
Petri-Nets@Run.Time: Handling Uncertainty during

Run-Time Adaptation using Digital Twins

Michael Köhler-Bussmeier1, Heiko Rölke2

1Hamburg University of Applied Sciences, Berliner Tor 7, D-20099 Hamburg
2University of Applied Science of the Grisons, Pulvermühlestrasse 57, CH-7000 Chur

Abstract

In this paper we study systems containing uncertainty about quantitative aspects, like delays etc. System
design for such systems faces the problem that usually the system’s initial configuration is chosen in a
sub-optimal way due to these uncertainties. An adaptive system will adjust its configuration whenever
it obtains new knowledge about the uncertain aspects.

In our setting we like to derive the optimal configuration from the system’s model. Therefore our
models have to include a description of the uncertainties as well. To handle the change of knowledge
at run-time, we integrate the model into the run-time system: models@run.time

Adaptation of the configuration often requires to evaluate different variations of the model, which
arise from the uncertainties. To evaluate the impact of different configurations, we simulate a digital
twin of the system.

Therefore, we need a formalism that allows for an easy simulation of models. To simplify the ap-
proach, we would like to use the same formalism for the simulator and the system model, i.e. we use a
formalism that is able to execute itself as a sub-system. As our system model is based on Petri nets we
use the reflexive approach of Hornets, which follow the Nets-within-Nets principle.

In this paper, we will specify a Hornet model to handle digital twins during the planning phase
of the well-known MAPE-loop (monitor-analyse-plan-execute). A simple scenario based on stochastic
workflow Petri nets will serve as a proof-of-concept.

Keywords

Adaptation, digital twin, Hornets, MAPE-loop, models@run.time, nets within nets, uncertainty

1. Uncertainty, Adaption, and Models@run.time

Process models are usually based on quantitative aspects – like duration, delays etc. While the
general process structure is often well-understood, there are often uncertainties about the quan-
titative aspects. Assume that we have to configure the system w.r.t. these quantitative aspects,
e.g. we have to define a selection logic that minimizes total delay. Due to the uncertainties in
the parameters it is highly likely that the chosen configuration is sub-optimal and has to be
adjusted whenever our knowledge about these quantitative aspects improves over the running
time via observations.

PNSE’23, International Workshop on Petri Nets and Software Engineering, 2023
" michael.koehler-bussmeier@haw-hamburg.de (M. Köhler-Bussmeier); heiko.roelke@fhgr.ch (H. Rölke)
~ https://www.haw-hamburg.de/michael-koehler-bussmeier (M. Köhler-Bussmeier);
https://www.fhgr.ch/personen/person/roelke/ (H. Rölke)
� 0000-0002-3074-4145 (M. Köhler-Bussmeier)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

34

mailto:michael.koehler-bussmeier@haw-hamburg.de
mailto:heiko.roelke@fhgr.ch
https://www.haw-hamburg.de/michael-koehler-bussmeier
https://www.fhgr.ch/personen/person/roelke/
https://orcid.org/0000-0002-3074-4145
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Therefore we advocate to follow the models@run.time approach and use the system model
as a part of our running system that describes the knowledge about it (K). This knowledge is
used in the following way: We monitor our system at run-time (M); observations are analysed
whether we have to correct our estimation of the quantitative parameters (A); whenever we
adjust, this may lead to (re-)planning of our configuration (P); the new configuration is rolled
out in the execution step (E). These four steps constitutes the phases of the well-known MAPE-K
execution loop [1].

Figure 1: MAPE-K Loop: monitor-analyse-plan-execute

Adaptation of the configuration often requires to evaluate different variations of the model
ranging over the regions of uncertainty. Here, we evaluate by simulating variations of a digital
twin of the system. So we need a formalism that allows for an easy simulation of models.
We advocate a reflexive approach, i.e. we use a formalism that is able to execute itself as a
sub-system.

As we model our processes with Petri nets (including time and stochastic operations), we
follow the nets-as-tokens approach, also known as Nets-within-Nets [2]. Since our processes
have an explicit structure, relying on usual operators (like sequence, and-split, or-choice, etc.)
we like to use a formalism that allows to modify also the structure of the net-tokens at run-time.
This formalism is called Hornets [3].

The paper has the following structure: In Section 2 we introduce our basic process model:
probabilistic Workflow Nets (PWFN), which are a special variant of workflow nets [4]. Section 3
describes how we incorporate adaption of PWFN into our systems using a MAPE-like run-time
loop. Section 4 then shows how we could specify the adaptation concept within the formalism of
Hornets – a special nets-within-nets approach. The Hornet-model uses the PWFN as a digital
twin to evaluate variants of our PWFN to enable the planning part of the MAPE loop. Especially,
we elaborate more on this evaluation in the context of huge parameter spaces, especially with
respect to the exploration vs exploitation trade-off. In Section 5, we evaluate our approach in
a case study. Here, we study the model of a course of study and its success. The contribution
closes with a summary, ongoing research, and a conclusion.

35

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

2. The Basic Process Model: PWFN

As our basic process model we use the well-known Workflow Nets [4]. A workflow net is
a Petri net 𝑁 = (𝑃, 𝑇, 𝐹) with a set of places 𝑃 , a set of transitions 𝑇 , and a flow relation
𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 with a designated place for the beginning (with an empty preset) and one
for the end of the workflow (with an empty postset). Additionally, all nodes must lie in between
these special places. We assume that the reader is familiar with the basic notions of Petri nets.

A Probabilistic View on Conflicts Our model contains probabilities for conflicting transi-
tions, like e.g. in xor-choices. In the following, we use Free-Choice nets (FCN) [5], i.e. we have
that whenever two transitions are in conflict for some token then they have the same preset:
∙𝑡1 ∩ ∙𝑡2 ̸= ∅ =⇒ ∙𝑡1 = ∙𝑡2 because for FCN the notions of structural and dynamic conflict
coincide. The conflict set of a transition is 𝐶(𝑡) = (∙𝑡)∙. The conflict sets constitute a partition
𝒯 = {𝑇1, . . . , 𝑇𝑛} of 𝑇 .

The choice between different transitions in the conflict set annotated by a stochastic distribu-
tion 𝜌𝐶(𝑡) : 𝐶(𝑡) → R≥0, i.e. we have 0 ≤ 𝜌𝐶(𝑡)(𝑡) ≤ 1 and

∑︀
𝑡∈𝐶(𝑡) 𝜌𝐶(𝑡)(𝑡) = 1.

Semantics of Probabilistic Choices The basic semantics of parametric workflow nets (en-
abled transitions, successor markings etc.) is given the standard way – ignoring the additional
stochastic information. However, we can extend the reachability graph into a Markov chain:
Each marking 𝑚 enables a set of transitions En𝑚(𝑡) that is the disjoint union of 𝑘 conflict sets
𝑇𝑖 due to the free-choice property: En𝑚(𝑡) = 𝑇1 ∪ . . . ∪ 𝑇𝑘, 𝑇𝑖 ∈ 𝒯 . For each conflict set 𝑇𝑖

we have a stochastic distribution 𝜌𝑇𝑖 , which we can convert into a stochastic distribution over
En𝑚(𝑡) via normalisation:

𝜌En𝑚(𝑡)(𝑡) =
1

𝑘
· 𝜌𝑇𝑖(𝑡) for the unique 𝑇𝑖 s.t. 𝑡 ∈ 𝑇𝑖

Note, that our model is quite similar to Probabilistic Timed Automata [6]. The main difference
is that for SWFN we allow concurrency as we like to model multi-party interaction.

Probabilistic Workflow Nets: Internal vs External Choice Each choice for a conflict set
is either internal or external: 𝒯 = 𝒯int ⊎ 𝒯ext . For the internal choice the system itself controls
between the alternatives, while for the external choice the environment does.1

The distribution of environmental choices are uncertain. A concrete assignment of distribution
functions to the set of external choices is called a scenario and is denoted as 𝛼. We have
𝛼 : 𝒯ext → (

⋃︀
𝒯 → R≥0) where 𝛼(𝐶) : 𝐶 → R≥0 for each 𝐶 ∈ 𝒯ext and undefined

otherwise. From this we have to distinguish the internal parameters, which we denote by
𝛽 : 𝒯int → (

⋃︀
𝒯 → R≥0) where 𝛽(𝐶) : 𝐶 → R≥0 for each 𝐶 ∈ 𝒯int and undefined otherwise.

Let Conf denote the set of all configurations.
The two distribution assignments could be combined into one single an assignment 𝜌 : 𝒯 →

(
⋃︀

𝒯 → R≥0): We define 𝜌(𝐶) := 𝛼(𝐶), if 𝐶 ∈ 𝒯ext and 𝜌(𝐶) := 𝛽(𝐶), if 𝐶 ∈ 𝒯int .

1In the case of coloured WF-Nets the internal choice could be expressed more appropriate by a function which
maps the actual binding to a selection of one alternative.

36

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Given a scenario 𝛼 and a configuration 𝛽 we denote the resulting Petri net as 𝑁𝛼(𝛽). In our
setting we control the distribution of internal choices and we have to configure them in way
that optimises our model wrt. some evaluation criteria.2 Whenever 𝑁 is a workflow net we call
𝑁𝛼(𝛽) a probabilistic workflow net (PWFN).
Example Figure 2 shows the workflow to perform a study of 𝑛 courses in parallel. The external
uncertainty is the failure probability 𝛼 of examinations. Students react on the examination
failure rate (given as an external parameter) by adjusting their probability 𝛽 to take additional
preparation time and skip the examination (the internal parameter).

We make the assumption that the failure probability decreases with the number 𝑡 of extra
preparation courses: 𝛼𝑡 = 𝛼(𝑙𝑖·𝑡) where 𝛼 is the basic failure probability and 𝑙𝑖 > 0 is some
form parameter (the learning impact).

Figure 2: The Stochastic Workflow Net for the Examination Process

The Multi-Party Setting Note, that the distinction between internal and external choices
assume a single agent acting in its environment. In a multi-party setting we have different
agents 𝐺 = {ag1, . . . , ag𝑛} where each agent controls only a part of the workflow. This
extension is similar to that from LTL/CTL to ATL [8]. Each agent selects its own configuration
𝛽𝑖 while the environment 𝛼 consists of the configurations of all the other agents, i.e. 𝛼 =
(𝛽1, . . . , 𝛽𝑖−1, 𝛽𝑖+1, . . . , 𝛽𝑛).

Therefore, each agent observes the actions taken by the other agents to predict their underly-
ing selection logic, i.e. the decision tree and the succeeding random variables. Once an agent

2Note, that this formulation has a analogy to game models [7] as we have one player, the environment 𝛼, an a
player 𝛽 for the model and we try to chose an 𝛽 that wins the game.

37

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

has an acceptable fair prediction of the behaviour of others, he can try to optimize its own
selection process, i.e. its own strategy, to maximise its own benefit. So, on one hand, the agent
likes to exploit his own knowledge to maximise the benefit; but, on the other hand, he has to
explore the set of actions to obtain a better estimation of the other agents’ logic. In general, an
agent has to balance these two processes of exploration and exploitation. For more details cf.
[9, 10].

Adding Colour: The Adapt-OR We like to discuss an extension for coloured tokens in
PWFN. Assume a situated choice: Agents observe a sensor input 𝑥⃗ = (𝑥1, . . . , 𝑥𝑛) and have to
select one action from a set {𝑎1, . . . , 𝑎𝑚}. Assume that agents learn to discriminate different
situations via a decision tree. Assume further, that for each different situation the agent selects
the action based on an internal decision logic. We assume that the decision logic is unknown
from the outside, so we model it by a random variable.

This selection process is modelled as the Petri Net fragment of Fig. 3. The fragment shows a
block where an agent observes the given situation by the sensor values 𝑥. Here, the variable
𝑥 is compared against the constant 10. Depending on 𝑥 the agent considers himself to be in
situation1 or in situation2. Each situation leads to a choice between action 𝑎1 and 𝑎2, but
whenever the agent considers himself to be in situation1 the decision differs from that in
situation2. We assume that from an internal perspective the action is chosen in a deterministic
way, but from an observer’s perspective the decision process can be described as a random
selection in the ratio of 20 to 80 in situation1, while it is 40 to 60 in situation2.

Figure 3: Adapt-OR = XOR + Decision Tree + Probabilistic Decision Logic

3. Adaption of PWFN

In general we assume that our system is not exactly 𝑁𝛼 – it can be any model 𝑁𝛼′ with 𝛼 ≈ 𝛼′,
where 𝛼 ≈ 𝛼′ denotes that 𝛼 and 𝛼′ are (in some sense) similar. We assume that a level of
uncertainty induces a set of similar settings for 𝛼, i.e. the set 𝐶(𝛼) = {𝛼′ | 𝛼 ≈ 𝛼′}. Usually, a
higher uncertainty in 𝛼 increases the size of 𝐶(𝛼). We assume that 𝐶(𝛼0) is weighted, i.e. we

38

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

have a weight 𝑝 : 𝐶(𝛼0) → R≥0 such that
∑︀

𝛼∈𝐶(𝛼0)
𝑝(𝛼) = 1.3 We can extend this function

to a function 𝑝 : Conf → R≥0 to all configurations by setting 𝑝(𝛼) = 0 for 𝛼 ̸∈ 𝐶(𝛼0). When
we speak of similar scenarios 𝛼 and 𝛼′ this is meant w.r.t. this probability function.

3.1. Analysis of Execution Data w.r.t. Change of Uncertainty

New observations lead to a new estimation of 𝛼. So, we write 𝛼𝑡 where 𝑡 denotes the time.
Observations also lead to a recalculation of the uncertainty. Thus we have a time dependent
definition of similarity: 𝐶𝑡(𝛼).

New observations lead to (1) a new estimation 𝛼𝑡+1 and (2) to a new calculation of uncertainty,
which induces a new similarity class 𝐶𝑡+1 := 𝐶(𝛼𝑡+1). To decide whether we have to adapt we
have to compare 𝐶𝑡 and 𝐶𝑡+1. We define the overlap of the current class 𝐶𝑡 with its successor
𝐶𝑡+1 as the weighted sum of squares:

overlap𝑡 := 1−
∑︁

𝛼∈Conf

𝑝𝑡(𝛼) · (𝑝𝑡+1(𝛼)− 𝑝𝑡(𝛼))
2 (1)

The sensitivity wrt. the overlap is controlled by a meta-parameter 𝛿 that defines how eagerly
the system responds:

• Whenever overlap𝑡 ≥ 𝛿, i.e. these two classes have a high overlap, then is reasonable
that 𝛽𝑡 is also good configuration for 𝐶𝑡+1, i.e. 𝛽𝑡+1 := 𝛽𝑡.

• Whenever overlap𝑡 < 𝛿, we trigger the adaption phase, i.e. we have to recompute 𝛽𝑡+1

for 𝐶𝑡+1.

3.2. Adaption of Configuration 𝛽 under Uncertainty

The design goal is to select the optimal configuration 𝛽* for a given environment model 𝑁𝛼

with respect to an evaluation function. Let us assume for a moment that we have perfect
knowledge about 𝛼, i.e. there is no uncertainty; then the choice of the optimal configuration 𝛽*

is straightforward:
𝛽* = argmax𝛽 (eval(𝑁𝛼(𝛽))) (2)

However, as our knowledge about the environment model 𝛼 is rather bounded, we cannot
assume, that system is exactly 𝑁𝛼 – it can be any model 𝑁𝛼′ with 𝛼 ≈ 𝛼′.

MajorChallenge: We like to select the value for 𝛽 that maximises the evaluation
for a large fraction of the similar models 𝑁(𝛼′). So, we have to balance both aspects
– quantity and quality (or: large fraction and maximal evaluation) – somehow.

In the following, we propose a selection mechanism based on rankings. We define a weighted
score to select the best configuration: For each 𝛼 ∈ 𝐶(𝛼0) we evaluate the reward of each
configuration 𝛽 ∈ Conf and order them by calculating their rank rank𝛼(𝛽) for a fixed 𝛼.

Then, we must combine the ranking rank𝛼(𝛽) for all the scenarios𝛼 into one single evaluation
eval(𝛽). This combination has to balance large fraction vs maximal evaluation somehow.

3For example, if similarity is measured with some distance metrics we could use a 𝐾-nearest neighbours (KNN)
algorithm to compute this set 𝐶(𝛼) and we define the probability proportional to the distance.

39

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Here, we assign values to ranks: The first rank is assigned 1 point, a second rank 𝛾 points, a
third rank 𝛾2 points, etc. For 𝛾 ∈ [0, 1] we define the evaluation of 𝛽 as:

eval𝛾(𝛽) :=
∑︁

𝛼∈𝐶(𝛼0)

𝑝(𝛼) · 𝛾(rank𝛼(𝛽)−1) (3)

The weight function 𝑝 guarantees that the evaluation function is always defined:∑︁
𝛼∈𝐶(𝛼0)

𝑝(𝛼) · 𝛾(rank𝛼(𝛽)−1) ≤
∑︁

𝛼∈𝐶(𝛼0)

𝑝(𝛼) = 1

We use this weighted score to select the best configuration:

𝛽* = argmax𝛽 (eval𝛾(𝛽)) (4)

Here, 𝛾 is a meta-parameter that controls the balance: Assume e.g. that 𝛾 = 1/2, then
one scenario with first rank counts as much as two scenarios with rank two or four scenarios
with rank four. For a smaller value, e.g. 𝛾 = 1/4, then one scenario with first rank counts as
much as four scenarios with rank two or 16 scenarios with rank four. Therefore, a smaller 𝛾
prefers higher rankings in a small spectrum of scenarios over a more broader spectrum with
lower rankings. For 𝛾 = 0 we only consider the winning 𝛽 for a scenario, i.e. the evaluation is
proportional to the number of scenarios won by 𝛽. On the other hand, for 𝛾 = 1 all 𝛽 have the
same evaluation: eval𝛾(𝛽) =

∑︀
𝛼∈𝐶(𝛼0)

𝑝(𝛼) · 𝛾(rank𝛼(𝛽)−1) =
∑︀

𝛼∈𝐶(𝛼0)
𝑝(𝛼) · 1 = 1. In this

case the choice of 𝛽* is purely random.
In the following we propose a simulation-based way of approximating this configuration 𝛽⋆

by exploring the run-time model (i.e. the digital twin). The main idea is to sample the value, i.e.
to compute the rankings only for some configurations and for some scenarios.

4. Adaptation of Digital Twins modelled with Hornets

We use Hornets [3] to specify the simulation of digital twins as a part of the MAPE-loop. A
Hornet is a Petri net, called the system net, that contains Petri nets as tokens, which are called
object nets or net-tokens. We will not present the formal theory behind Hornets, and use them
rather informal in the following. Instead we will illustrate the idea giving a simple example
taken from [3].
Example We consider a Hornet with two workflow nets 𝑁1 and 𝑁2 as tokens – cf. Figure 4.
To model a run-time adaption, we combine 𝑁1 and 𝑁2 resulting in the net 𝑁3 = (𝑁1‖𝑁2),
i.e. the parallel composition. This modification is modelled by transition 𝑡 of the Hornets
in Fig. 4. In a binding 𝛼 with 𝑥 ↦→ 𝑁1 and 𝑦 ↦→ 𝑁2 the transition 𝑡 is enabled. Assume that
(𝑥‖𝑦) evaluates to 𝑁3 for 𝛼. If 𝑡 fires it removes the two net-tokens from 𝑝 and 𝑞 and generates
one new net-token on place 𝑟. The net-token on 𝑟 has the structure of 𝑁3 and its marking is
obtained as a transfer from the token on 𝑣 in 𝑁1 and the token on 𝑠 in 𝑁2 into 𝑁3. This transfer
is possible since all the places of 𝑁1 and 𝑁2 are also places in 𝑁3 and tokens can be transferred
in the obvious way.

Here, the system net is used to describe the MAPE-loop and all 𝑁𝛼(𝛽) for all 𝛼 and 𝛽 are
used as object nets.

40

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

ls p��⌃
𝑥

ls qHHj
𝑦

t
-(𝑥‖𝑦) lrZ

ZZ}

�
��⊐

N1 i𝑖1- 𝑎 - i𝑢- 𝑏 - ir 𝑣- 𝑐 - i𝑓1

N2 i𝑖2- 𝑑 - ir 𝑠- 𝑒 - i𝑓2
N3

net-token produced on 𝑟 by 𝑡

h𝑖3- ���

@@R

@@R

���

- h𝑓3h𝑖1- 𝑎- h𝑢- 𝑏- hr𝑣- 𝑐- h𝑓1
h𝑖2 - 𝑑 - h𝑠r - 𝑒 - h𝑓2

Figure 4: Modification of the net-token’s structure

4.1. First- and Second-Order Adaption

Hornets uses algebraic operations on the structure of net-tokens, i.e. the formalism allows to
change the net-topology at run-time. This is very useful to model block-structured nets (like
e.g. [11]) built upon atomic actions 𝑎, sequences: 𝑁1 ·𝑁2, parallel composition (i.e. and-split):
𝑁1||𝑁2, xor-choice: 𝑁1 ⊕𝑁2, etc. Given this possibility it is obvious, that we have two ways to
introduce adaptation here:

1. First order adaption: change of configuration 𝛽

2. Second order adaption: change/refinement of 𝑁

Obviously, second order adaption has a much bigger impact on the change of the system
when compared to the first order changes where the fundamental workflow structure remains
unchanged.

Hornet-Model of First-Order Adaption Whenever we adjust our environment model
from 𝛼1 to 𝛼2, we change our run-time model from 𝑁𝛼1(𝛽) to 𝑁𝛼2(𝛽

) where 𝛽 is the new
configuration adapted to 𝛼2. The complete system net describing the MAPE-Loop is shown in
Figure 5. We adapt by replacing the net 𝑁𝛼2(𝛽) with 𝑁𝛼2(𝛽

*), i.e. we change the configuration
𝛽.

Hornet-Model of Second-Order Adaption For the second-order adaption we also change
the net itself, e.g. we may replace an action by a complete workflow or replace an and-split
𝑎‖𝑏 by an sequence 𝑎; 𝑏 etc. We adapt by replacing the net 𝑁 with the modified net 𝑁 ′. This
extends the MAPE-Loop from Figure 5 by the transition modify model structure via (online)

model mining. The resulting loop is shown Figure 6.
A modification of the model structure at run-time demands for a meta-level model that

specifies which transformations are allowed under which circumstances. We study this meta-
level specification in ongoing work in the context of our specification framework for multi-agent
organisations: Sonar [12]. Sonar organisation models [13] describe a whole possibility space
how tasks may be handled within the multi-agent system (MAS). For each task a Sonar-MAS
generates a team of agents 𝐺 = {ag1, . . . , ag𝑛} and a workflow net 𝐷 describing the interaction
to handle the task. This mapping is not fixed; usually there is a set of possible teams and the

41

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Figure 5: System Net describing the MAPE-Loop

Figure 6: MAPE-Loop with Structural Adaptation

selection is based on current state of the MAS, including parameters like load of agents etc.
Whenever the state changes usually the team formation changes, too, and therefore the same
task will generate a different team 𝐺′ and a different team workflow net 𝐷′.4 The definition of
the meta-level is beyond the scope of this paper.

4.2. Evaluating Digital Twins: Exploration vs. Exploitation

In the following we propose a simulation-based way of approximating the optimal configuration
𝛽⋆ by exploring the run-time model (i.e. the digital twin). The main idea is to compute scores
only for a small set of scenarios and a subset of configurations.

When selecting the best configuration 𝛽* to react on the environment 𝛼 we are facing two
problems: Firstly, usually it is not easy to determine the reward of a given configuration directly.
Instead of calculating the value, we advocate for a simulation-based approach, i.e. we evaluate

4Note, that this naturally induces a distributed MAPE-loop. Some authors reserve the term adaption for con-
ceptually centralised systems, and speak of self-organisation in case of distributed systems. We do not make this
differentiation.

42

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

runs of 𝑁𝛼(𝛽). Secondly, in most cases the models are too complex to perform an exhaustive
evaluation of the complete configuration space, i.e. usually we have a huge (sometimes even
infinite) set of scenarios 𝛼 and possible configurations 𝛽.

Figure 7: MAPE: Simulation of Digital Twins at Run-Time

In this case we have to operate with a double sampling method, i.e. we generate a sample set
of scenarios and a sample of configurations; for each scenario 𝛼 we evaluate the configurations
from the sample and combine the evaluation of all scenarios into one overall evaluation.

The planning part including this simulation step is shown in Figure 7. Whenever we adjust

43

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

our estimation for 𝛼 we generate a family of similar parameters 𝛼1, . . . , 𝛼𝑚. We generate several
configuration candidates 𝛽1, . . . , 𝛽𝑛. For each scenario 𝛼𝑖 we evaluate all these 𝑁𝛼𝑖(𝛽𝑗), 𝑗 =
1..𝑛.

However, the relationship of 𝑚 and 𝑛 depend on the uncertainty about 𝛼: Whenever our
uncertainty about 𝛼 is high we have to consider a larger number 𝑚 of similar parameter
sets 𝛼1, . . . , 𝛼𝑚. Since we like to keep the evaluation time constant, the product 𝑚 · 𝑛 is
bounded/fixed. Therefore, a high uncertainty about 𝛼 results in a large number of parameter
sets𝛼𝑖, which restricts the number of configuration candidates 𝛽𝑗 under evaluation to a relatively
small number. Conversely, a higher certainty in parameter 𝛼 allows for a broader exploration
of configuration parameters 𝛽, i.e. a higher value of 𝑛.

5. Case Study

In the following we demonstrate our method for the example given in Figure 2. The presented
Petri nets are freely available online.5 First, we have to describe the (expected) value for a
workflow. Each examination comes with some costs and costs increase with the resources spent
(e.g. time and money) and the number of additional preparation courses:

costs = (resources spent) · (no of prep courses)

We assume that the spent resources increases with the number of failed examinations – to
model the increased stress level after a failed examination. Assume that we have 𝑚− 1 failures
and 𝑚 is the first successful examination, then the resources are calculated as (where 𝑐 is some
form parameter):

resources spent = 𝑚𝑐, 𝑐 > 0

The reward is the inverse of the costs:

reward = (costs)−1 = (𝑚𝑐 · 𝑡)−1 (5)

Both values, the number of failures 𝑚− 1 and the number of extra preparation courses taken
𝑡, are random numbers. Throughout the paper, we approximate the expected reward 𝐸[reward]
by simulating the SWFN 𝑁𝛼(𝛽).

5.1. Calculating the Expected Reward for 𝑁𝛼(𝛽)

Before starting with the planing part of the MAPE-loop (which is done in the following section)
we evaluate the reward obtained for a variation of 𝛼 and 𝛽.

We have the following hypothesis about the model’s behaviour: As we assume that the costs
increase with the numbers of failed examinations, it seems reasonable to skip a few examinations
(i.e. to increase 𝛽) in the case of a high failure probability 𝛼 to increase the chance to succeed.
Therefore, we assume that there is an optimal balance between these antagonistic forces.

The workflow net itself is shown in Figure 8; it is an stochastically annotated version (using
Renew syntax) of the Petri net shown in Figure 2. Each token is a tuple [𝑥, 𝑡,𝑚, 𝑏], where 𝑥 is
the course id, 𝑡 is the number of extra preparation courses, 𝑚 is the number of examination
tries, and 𝑏 is a random number used to resolve the choices.

5https://github.com/koehler-bussmeier/PNaRT

44

https://github.com/koehler-bussmeier/PNaRT

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Figure 8: The Stochastic Workflow Net

45

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

reward 𝛼 ∖ 𝛽
0.1 0.3 0.5 0.7 0.9

0.1 9 205 175 405 279

0.3 12 77 215 402 279

0.5 3 65 183 339 285

0.7 5 35 227 270 263

0.9 3 37 47 77 166

Table 1

The average 𝑟𝑒𝑤𝑎𝑟𝑑 value for different 𝛼, 𝛽 variants (for 𝑐 = 3.0, 𝑙𝑖 = 3.0)

We use Renew [14] to execute the simulation runs. For completeness the simulating
net is shown in Figure 10. It generates for all combinations of values of 𝛼 and 𝛽 in
{0.1, 0.3, 0.5, 0.7, 0.9} an simulation batch of 𝑟𝑜𝑢𝑛𝑑𝑠 = 50 independent simulation runs,
all configured with the same parameter values 𝑐 = 3.0 and 𝑙𝑖 = 3.0.

For each pair of 𝛼 and 𝛽 we calculate the average rewards over the runs. The simulation
results are given in Table 1. Here, one can observe, that with increasing failure probability 𝛼 the
maximal reward is obtained for increasing training probability 𝛽. Our hypothesis that students
should adapt to higher failure probabilities with longer preparation times is supported by our
calculation of rewards. Additionally, we observe that an increasing failure probability 𝛼 reduces
the reward in general, i.e. the extra learning time is used to minimise the damage, but cannot
compensate the higher use of resources completely.

5.2. RENEW Specification of the MAPE-Loop

For our running toy example we can perform a complete parameter sweep, but in general this
is out of reach for real models. Instead, as we explained before with Figure 7, our MAPE-loop
selects only some variants of 𝛼 (the explore phase) and measure how a sample of 𝛽 values
would perform w.r.t. a given 𝛼 (the exploit phase). Finally, we pick that value of 𝛽 that performs
well in most of the 𝛼 scenarios, i.e. is a good balance. This could be considered as a tournament
situation.

Figure 9 shows the Renew specification of this evaluation method as sketched in Figure 7
above. In the following, we use the value of 𝛾 = 0.5 as our score meta-parameter in (3) to
compute eval𝛾(𝛽). The Net of Figure 9 shows the system net which contains net-tokens which
have the basic topology of the PWFN 𝑁 from Figure 8 as net-tokens. We use the net-tokens as
digital twins to evaluate the parameter settings and select the best value 𝛽*.

We like to evaluate how well this approach operates when compared to a full parameter
search as done before. Therefore, we perform this evaluation many times to reduce random
effects. This is done by Renew itself (the corresponding net is given in Figure 11). We evaluate
𝑟𝑜𝑢𝑛𝑑𝑠 = 500 tournaments of digital twins.

Table 2 shows the evaluation of several tournaments of digital twins. Note, that the tourna-
ment is rather restricted as it considers only 𝑚 = 2 𝛼-scenarios for a sample of only 𝑛 = 3
𝛽-variants. Therefore, we assume a lot of ‘noise’ in the selection of the tournament’s winner 𝛽*

when compared to the complete parameter sweep as shown in Table 1.
Of course, we know in advance that these values for exploration and exploitation, i.e. 𝑚 and

46

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Figure 9: The Explore/Exploit Simulation of the Digital Twins for 𝑚 = 2 and 𝑛 = 3

𝑛, are too small to result in reliable results. The setting used here is intended for presentation
mainly and not intended to be used as a decision method. Nevertheless, the values are in
accordance with the general evaluation given in Table 1.

Let us point out some observations for the tournament results given in Table 2: We see that
the best value 𝛽* for all the scenarios 𝛼 is given as 𝛽* = 0.9, i.e. agents decide to have a rather
high probability to go for an extra training time before taking the examination. This is also

47

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

wins 𝛼 ∖ 𝛽
0.1 0.3 0.5 0.7 0.9

0.1 41 80 112 123 144

0.3 48 67 117 131 137

0.5 54 60 98 134 154

0.7 66 74 93 120 147

0.9 42 62 85 128 183

Table 2

Tournament for 𝑚 = 2 scenarios 𝛼 and 𝑛 = 3 configurations 𝛽 (parameters: 𝑐 = 3.0, 𝑙𝑖 = 3.0).

The table denotes the number of wins for 𝛽 in 500 repetitions.

the best choice for 𝛽 for 𝛼 = 0.9, but is different from the the best choice of 𝛽* = 0.7, which
has the highest reward value for the scenarios 𝛼 ∈ {0.1, . . . , 0.7} (cf. Tab. 1). Secondly, we can
observe that at least the frequency of 𝛽* = 0.7 is very close to that of 𝛽* = 0.9 for the smaller
values of 𝛼 ∈ {0.1, . . . , 0.7}, while the difference is much bigger for 𝛼 = 0.9.

The reason for this is most likely the nature of the tournament: Since we pick only a small
sample of 𝑛 = 3 values for 𝛽, it is likely that the values 𝛽 = 0.7 and 𝛽 = 0.9 are not both
present in a sample. However, they both will outperform the smaller values 𝛽 = 0.1, 0.3, 0.5,
which leads to a frequency of equal quality for 𝛽 = 0.7 and 𝛽 = 0.9.

A possible mechanism to overcome this problem will be to iterate the tournament and to
increase the selection probability for winning values 𝛽 to increase the probability that interesting
candidates will be in the same tournament. This extension will be evaluated in future work.

6. Conclusion

In this paper we studied a process model, namely probabilistic workflow nets, that allows to
model uncertainty. The model distinguished with external and internal choices to express that
the system has the ability to adapt to changes in the external environment by changing the
probabilistic distribution over internal choices. This adaption mechanism is embedded into
our Hornet-model of the MAPE-loop. As the Hornet-model is formulated to support self-
modification, our MAPE-loop does not only support the first-order adaption of internal choices
only, but also of the complete net topology itself. To formalise this second-order adaption we
use a formalism for multi-agent organisation, called Sonar. In this contribution we concentrate
on first-order adaption. We have introduced a selection mechanism that defines how the system
should select its best configuration 𝛽 in the presence of uncertainty about the environment 𝛼.
This mechanism should guarantee a good reward for a large fraction of scenarios compatible
with 𝛼. Our mechanism uses a scoring approach of rankings to balance these two dimension
simultaneously:

In our MAPE-loop model we use our PWFN model as a digital twin during the planning
phase. We implement an approximation of our mechanism via a double sampling approach:
As we usually cannot evaluate all scenarios and all configurations, we approximate the score
value using a 𝑚-𝑛-sample of 𝛼 and 𝛽. Our case study of an examination process based on
randomisation of failure rates and extra preparation times shows that this sampling approach

48

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

leads to results consistent with the real values even in the setting of very small sample sizes
(here: 𝑚 = 2 and 𝑛 = 3).

We like to mention some lines of research that arise from our work:
In ongoing work we investigate the second-order adaption in more detail. We study MAS

organisations within our Sonar-approach. From the perspective of adaption Sonar provides a
mechanism to change the internal configuration, which leads to a change in group formation
processes and team interaction processes. More specifically, a change of the team structure, e.g.
as a reaction to an imbalance of the agents’ work load, generates a different team and also an
adapted multi-party workflow. As a consequence, the Sonar-model defines the state space of
all second-order adaptations within the MAS organisation (cf. [15] for details).

We are also working on a more elaborated evaluation of the MAPE-loop processes based on
our previous work on the analysis of adaption processes [16]. We will consider key-values for
an abstraction of the adaption state space. To do so we consider an abstraction of the Hornets
reachability graph, where only types of the net-tokens are considered. The set of types of the
net-tokens that occur in the current marking are considered as the system’s gene-pool. In
our MAPE-loop setting the gene-pool is the set of scenarios, i.e. {𝑁𝛼(𝛽) | 𝛼 ∈ 𝐶(𝛼0)}. The
analysis will allow to evaluate the long-run quality of the adaption process as provided by the
MAPE-loop.

In future work we like to extend the MAPE-loop in the following way: There is a close
connection of models@run-time and Process Mining [17]. Here, we consider the model variants
(i.e. the models@run.time) as parts of the planning process, which can be used to adapt the
system’s configuration. We would like to deduce the process nets and the organisational
model using process mining techniques, i.e. we observe the real system and generate the
model@run.time from the event logs during the analysis phase of the MAPE-loop.

References

[1] D. Weyns, Software engineering of self-adaptive systems: An organised tour and future
challenges, in: ICAC/SASO, 2017.

[2] R. Valk, Object Petri nets: Using the nets-within-nets paradigm, in: J. Desel, W. Reisig,
G. Rozenberg (Eds.), Advanced Course on Petri Nets 2003, volume 3098 of Lecture Notes in
Computer Science, Springer-Verlag, 2003, pp. 819–848.

[3] M. Köhler-Bußmeier, Hornets: Nets within nets combined with net algebra, in: K. Wolf,
G. Franceschinis (Eds.), International Conference on Application and Theory of Petri Nets
(ICATPN’2009), volume 5606 of Lecture Notes in Computer Science, Springer-Verlag, 2009,
pp. 243–262.

[4] W. v. d. Aalst, Verification of workflow nets, in: P. Azeme, G. Balbo (Eds.), Application and
theory of Petri nets, volume 1248 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin Heidelberg New York, 1997, pp. 407–426.

[5] J. Desel, J. Esparza, Free choice Petri nets, volume 40, Cambridge university press, 1995.
[6] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, Automatic verification of real-time

systems with discrete probability distributions, Theoretical Computer Science 282 (2002)
101–150. doi:https://doi.org/10.1016/S0304-3975(01)00046-9.

49

http://dx.doi.org/https://doi.org/10.1016/S0304-3975(01)00046-9

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

[7] E. Grädel, W. Thomas, T. Wilke, Automata, Logics, and Infinite Games: A Guide to Current
Research, volume 2500 of Lecture Notes in Computer Science, Springer, 2002.

[8] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (2002)
672–713. doi:10.1145/585265.585270.

[9] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, The MIT Press, 2018.
[10] F. A. Oliehoek, C. Amato, A Concise Introduction to Decentralized POMDPs, SpringerBriefs

in Intelligent Systems, Springer-Verlag, 2016.
[11] E. Best, R. Devillers, M. Koutny, Petri Net Algebra, EATCS Monographs on Theoretical

Computer Science Series, Springer-Verlag, 2001.
[12] M. Köhler-Bußmeier, M. Wester-Ebbinghaus, Sonar*: A multi-agent infrastructure

for active application architectures and inter-organisational information systems, in:
L. Braubach, W. van der Hoek, P. Petta, A. Pokahr (Eds.), Conference on Multi-Agent
System Technologies, MATES 2009, volume 5774 of Lecture Notes in Artificial Intelligence,
2009, pp. 248–257.

[13] M. Köhler-Bußmeier, M. Wester-Ebbinghaus, D. Moldt, A formal model for organisational
structures behind process-aware information systems, Transactions on Petri Nets and
Other Models of Concurrency. Special Issue on Concurrency in Process-Aware Information
Systems 5460 (2009) 98–114.

[14] O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Köhler, D. Moldt, H. Rölke,
R. Valk, An extensible editor and simulation engine for Petri nets: Renew, in: J. Cortadella,
W. Reisig (Eds.), International Conference on Application and Theory of Petri Nets 2004,
volume 3099 of Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 484 – 493.

[15] M. Köhler-Bußmeier, J. Sudeikat, Balance vs. contingency: Adaption measures for organiza-
tional multi-agent systems, in: K. Jander, L. Braubach, C. Badica (Eds.), 15th International
Symposium on Intelligent Distributed Computing (IDC’22), volume 1089 of Studies in
Computational Intelligence, Springer-Verlag, 2023, pp. 224–233.

[16] M. Köhler-Bußmeier, H. Rölke, Analysing adaption processes of Hornets, in: M. Köhler-
Bußmeier, D. Moldt, H. Rölke (Eds.), Petri Nets and Software Engineering 2022, PNSE’22,
volume 3170, CEUR, 2022, pp. 80–98.

[17] W. M. P. van der Aalst, Process Mining: Data Science in Action, 2 ed., Springer, Heidelberg,
2016. doi:10.1007/978-3-662-49851-4.

50

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1007/978-3-662-49851-4

M
i
c
h

a
e
l

K
ö

h
l
e
r
-
B

u
s
s
m

e
i
e
r

e
t

a
l
.CEU

R
W

orkshop
Proceedings

3
4
–

5
2

A
.
E
x
p
e
r
i
m
e
n
t
a
l
S
e
t
-
U
p
:
N
e
t
s

F
i
g
u
r
e
1
0
:
R
e
n
e
w

N
e
t
:

R
e
w

a
r
d

E
v
a
l
u

a
t
i
o

n
o

f
𝛼
,𝛽

V
a
r
i
a
n

t
s

5
1

Michael Köhler-Bussmeier et al. CEUR Workshop Proceedings 34–52

Figure 11: Renew Net: The Experimental Set-Up of the Tournament

52

	1 Uncertainty, Adaption, and Models@run.time
	2 The Basic Process Model: PWFN
	3 Adaption of PWFN
	3.1 Analysis of Execution Data w.r.t. Change of Uncertainty
	3.2 Adaption of Configuration β under Uncertainty

	4 Adaptation of Digital Twins modelled with Hornets
	4.1 First- and Second-Order Adaption
	4.2 Evaluating Digital Twins: Exploration vs. Exploitation

	5 Case Study
	5.1 Calculating the Expected Reward for Nα(β)
	5.2 RENEW Specification of the MAPE-Loop

	6 Conclusion
	A Experimental Set-Up: Nets

