by black tokens placed inside the corresponding
circles.

A step U of acnet is enabled at marking M if preacnet (U) ⊆ M. It can then be executed and
yield

M′ = (M∪postacnet (U))\preacnet (U).

This is denoted by M[U⟩acnet M′.
To capture the behaviour of acyclic nets (and other nets later on), we use step sequences,

involving reachable markings and executed steps. Let (Minit
acnet =)M0,M1 . . . ,Mk (k ≥ 0) be

markings and U1, . . . ,Uk be steps of acnet such that we have Mi−1[Ui⟩acnet Mi, for every 1 ≤ i ≤ k.
Then

µ = M0U1M1 . . .Mk−1UkMk

is a mixed step sequence of acnet. This is denoted by µ ∈ mixsseq(acnet).
A basic consistency criterion applied to acyclic nets is well-formedness, and acnet is well-

formed if the following hold, for every M0U1M1 . . .Mk−1UkMk ∈ mixsseq(acnet):

• postacnet (t)∩postacnet (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.
• postacnet (Ui)∩postacnet (U j) =∅, for all 1 ≤ i < j ≤ k.

Intuitively, in a step sequence of a well-formed acyclic net, no place receives a token more than
once. This ensures an unambiguous representation of causality in the behaviour of acnet. Note
that well-formedness is stronger than safeness. In particular, it prevents the same transition from
executing more than once. So, having an acyclic net represents a single execution, meaning that
each transition can only be executed once.

2.2. Communication structured acyclic net

A communication structured acyclic net (or CSA-net) is a tuple

csan = (acnet1, . . . ,acnetn,Q,W ) (n > 1)

such that:

1. acnet1, . . . ,acnetn are well-formed acyclic nets with disjoint sets of nodes (i.e., places and
transitions). We also denote:

Pcsan = Pacnet1 ∪·· ·∪Pacnetn
Tcsan = Tacnet1 ∪·· ·∪Tacnetn
Fcsan = Facnet1 ∪·· ·∪Facnetn .

1t ̸= u ∈Umeans t,u ∈Uand t ̸= u

170



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

2. Q is a finite set of buffer places disjoint from Pcsan ∪Tcsan.
3. W ⊆ (Q×Tcsan)∪ (Tcsan ×Q) is a set of arcs.
4. For every buffer place q: (i) there is at least one transition t such that tWq; and (ii) if tWq

and qWu then transitions t and u belong to different component acyclic nets.

That is, in addition to requiring the disjointness of the component acyclic nets and the buffer
places, it is required that buffer places pass tokens between different acyclic nets.
For a node x ∈ Pcsan ∪Tcsan ∪Qcsan,

precsan (x) = {y | yFcsan x ∨ yW x}
postcsan (x) = {y | xFcsan y ∨ xW y}}

denote the direct predecessors and successors of x, respectively.
The markings of csan, denoted by markings(csan), are the subsets of Pcsan∪Qcsan. The default

initial marking is Minit
csan = Minit

acnet1 ∪·· ·∪Minit
acnetn , and the steps are:

steps(csan) = {U ∈ 2Tcsan | ∀t ̸= u ∈U : precsan (t)∩precsan (u) =∅} .

A step U of csan is enabled at marking M if

precsan (U)⊆ M∪ (postcsan (U)∩Q).

It can then be executed and yield

M′ = (M∪postcsan (U)\precsan (U).

This is denoted by M[U⟩csan M′.
Note that here enabling a step amounts to having all input places belonging to the component

acyclic nets present in a global state. Moreover, if an input buffer place is not present, then it
must be an output place of a transition belonging to the step. Such a mechanism allows one to
synchronise transitions coming from different component acyclic nets. The same mechanism of
simultaneous output to and input from a place is not available within the component acyclic nets.

The dynamic behaviour of csan is captured by mixed step sequences, as follows. Let
(Minit

csan =)M0,M1 . . . ,Mk (k ≥ 0) be markings and U1, . . . ,Uk be steps of csan such that we have
Mi−1[Ui⟩csan Mi, for every 1 ≤ i ≤ k. Then

µ = M0U1M1 . . .Mk−1UkMk

is a mixed step sequence of csan. This is denoted by µ ∈ mixsseq(csan).
Again, a basic consistency criterion is well-formedness, and csan is well-formed if the following

hold, for every M0U1M1 . . .Mk−1UkMk ∈ mixsseq(csan):

• postcsan (t)∩postcsan (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.
• postcsan (Ui)∩postcsan (U j) =∅, for all 1 ≤ i < j ≤ k.

Example 1. Figure 1 shows a CSA-net. Some of its mixed step sequences are:

µ1 = {p1, p7}{d}{p2, p5, p7}{a,b,c}{p3, p6, p8}{e}{p4, p8}
µ2 = {p1, p7}{d}{p2, p5, p7}{a}{p3,q1, p5, p7}{b,c}{p3, p6, p8}{e}{p4, p8}
µ3 = {p1, p7}{d}{p2, p5, p7}{a,b}{p3,q1, p6,q2, p7}{e}{,q1,q2, p4, p7}{c}{p4, p8}.

171



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

3. Towards parameterisation

The concept of parameterisation has gained significant attention in the field of system modelling,
as it provides a means to monitor a system’s operation under different conditions. Prior to the
use of parameterisation, investigating systems under different conditions was a difficult task. In
order to address this issue, [9] proposed using the parameterisation technique with coloured Petri
nets to represent complex data and events within a system. This allowed for the investigation of
systems influenced by parameters that determine the outputs. This technique has been applied to
model systems in various fields, including networking. For example, [10] used parameterisation
to model switched Ethernet networks, providing a means to investigate system performance by
providing reusable networks for testing different parameters.

Addressing large scale problems, characterised by a large amount of data, as one unit is a
difficult task and makes the model under investigation hard to interpret and visualise. So, the
one proposed solution is to tackle such a problem by dividing it into smaller units that can
later be put together to form the entire system. In the meantime, modelling is needed to better
understand larger systems. This is because modelling reduces debugging time and allows the
reuse of frequently used components (like events and conditions) which, in turn, saves time
and effort. Moreover, modelling assures the validity of the system as modules that have been
extensively tested in one environment are likely to run in a similar environment as expected, so
reuse increases the reliability of accuracy. This is known as parameterisation concept [11]. That
is, the parameterisation concept has been applied to Petri nets where a part of the net remains
unspecified until it is executed. Specifically, there was a need to parameterise a part of the net
and find a way to substitute it in the net. This is achieved by hiding part of the system [11].

More recently, the modeling of biological systems has become a challenging problem due to the
large-scale data involved. As a result, Petri nets have been used to model biological systems. This
is accomplished by representing a group of similarly behaving components as one component,
with each of these components being represented by a specific color, thereby distinguishing them.
This provides a compact representation of a complex system while maintaining its semantic
meaning. Additionally, the colored Petri net has another significant advantage, as adding a new
component is an easy task by simply adding a new color. With these benefits in mind, colored
Petri nets have been successfully employed in discriminating metabolites, modeling multicellular
systems, and analyzing spatial diffusion in biological systems [12, 13].

Another direction of applying colored Petri nets is to focus on concurrent systems. However,
concurrent systems often involve a vast amount of highly detailed data, which can be overwhelm-
ing. Moreover, every single step is usually described in detail, which can be distracting for
the modeler. To address this, animation graphics have been employed for visualization, which
provides more appropriate feedback [9, 14].

3.1. Master buffer places

This section will extend the work done in [8] by adding the formalisation of the Master Buffer
Places (MBP) concept. CSA-nets consist of sets of acyclic nets that communicate with each other
through a set of buffer places. Such relations can generate a large number of buffer places, which
can make the model difficult to visualise and analyse, especially for large CSA-nets. Therefore,

172



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

p1

d

p2

a

p3

e

p4

p5

b

p6

q:{q1,q2}
q1,q2

c

p7 p8

q1q2

Figure 2: A version of the CSA-net of Figure 1 with a master buffer place.

p1

a

p2

b

p3

c

p4 p5

d

p6

e

p7 p8

f

p9

q1 q2

q3 q4

a

p1 p2

b

p3

p5

c d

p4 p6

p8

e f

p7 p9

q:{q1,q2}

q′:{q3,q4}

q1

q1

q2

q2

q3

q3

q4

q4

Figure 3: A CSA-net and its version with two master buffer places.

we propose to introduce Master Buffer Places (MBPs) to provide conciseness to the CSA-net by
collapsing (folding) buffer places into (MBPs). In other words, we propose to allow buffer places
to represent more than one token at a time to avoid having a large number of distracting buffer
places. Additionally, it will allow the component acyclic nets to communicate through a unique
buffer place. Inside a (MBP), there will be a set of tokens represented by unique colors. A specific
token will appear in the (MBP) without conflicting with other tokens in each execution since it

173



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

is color-safe, given that the original CSA-net was safe. This contribution will enhance CSA-net
visualisation and contribute to a more readable and understandable model. Figure 2 depicts the
CSA-net of Figure 1, in which the two buffer places (q1 and q2) were folded into a single place
q. It is important to emphasize that the annotations are sets of the original buffer places. That
is, the execution rules follow the standard idea of coloured Petri nets (CPNs), which ensure that
the tokens ’flowing’ along the arcs match the annotations (the tokens in (MBPs) are simply the
original buffer places).

Figure 3 presents another example of using master buffer places. The image shows a well-
structured display, which avoids any crossing of the arcs adjacent to the original buffer places.
This improves the representation of the CSA-net. Introducing a single master buffer place,
however, may lead to unwanted crossing of arcs, as illustrated in Figure 3. If a single master
buffer place is added to the CSA-net in Figure 3, the crossing would be unavoidable unless placed
‘outside’ the outline of the underlying occurrence nets, which is generally unacceptable, since
the individual acyclic nets would be too large to fit in a single screen. One way to address this
issue is to generate multiple master buffer places, as shown in Figure 3. This raises an interesting
problem of determining the number and placement of the master buffer places automatically or
semi-automatically to optimize the visualization of CSA-nets. This problem is the subject of our
ongoing study.

3.2. Parameterised CSA-nets

With the above in mind, we are able to improve the visualization of CSA-nets by folding the
set of buffer places into master buffer places. In this section, we will use the same concept of
folding to fold the components of CSA-nets while preserving their main rules (as being acyclic).
For example, Figure 4 depicts a parameterised version of a very simple acyclic nets where two
concurrent parts are folded (collapsed) into a single parameterised structure. Clearly, the two
parts have the same net structure. Thus, the idea is to determine the set of components that are
behaving identically, and then represent them as a single substructure. This uses typed parameters
to achieve the desired effect through passing tokens to parameterised transition. That is, this
process can allow for the reuse of the model multiple times and increase comprehension, making
larger systems under investigation easier to handle. (Formally, ι(r1) = {p1, p3}, ι(t1) = {a,b}
and ι(r2) = {p2, p4}.) This extension can have positive effect on the model in both increasing
the abstraction and visualisation of the model under investigation.

4. Formalisation

In this section, we provide a full formalisation of the approach proposed in this paper. We first
introduce parameterised acyclic nets, and then parameterised communication structured acyclic
nets.

4.1. Parameterised acyclic nets

We first introduce a parameterised version of acyclic nets.

174



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

Definition 1 (parameterised acyclic net). A parameterised acyclic net (or PA-net) is a tuple
pacnet = (P,T,F,acnet, ι ,col), where:

• acnet = (P′,T ′,F ′) is a well-formed acyclic net, and col is a finite set of colours (or
parameters).

• P (P ̸=∅) and T are disjoint finite sets of places and transitions, respectively.
• F ⊆ (P×T )∪ (T ×P) is a flow relation.
• ι : P∪T → 2P′∪T ′ \{∅} is a node annotation mapping.

We denote, for all x ∈ P∪T , p ∈ P′, and u ∈ T ′:

prepacnet (x) = {z | zFx} prepacnet (u, p) = ι(p)∩preacnet (u)
postpacnet (x) = {z | xFz} postpacnet (u, p) = ι(p)∩postacnet (u) .

We then assume that the following hold.

1. (P∪T )∩ (P′∪T ′) =∅,
⋃︁

ι(P) = P′, and
⋃︁

ι(T ) = T ′.
2. For all t ∈ T and u ∈ ι(t) we have the following, where

⨄︁
is assumed to be applied to

non-empty sets:2

preacnet (u) =
⨄︁
{prepacnet (u, p) | p ∈ prepacnet (t)}

postacnet (u) =
⨄︁
{postpacnet (u, p) | p ∈ postpacnet (t)} .

3. If u ∈ T ′ and R ⊆ P are such that

preacnet (u) =
⨄︂
{prepacnet (u, p) | p ∈ R}

then there is t ∈ T such that u ∈ ι(t) and prepacnet (t) = R.
4. For every p ∈ P,

ι(p)\Minit
acnet =

⋃︂
{postpacnet (u, p) | u ∈

⋃︂
ι(prepacnet (p))} .

5. For every p ∈ Pinit
acnet, there is exactly one place pinit ∈ P such that p ∈ ι(pinit).

Note that we do not assume that F is acyclic since the acyclity of the behaviour of acnet will
lead to the acyclicity of the behaviour of pacnet.

Example 2. Figure 4 shows a parameterised acyclic net

pacnet = (P,T,F,acnet, ι ,col)

such that
acnet = ({p1, p2, p3, p4},{a,b},{(p1,a),(a, p2),(p3,b),(b, p4)}),

and
P = {r1,r2} T = {t} F = {(r1, t),(t,r2)}
ι(r1) = {p1, p3} ι(t) = {a,b} ι(r2) = {p2, p4}
col = {1,2}.

We then have, for example, prepacnet (a,r1) = {p1} and postpacnet (b,r2) = {p4}.

2Thus, for example, {prepacnet (u, p) | p ∈ prepacnet (t)} is a partition of preacnet (u).

175



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

p1

a

p2

p3

b

p4

α

r1:{p1, p3}

t

{a,b} r2:{p2, p4}

Figure 4: An acyclic net and its parameterised version with col = {1,2}, where α =
{p1:1, p1:2, p3:1, p3:2}.

Intuitively, ι(t) specifies different ‘modes’ of the execution of a transition t ∈ T , and ι(p)
specifies the places of acnet which can be ‘present’ in p ∈ P in the executions of pacnet. Defini-
tion 1(2) means that, for each mode u ∈ ι(t), the arcs incoming to t ‘deliver’ the input places of u,
and similarly for the output arcs. Definition 1(3) means that, for any potential distribution of the
‘preset’ of u ∈ Tacnet, there is a transition t ∈ T with the mode u which can input this distribution
of the preset. Definition 1(4) states that ι(p) is determined by the modes of the input transitions.

To capture the behaviour of pacnet, we will use parameterised places and transitions:

Ppacnet = {(p,r,c) ∈ P′×P× col | p ∈ ι(r)}
Tpacnet = {(u, t,c) ∈ T ′×T × col | u ∈ ι(t)}

Intuitively, (p,r,c) is an instance of place p of the original acyclic net coloured by c, which
resides in the place r of pacnet. (Another way of interpreting (p,r,c) is that it represents coloured
token (p,c) present in the place r.) Similarly, (u, t,c) represents mode in which transition t
operates as if it were transition u of the original acyclic net coloured by c. Moreover, we denote
for (u, t,c) ∈ Tpacnet (and similarly for subsets of Tpacnet):

prepacnet ((u, t,c)) =
⋃︁
{preacnet (u, p)×{p}×{c} | p ∈ prepacnet (t)∧ c ∈ col}

postpacnet ((u, t,c)) =
⋃︁
{postacnet (u, p)×{p}×{c} | p ∈ postpacnet (t)∧ c ∈ col} .

Intuitively, prepacnet ((u, t,c)) and postpacnet ((u, t,c)) determine the tokens which transition t in
mode u consumes and produces when fired.

Example 3. For the PAN-net in Figure 4 we have, for example, prepacnet ((a, t,1)) = {(p1,r1,1)}
and prepacnet ((b, t,2)) = {(p4,r2,2)}.

The markings of pacnet, denoted by markings(pacnet), are the subsets of Ppacnet. The default
initial marking is:

Minit
pacnet = {(p, pinit,c) | p ∈ Minit

acnet ∧ c ∈ col}. (1)

Given a marking M and r ∈ P, we denote

M(r) = {(p,c) | (p,r,c) ∈ M}= {(p1,c1), . . . ,(pk,ck)},

and in the diagrams place p1:c1, . . . , pk:ck inside p. In other words, p1:c1, . . . , pk:ck are coloured
tokens present in p at marking M. Moreover, each place p of pacnet is annotated by p:ι(p), and
each transition t by ι(t). The same convention is used for the channel places and CSA-nets later

176



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

on. We also say that M is colour-safe if M(r)∩M(s) =∅, for all r ̸= s ∈ P. Note that Minit
pacnet is

colour-safe.
The steps of pacnet, denoted by steps(pacnet), are:

steps(pacnet) = {U ∈ 2Tpacnet | ∀t ̸= u ∈U : prepacnet (t)∩prepacnet (u) =∅} .

A step U of pacnet is enabled at marking M if prepacnet (U) ⊆ M. It can then be executed and
yield

M′ = (M∪postpacnet (U))\prepacnet (U).

This is denoted by M[U⟩pacnet M′. Let (Minit
pacnet =)M0,M1 . . . ,Mk (k ≥ 0) be markings and

U1, . . . ,Uk be steps of pacnet such that we have Mi−1[Ui⟩pacnet Mi, for every 1 ≤ i ≤ k. Then

µ = M0U1M1 . . .Mk−1UkMk

is a mixed step sequence of pacnet. This is denoted by µ ∈ mixsseq(pacnet). Moreover, µ is
well-formed if the following hold:

• postpacnet (t)∩postpacnet (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.
• postpacnet (Ui)∩postpacnet (U j) =∅, for all 1 ≤ i < j ≤ k.

Note that in such a case Mi is colour-safe, for every 0 ≤ i ≤ k.

Example 4. The initial marking of the PA-net Figure 4 is

Minit
pacnet = {(p1,r1,1),(p1,r1,2),(p3,r1,1),(p3,r1,2)}.

Two of its mixed step sequences are:

µ1 = Minit
pacnet {(a, t,2)} M1 {(b, t,2),(b, t,1)} M2 {(a, t,1)} M3

µ2 = Minit
pacnet {(b, t,1),(a, t,2)} M4 {(a, t,1),(b, t,2)} M3,

where:
M1 = {(p1,r1,1),(p1,r2,2),(p3,r1,1),(p3,r1,2)}
M2 = {(p1,r1,1),(p1,r2,2),(p3,r2,1),(p3,r2,2)}
M3 = {(p1,r2,1),(p1,r2,2),(p3,r2,1),(p3,r2,2)}
M4 = {(p1,r1,1),(p1,r2,2),(p3,r1,1),(p3,r2,2)}.

To express full consistency between the behaviour of pacnet and that of the underlying acyclic
net acnet, we need a notion of projection of the steps and markings of pacnet onto the steps and
markings of acnet.
For every subset X of Ppacnet ∪Tpacnet and c ∈ col, X ↓c = {x | (x,y,c) ∈ X}. Moreover, for every
sequence ξ = X1 . . .Xk of subsets of Ppacnet ∪Tpacnet, we denote ξ ↓c = X1 ↓c . . .Xk ↓c.

Example 5. Let µ1 be as in Example 4. Then

µ1 ↓1 = {p1, p3} ∅ {p1, p3} {b} {p1, p4} {a} {p2, p4}
µ1 ↓2 = {p1, p3} {a} {p2, p3} {b} {p2, p4} {a} {p2, p4}.

Note that both µ1 ↓1 and µ1 ↓2 are mixed step sequences of the original acyclic net.

177



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

Proposition 1. Let pacnet be as in Definition 1.

1. If µ ∈mixsseq(pacnet) then µ is well-formed and µ ↓c∈mixsseq(acnet), for every c∈ col.
2. If µc ∈ mixsseq(acnet), for every c ∈ col, are sequences of the same length, then there is

µ ∈ mixsseq(pacnet) such that µ ↓c = µc, for every c ∈ col.

Proof. (1) Let µ = M0U1M1 . . .Mk−1UkMk and c ∈ col. The result is proven by induction on k.
If k = 0 then µ = M0 = Minit

pacnet. Then µ is well-formed and µ ↓c ∈ mixsseq(acnet) follow
from Definition 1(5) and Eq. (1).

The inductive case follows from the well-formedness of acnet, Definition 1(3), and, for ev-
ery (u, t,c)∈ Tpacnet, prepacnet ((u, t,c))↓c = preacnet (u) and postpacnet ((u, t,c))↓c = postacnet (u).
Also, it is important that the tokens an modes of firing in different colours do not interfere with
each other.

(2) Follows by a straightforward induction on the common length of the mixed step sequences.
Again, it is important that the tokens an modes of firing in different colours do not interfere with
each other. Moreover, Definition 1(3) ensures that a u ∈ T ′ can be ‘executed’ with parameter
c ∈ col when M is a colour-safe marking of pacnet such that preacnet (u)⊆ M ↓c.

The assumption that the mixed step sequences have the same length can be easily satisfied by
adding extra empty steps to the ‘shorter’ ones.

Proposition 1(1) means that the behaviour of pacnet is well-formed and based on the behaviour
of acnet. Conversely, Proposition 1(2) means that all the behaviours of acnet are represented by
the behaviours of pacnet.

4.2. Parameterised communication structured acyclic net

We now introduce a parameterised version of communication structured acyclic nets. Since the
definitions closely follow those in the previous section, we keep explanations short.

Definition 2. A parameterised communication structured acyclic net (or PCSA-net) is a tuple
pcsan = (pacnet1, . . . ,pacnetn,Q,W,Q′,W ′, ι ′,col) (n ≥ 1) such that:

• pacneti = (Pi,Ti,Fi,acneti, ιi,col), for 1 ≤ i ≤ n, are parameterised acyclic nets.
• csan = (acnet1, . . . ,acnetn,Q,W ) is a well-formed csa-net.
• Q′ is a set of (master) buffer places, and W ′ ⊆ Q′×T ∪T ×Q′, where T = T1 ∪·· ·∪Tn, is

a set of arcs adjacent to these places.
• ι ′ : Q′ → 2Q \{∅} is an annotation mapping such that Q =

⨄︁
{ι(q) | q ∈ Q′}. For every

q ∈ Q, qpcsan will denote the unique channel place in Q′ such that q ∈ ι ′(qpcsan).

We also assume that the sets of nodes of pacnet1, . . . ,pacnetn,Q,Q′ are pairwise disjoint and

W ′ = {(x,y) ∈ Q′×T ∪T ×Q′ | (ι(x)× ι(y))∩W ̸=∅},

where ι = ι1 ∪·· ·∪ ιn ∪ ι ′.

Example 6. Figure 5 shows an example of PCSA-net.

178



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

We also denote P = P1 ∪·· ·∪Pn ∪Q′ and F = F1 ∪·· ·∪Fn ∪W ′, and, for all x ∈ P∪T , p ∈ P,
and u ∈ Tcsan, we denote:

prepcsan (x) = {z | zFx} prepcsan (u, p) = ι(p)∩precsan (u)
postpcsan (x) = {z | xFz} postpcsan (u, p) = ι(p)∩postcsan (u)

Proposition 2. For all t ∈ Tpcsan and u ∈ ι(t):

precsan (u) =
⨄︁
{prepcsan (u, p) | p ∈ prepcsan (t)}

postcsan (u) =
⨄︁
{postpcsan (u, p) | p ∈ postpcsan (t)}

p1

a

p2

b

p3

c

p4

p5

d

p6

ep7 p8

f

q1 q2(a)

α

r1:{p1}

t1

{a}

r2:{p2}
t2

{b} r3:{p3}

t3

{c} r4:{p4}

r5:{p5}
t4

{d}

r6:{p6}

t5

{e, f}
β

r7:{p7} r8:{p8}

q:{q1,q2}(b)

Figure 5: A CSA-net after introducing a master buffer place (a); and folding the lower acyclic net
with col = {1,2}, where α = {p1:1, p1:2} and β = {p7:1, p7:2} (b).

179



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

The idea of Definition 2 is similar to that of parameterised acyclic net, and so the following
notations are close to those introduced before :

Tpcsan = Tpacnet1 ∪·· ·∪Tpacnet1 and Ppcsan = Ppacnet1 ∪·· ·∪Ppacnet1 ∪ ˜︁Q
where ˜︁Q = {(q,qpcsan,c) | q ∈ Q∧c ∈ col}. Moreover, we denote, for all 1 ≤ i ≤ n and (u, t,c) ∈
Tpacneti :

prepcsan ((u, t,c)) = prepacneti ((u, t,c)) ∪ {(q,qpcsan,c) ∈ ˜︁Q | qWu}
postpcsan ((u, t,c)) = postpacneti ((u, t,c)) ∪ {(q,qpcsan,c) ∈ ˜︁Q | uWq}

The markings of pcsan, denoted by markings(pcsan), are the subsets of Ppcsan. The default
initial marking is

Minit
pcsan = Minit

pacnet1 ∪·· ·∪Minit
pacnetn

and the steps are

steps(pcsan) = {U ∈ 2Tpcsan | ∀t ̸= u ∈U : prepcsan (t)∩prepcsan (u) =∅} .

A step U of pcsan is enabled at marking M if

prepcsan (U)⊆ M∪ (postpcsan (U)∩ ˜︁Q).

It can then be executed and yield

M′ = (M∪postpcsan (U)\prepcsan (U).

This is denoted by M[U⟩pcsan M′. Let (Minit
pcsan =)M0,M1 . . . ,Mk (k ≥ 0) be markings and U1, . . . ,Uk

be steps of pcsan such that we have Mi−1[Ui⟩pcsan Mi, for every 1 ≤ i ≤ k. Then

µ = M0U1M1 . . .Mk−1UkMk

is a mixed step sequence of pcsan. This is denoted by µ ∈ mixsseq(pcsan). Moreover, µ is
well-formed if the following hold:

• postpcsan (t)∩postpcsan (u) =∅, for every 1 ≤ i ≤ k and all t ̸= u ∈Ui.
• postpcsan (Ui)∩postpcsan (U j) =∅, for all 1 ≤ i < j ≤ k.

Note that in such a case Mi is colour-safe, for every 0 ≤ i ≤ k.
We also use the same notion of projection as for parameterised acyclic nets, and then obtain a

result showing a full consistency between the behaviour of a PCSA-net and its underlying CSA-net.

Proposition 3. Let pcsan be as in Definition 2.

1. If µ ∈ mixsseq(pcsan) then µ is well-formed and µ ↓c ∈ mixsseq(csan), for every c ∈ col.
2. If µc ∈ mixsseq(csan), for every c ∈ col, are sequences of the same length, then there is

µ ∈ mixsseq(pcsan) such that µ ↓c = µc, for every c ∈ col.

Proof. The proof is similar to that of Proposition 1.

180



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

α

s1:{p1}
t1

{d}

s2:{p2, p5}
t2

{a,b}

s3:{p3, p6}
t3

{e} s4:{p4}

β

s5:{p7}
t4

{c}

s6:{p8}

q:{q1,q2}

Figure 6: A parameterised version of the CSA-net in Figure 1 with col = {1,2}, where α =
{p1:1, p1:2} and β = {p7:1, p7:2}.

Example 7. Figure 5(a) represents the original model in where two acyclic nets (the upper one
exhibits concurrency and the lower exhibits alternative) communicate through two buffer places.
Figure 5(b) shows the corresponding representation of Figure 5(a) after parameterising. That
is, ι(r1) = {p1} and ι(t1) = {a} in the upper acyclic net, while ι(r7) = {p7} and ι(t5) = {e, f}
in the lower acyclic net. In other words, ι(t5) specifies different ‘modes’ of the execution of
transitions e and f for each mode u ∈ ι(t5), the arcs incoming to transition {t5} ‘deliver’ the
input places of u, and similarly for the output arc.

Example 8. Figure 6 depicts a parameterised version of CSA-net of Figure1 after folding both
acyclic nets. More specifically, s2 parameterised places p2 and p5, while t2 parameterised
transition a and b. In other words, ι(s2) specifies the places which can be ‘present’ in s2 in the
executions of pacnet. This process allows for both places and transitions to accept more than
one tokens (parameters) which can enhance both visualisation and analysis of the models under
investigation.

5. Conclusion

This paper introduced two extensions for CSA-nets using the concepts of folding and parameteri-
sation. The analysis and visualisation of CSA-nets is not an easy task, especially for large and
complex systems. Thus, this paper proposed the parameterisation technique by collapsing original
components of CSA-nets to parameteric ones. This technique aims to extend both conditions
and events to accept more than one token to be distinguished using the passed parameter. This
can contribute to improving visualisation and increase the ability to understand models under
investigation.

Future work will consider other form of folding, e.g., merging together entire components of
acyclic nets and subsequently the extension to behaviour structured acyclic nets. We will imple-
ment the aforementioned extensions in SONCRAFT. In addition, the extension work will consider
the behaviour structured acyclic nets. Both directions of future work aim to be implemented in
SONCRAFT. Moreover, we will apply these concepts and extension to cybercrime scenarios to
analyse and visualise such systems by CSA-nets.

181



Mohammed Alahmadi CEUR Workshop Proceedings 167–182

Acknowledgement

I would like to thank the reviewers for their insightful comments on the submitted paper.

References

[1] D. Probst, J.-L. Reymond, Visualization of very large high-dimensional data sets as
minimum spanning trees, Journal of cheminformatics 12 (2020) 1–13.

[2] P. Chen, Visualization of real-time monitoring datagraphic of urban environmental quality,
Eurasip Journal on Image and Video Processing 2019 (2019) 1–9.

[3] M. Koutny, B. Randell, Structured occurrence nets: A formalism for aiding system failure
prevention and analysis techniques, Fundamenta Informaticae 97 (2009) 41–91.

[4] B. Randell, Occurrence nets then and now: the path to structured occurrence nets, in: Inter-
national Conference on Application and Theory of Petri Nets and Concurrency, Springer,
2011, pp. 1–16.

[5] T. Alshammari, Towards automatic extraction of events for SON modelling, in: PNSE@Petri
Nets, volume 3170 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 188–201.

[6] N. Almutairi, M. Koutny, Verification of communication structured acyclic nets using SAT,
in: PNSE@Petri Nets, volume 2907 of CEUR Workshop Proceedings, CEUR-WS.org, 2021,
pp. 175–194.

[7] N. Almutairi, Probabilistic communication structured acyclic nets, in: PNSE@Petri Nets,
volume 3170 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 168–187.

[8] M. Alahmadi, Master channel places for communication structured acyclic nets., in:
PNSE@ Petri Nets, 2021, pp. 233–240.

[9] K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri nets and CPN tools for modelling and
validation of concurrent systems, International Journal on Software Tools for Technology
Transfer 9 (2007) 213–254.

[10] Z. Dmitry A, S. Tatiana R, A parametric colored Petri net model of a switched network,
International journal of Communications, Network and System Sciences 2011 (2011).

[11] T. Mailund, Parameterised coloured Petri nets, in: Proceedings of the Workshop on Practical
Use of Coloured Petri Nets and Design/CPN, Department of Computer Science, University
of Aarhus, 1999.

[12] F. Liu, M. Heiner, D. Gilbert, Coloured Petri nets for multilevel, multiscale and multidimen-
sional modelling of biological systems, Briefings in bioinformatics 20 (2019) 877–886.

[13] K. Jensen, Coloured Petri nets: basic concepts, analysis methods and practical use, volume 1,
Springer Science & Business Media, 1996.

[14] K. Jensen, An introduction to the practical use of coloured petri nets, Lectures on Petri Nets
II: Applications: Advances in Petri Nets 3 (1998) 237–292.

182


	1 Introduction
	2 Preliminaries
	2.1 Acyclic nets
	2.2 Communication structured acyclic net

	3 Towards parameterisation
	3.1 Master buffer places
	3.2 Parameterised csa-nets

	4 Formalisation
	4.1 Parameterised acyclic nets
	4.2 Parameterised communication structured acyclic net

	5 Conclusion

