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Abstract
In modern distributed systems robustness is a major requirement. In previous work on availability, the

analysis required an additional model part that specifies the assumptions about where in the model

there are areas of unreliability. So, there are two models: the system itself and the error model. The

error model usually requires specific domain knowledge. Therefore, the approach is not applicable out-

of-the-box.

Instead, we like to derive an error model directly from the system model. We will show that for

Elementary Object Systems we have a natural candidate to describe such a localised area of failure: the

net-tokens. They are clearly localised and can be understood as computational entities (like containers

in Kubernetes).
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1. Defining Robustness for Models of Distributed Architectures

In distributed systems (like e.g. applications based on micro services or multi-agent system)

robustness is a major research topic [1]. In some of our previous work on availability [2, 3, 4],

we observed that the analysis required an additional model part where we have to specify our

assumptions about ‘sources’ of unreliability. So, there are two models: the system itself and

the error model. The error model usually requires specific domain knowledge. Therefore, the

approach is not applicable out-of-the-box.

As a rule of thumb, in micro service or container-based architectures we assume that the unit

of failure is a service/container. More generally, we assume that each ‘computational unit’ is a

source of failure. Here, we follow the let it crash approach – as popularised by the programming

language Erlang – and assume that our computational units are either operational or completely

crashed, i.e., we have a crash failure model opposed to a Byzantine error model [5].

Petri nets [6] are a standard model for distributed systems. For traditional Petri net models,

including coloured variants, it is hard to identify such computational units since any subnet

of the net could represent one of them. Therefore, we need additional domain knowledge to
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identify these sub-nets as the whole structure does not provide clear hints to identify them.
1

Our main goal is to derive the computational units directly from the system model – without

the use of domain knowledge. For Nets-within-Nets as proposed by Valk [7] we have a natural

candidate to describe such a localised service: the net-tokens. They are clearly localized and

can be understood as computational entities. This idea is also applicable to other models having

an explicit notion of computational context, like the Ambient Calculus [8] or the 𝜋-calculus [9].

But, for most formalisms the borderlines of computational contexts are not that obvious and

usually have to be identified with the modeller’s help.

After we have identified net-tokens as computational units it is straightforward to define

robustness: Robustness means that the system still provides its service even when one or

more units are malfunctioning. Here, we model a malfunction by a complete deactivation of

a net-token, which provides no observable inner activity any more. To formally express the

crash-failure of computational units we define a state space extension where we have so called

crash or break-down events.

Our main application area are multi-agent systems (MAS). The first author uses nets-within-

nets to specify adaptivity of agents in the context MAS-organisations [10] where one considers

large-scale and and agent-independent aspects of MAS, like roles, norms, positions, interaction

protocols etc. His MAS-organisation framework Sonar [11] is based on Petri nets, which

facilitates the definition of the semantics as well as the analysis. For these Sonar-MAS the

agents are modelled as net-tokens within the overall MAS organisation net. The natural unit to

break-down is an agent (i.e. a net-token), so our concept of robustness fits well here.

We like to mention some limitations of our idea: Obviously, our let it crash assumption is not

fulfilled in general; but it matches with our main research area, i.e., adaptive agents, where agent

is any active computational entity, like services, containers, mobile devices, etc. Additionally,

we admit that for a quantitative analysis, like in [12], a fault-model is still needed.

The paper has the following structure. Section 2 introduces base nets-within-nets (Eos).

Section 3 defines the concept of robustness for Eos: The definition extends the reachability

graph with additional events that model a break-down. In Section 4 we show that this semantic

extension can be characterized syntactically by a slight modification of the Eos structure. The

work closes with a conclusion and outlook.

2. Nets-within-Nets, EOS

Object nets [13, 14, 15], follow the nets-within-nets paradigm as proposed by Valk [7].

Other approaches adapting the nets-within-nets approach are nested nets [16], mobile predi-

cate/transition nets [17], Reference nets [18], PN2
[19], hypernets [20], and adaptive workflow

nets [21]. There are relationships to Rewritable Petri nets [22] and Reconfigurable Petri Nets

[23]. Object Nets can be seen as the Petri net perspective on contextual change, in contrast to

the Ambient Calculus [8] or the 𝜋-calculus [9], which form the process algebra perspective.

1

Sometimes we consider Petri nets that have a compositional structure, like workflows with AND-splits or

OR-choices; or we can identify an refinement structure. In these cases we can identify at least sub-structures,

which are candidates for these computational units. However, there is no one-to-one correspondence between the

sub-structures and the concept of a computational unit.
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Figure 1: An Elementary Object Net System (Eos)

With nets-within-nets we study Petri nets where tokens are Petri nets in turn, i.e., we have

nested markings. For the class of elementary object net systems (Eos), we restrict the nesting

to two levels [13, 15]. Events are also nested: We have three different kinds of events – as

illustrated by the example given in Figure 1:

1. System-autonomous: The system net transition ̂︀𝑡 fires autonomously, which moves the

net-token from ̂︀𝑝1 to ̂︀𝑝2 without changing its marking.

2. Object autonomous: The object net fires transition 𝑡1 by “moving” the black token from

𝑞1 to 𝑞2. The object net remains at its location ̂︀𝑝1.

3. Synchronisation: Whenever we add matching synchronisation inscriptions at the system

net transition ̂︀𝑡 and the object net transition 𝑡1, then both must fire synchronously: The

object net is moved to ̂︀𝑝2 whereas the black token moves from 𝑞1 to 𝑞2 inside. Whenever

synchronisation is specified, autonomous actions are forbidden.

An elementary object system (Eos) is composed of a system net, which is a p/t net
̂︀𝑁 =

( ̂︀𝑃 , ̂︀𝑇 ,pre,post), and a set of object nets 𝒩 = {𝑁1, . . . , 𝑁𝑛}, which are p/t nets given as

𝑁 = (𝑃𝑁 , 𝑇𝑁 ,pre𝑁 ,post𝑁 ), where 𝑁 ∈ 𝒩 . We assume
̂︀𝑁 ̸∈ 𝒩 and the existence of the

empty object net ∙ ∈ 𝒩 , which models black tokens. The system net places are typed by the

mapping 𝑑 : ̂︀𝑃 → 𝒩 meaning that a place ̂︀𝑝 ∈ ̂︀𝑃 of the system net may only contain net-tokens

of the object net type 𝑑(̂︀𝑝) = 𝑁 . No place of the system net is mapped to the system net itself

since
̂︀𝑁 ̸∈ 𝒩 .

Since the tokens of an Eos are instances of object nets, a marking of an Eos is a nested multiset.

A marking of an Eos OS is denoted 𝜇 =
∑︀𝑛

𝑘=1(̂︀𝑝𝑘,𝑀𝑘), where ̂︀𝑝𝑘 is a place of the system net

and 𝑀𝑘 is the marking of a net-token with type 𝑑(̂︀𝑝𝑘). To emphasise the nesting, markings are

also denoted as 𝜇 =
∑︀𝑛

𝑘=1 ̂︀𝑝𝑘[𝑀𝑘]. For example, the marking show in Fig. 1 is 𝜇 = ̂︀𝑝1[𝑞1].
The set of all markings which are syntactically consistent with the typing 𝑑 is denoted ℳ,

where 𝑑−1(𝑁) ⊆ ̂︀𝑃 is the set of system net places of the type 𝑁 :

ℳ := MS
(︁⋃︁

𝑁∈𝒩

(︀
𝑑−1(𝑁)×MS (𝑃𝑁 )

)︀)︁
(1)

Analogously to markings, which are nested multisets 𝜇, the events of an Eos are also nested.

An Eos allows three different kinds of events: system-autonomous, synchronous, and object-

autonomous events. The set of events is denoted Θ (cf. the appendix for details).

Definition 1 (Elementary Object System, EOS). An elementary object system (Eos) is a tu-

ple OS = ( ̂︀𝑁,𝒩 , 𝑑,Θ, 𝜇0), where:

1.
̂︀𝑁 is a p/t net, called the system net.
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2. 𝒩 is a finite set of p/t nets, called object nets, with disjoint set of nodes.

3. 𝑑 : ̂︀𝑃 → 𝒩 is the typing of the system net places.

4. Θ is the set of events.

5. 𝜇0 ∈ ℳ is the initial marking.

More details – e.g. the firing rule 𝜇
𝜃−−→

OS
𝜇′

– are given in the appendix. For a in-depth

presentation of Eos cf. [15]. Most problems for safe Eos (in which place markings [𝑀𝑘] are

sets) are PSpace-complete [24, 25, 15]. More precisely: All problems that are expressible in LTL

or CTL, which includes reachability and liveness, are PSpace-complete. This means that with

respect to these problems safe Eos are no more complex than P/T nets.

For Hornets we extend object nets with algebraic concepts that allow to modify the structure

of the net-tokens as a result of a firing transition. The complexity for safe, elementary Hornets

is beyond PSpace: We have shown that “the reachability problem requires exponential space”

for safe, elementary Hornets [26]. In [27] we give an algorithm that needs at most exponential

space, which shows that lower and upper bound coincide.

3. Defining Robustness for EOS

We have a very simple idea: The most natural unit of computation in a Eos is easy to identify –

it is a net-token. We assume that each computational unit may fail during the execution. This

idea also applies to other models having an explicit notion of computational context, like the

Ambient Calculus [8] or the 𝜋-calculus [9]. For other formalism the borderlines of computational

contexts are not that obvious and usually have to be identified with the modeller’s help.

Assume a given Eos OS = ( ̂︀𝑁,𝒩 , 𝑑,Θ, 𝜇0). Its reachability graph RG(OS ) defines the

behaviour in the absence of failures, i.e. the reachability graph is the state space for 𝑘 = 0
break-downs.

In the following we assume break-downs. We tag markings 𝜇 with the number 𝑘 of break-

downs and denote this as the pair ⟨𝜇, 𝑘⟩.
For technical convenience, we assume that transitions in object nets have a non-empty

preset, so, the empty marking disables object-autonomous events and synchronisations. As a

consequence, a break-down is like an enforced deadlock in the net-token.
2

We have additional break-down edges that connect the level 𝑘 with 𝑘+1; a break down edge

models the fact that we have one more break-down in the system. A break-down picks some

net-token ̂︀𝑝[𝑀 ] and disables it by setting the net-token’s marking to 0:

𝐵𝐷𝑘+1 := {(⟨𝜇, 𝑘⟩, ⟨𝜇′, 𝑘 + 1⟩) | ∃𝜇′′ : 𝜇 = ̂︀𝑝[𝑀 ] + 𝜇′′ ∧𝑀 ̸= 0 ∧ 𝜇′ = ̂︀𝑝[0] + 𝜇′′}

For technical convenience we define 𝐵𝐷0 := ∅.

We define 𝑉𝑘 as the nodes of level 𝑘. For 𝑘 = 0 we have the reachable markings. For 𝑘 > 0
we have all markings reachable from a marking after the last break-down:

𝑉0 = {⟨𝜇, 0⟩ | 𝜇0
*−→ 𝜇} (2)

2

If one wishes to distinguish between a deadlock and a break-down, we have to ensure that net-tokens do not

deadlock unless they are unmarked. We can guarantee this by adding a side-transition to each place in the object

net.
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𝑉𝑘+1 = {⟨𝜇′′, 𝑘 + 1⟩ | (⟨𝜇, 𝑘⟩, ⟨𝜇′, 𝑘 + 1⟩) ∈ 𝐵𝐷𝑘+1 ∧ 𝜇′ *−→ 𝜇′′} (3)

We define the edges of level 𝑘 as:

𝐸𝑘 := {(⟨𝜇, 𝑘⟩, ⟨𝜇′, 𝑘⟩) | 𝜇 𝜃−→ 𝜇′} (4)

Each sub-graph (𝑉𝑖, 𝐸𝑖) contains all the node of the same level 𝑖 and these sub-graphs are

disjoint, since there are no edges from a higher level to a lower level, i.e. the level is increased

monotonously.

Definition 2. The graph RG𝑘(OS ) =
(︁⋃︀𝑘

𝑖=0 𝑉𝑖,
⋃︀𝑘

𝑖=0(𝐸𝑖 ∪𝐵𝐷𝑖)
)︁

is called the failure exten-

sion of OS up to level 𝑘 or the 𝑘-failure extension.

The graph RG*(OS ) := (𝑉 *, 𝐸*) where 𝑉 * :=
⋃︀

𝑖≥0 𝑉𝑖 and 𝐸* =
⋃︀

𝑖≥0(𝐸𝑖∪𝐵𝐷𝑖) is called

the *-failure extension.

Note, that RG(OS ) is isomorphic to RG0(OS ) as we only have to remove the tag 0 from

the nodes.

Due to the explicit notion of levels in the marking ⟨𝜇, 𝑘⟩ the structure of RG𝑘(OS ) is a chain

of sub-graphs (𝑉𝑖, 𝐸𝑖); these sub-graphs are linked by the breakdown edges 𝐵𝐷𝑖. Schematically:

(𝑉0, 𝐸0)
𝐵𝐷1−−−→ (𝑉1, 𝐸1)

𝐵𝐷2−−−→ · · · 𝐵𝐷𝑘−−−→ (𝑉𝑘, 𝐸𝑘)

Proposition 1. Whenever a firing sequence that is enabled within the sub-graph (𝑉𝑖+1, 𝐸𝑖+1) it

is enabled within (𝑉𝑖, 𝐸𝑖), too.

Proof The central observation is that we must have a break-down connection between the two

sub-graph (𝑉𝑖, 𝐸𝑖) and (𝑉𝑖+1, 𝐸𝑖+1). In this case, we modify the marking 𝜇 = ̂︀𝑝[𝑀𝑖] + 𝜇′′
into

𝜇′ = ̂︀𝑝[0] + 𝜇′′
, i.e. by a break-down of the net-token ̂︀𝑝[𝑀 ].

We use the following partial-order 𝛼 ⪯ 𝛽 on nested multi-sets:∑︀𝑚
𝑖=1 ̂︀𝑎𝑖[𝐴𝑖] ⪯

∑︀𝑛
𝑗=1

̂︀𝑏𝑗 [𝐵𝑗 ] ⇐⇒ ∃ injection 𝑓 : {1, ...,𝑚} → {1, ..., 𝑛} :

∀1 ≤ 𝑖 ≤ 𝑚 : ̂︀𝑎𝑖 = ̂︀𝑏𝑓(𝑖) ∧𝐴𝑖 ≤ 𝐵𝑓(𝑖)

As we have shown in [15, Lemma 5.1] that he firing rule is monotonous w.r.t. the order ⪯.

Obviously, we have 𝜇 ∈ 𝑉𝑘, 𝜇′ ∈ 𝑉𝑘+1 and 𝜇′ ⪯ 𝜇 for the markings given above. Whenever

𝜇′
enables a sequence in (𝑉𝑖+1, 𝐸𝑖+1) then 𝜇 enables this sequence in (𝑉𝑖+1, 𝐸𝑖+1), too. Since

we have obtained (𝑉𝑖+1, 𝐸𝑖+1) from (𝑉𝑖, 𝐸𝑖) by setting some net-token’s marking to 0, the

sequence is enabled in (𝑉𝑖, 𝐸𝑖), too. qed.

We can also describe the behaviour in the limit, i.e. for 𝑘 → ∞: For each increase of the

level we have one more break-down. So, if we consider the sub-graph (𝐸𝑘, 𝑉𝑘) for very large

𝑘, we usually have that all net-tokens are down. In this case the net-tokens do not enable

object-autonomous events any more and also no synchronous events are possible; only system-

autonomous events are possible. Thus, in the limit the Eos behaves like the system net
̂︀𝑁 when

considered as a p/t net. Technically we obtain this behaviour by the projection Π1
, which maps

a marking 𝜇 to the multiset of system net places.
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3.1. The semantic definition of robustness

The semantic definition of robustness uses our definition of the reachability graph extended

with break-downs. We introduce a hierarchy for satisfiability by restricting the numbers of

break-down events: The usual satisfiability of a property 𝜑 considers the normal reachability

graph RG0(OS ); whenever we extend the reachability graph towards RG1(OS ) we check

whether the property can withstand a break-down of at most one net-token. We can generalise

this idea to an arbitrary number 𝑘 of break-down events.

Definition 3 (Robustness). A property 𝜑 is satisfied 𝑘-robustly by the Eos OS iff 𝜑 holds in

RG𝑘(OS ). This is denoted by OS , 𝜇0 |=𝑘 𝜑, or short: 𝜇0 |=𝑘 𝜑 wheneverOS is clear from the

context.

A property 𝜑 is satisfied *-robustly by the Eos OS iff 𝜑 holds in RG*(OS ). This is denoted by

𝜇0 |=* 𝜑.

Fact 1. Note, that a property 𝜑 holds for an Eos OS iff 𝜑 is 0-robust, since RG(OS ) ≃ RG0.

In general, a property 𝜑 that is satisfied 𝑘-robustly will not be satisfied 𝑘 + 1-robustly.

Especially, a property 𝜑 that is satisfied by an Eos (0-robustly) is not satisfied 1-robustly, i.e., in

general even one break-down destroys the property 𝜑. Liveness of the Eos is a typical example.

In other words: robustness does not come for free. Usually the Eos model has to take care to

satisfy a property 𝑘-robustly, e.g., by having model parts that will restart crashed net-tokens in

a well-defined state.

An example for a property 𝜑 that is satisfied even *-robustly is safeness [24], i.e., the property

that there is at most one net-token on each place in the system net. This is due to the fact that a

break-down modifies the marking 𝜇 in a way that does not change the projection Π1(𝜇) to the

system net and, consequently, does not enable any ‘unseen’ transition of the system net.

In our context of organisational multi-agent systems the notion of robustness allows us to

specify two central classes of properties:

• Flexibility/Adaptivity: The MAS has the possibility to react to changes in the environment

(here: break-downs of other agents) to re-establish a desired property 𝜑 is expressed as

OS , 𝜇0 |=* AGEF𝜑 – the usual liveness property in CTL [28].

• Resilience: The system always stays in a ‘safe’ region of the state space – even in the

presence of break-downs of other agents – is expressed as OS , 𝜇0 |=* AG𝜑 – a classical

invariant property (aka as a safety property).

A structural property for the system net is derived from the net topology only. The classical

example are net-invariants. A structural invariant holds for any initial marking and not only a

given one (cf. [29] for the discussion between invariants and structural invariants).

Fact 2. A structural property is independent from the net-tokens’ markings and therefore *-

robust.

Another interesting question is whether we can tolerate break-downs using redundancy,

i.e., multiple copies of the net-tokens. This question is closely related to the Petri net concept
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of monotonicity. A property is monotonous if it holds also for any greater initial marking. It

is well known that reachability is monotonous, while deadlock-freedom or liveness are – in

general – not (However, for the structural sub-class of free-choice nets liveness is monotonous).

For monotonous properties redundancy is useful, i.e. we can add additional net-tokens to

survive knock-outs of net-tokens. Here we simply multiply the initial marking and consider

𝜇0 + 𝑘 · 𝜇0.

Proposition 2. Let 𝜑 be a monotonous property. When 𝜑 holds in the initial marking 𝜇0, then 𝜑
is 𝑘-robust in the initial marking 𝜇0 + 𝑘 · 𝜇0:

𝜇0 |= 𝜑 =⇒ (𝜇0 + 𝑘 · 𝜇0) |=𝑘 𝜑

Proof (Sketch) We can execute at most 𝑘 break-downs. So any marking 𝜇 reachable from

(𝜇0+𝑘 ·𝜇0) is still greater than some marking reachable from 𝜇0 only. Since the property holds

in 𝜇0 and is monotonous it holds in RG𝑘(OS ). qed.

4. The Syntactical Characterisation of Robustness

Our characterisation of robustness has the drawback that it is based on an extension of the

usual Petri net semantics as we extend the reachability graph. In the following, we like to show

that we can express this extension on a purely syntactical level, i.e., we modify the EosOS into

another Eos OS *
with the property that the ‘normal’ reachability graph of OS *

is isomorphic

to the break-down extension RG*(OS ). In this case, we can reduce the specialised analysis of

OS to an ‘normal’ analysis of OS *
using existing standard tools.

Figure 2: Construction of the Eos OS*
.

The main idea is quite simple (cf. Fig. 2): We apply the following construction to the Eos OS .

• We add a run-place to each object net and this run-place is attached as a side condition to

each transition 𝑡.

• The run-place is initially marked with one token.

• We add a new transition 𝑡𝑘𝑖𝑙𝑙 to each object net that synchronises with the environment

(via the channel ⟨off⟩) and removes the token of the run-place.

• In the system net we add for each place ̂︀𝑝 a new side transition ̂︀𝑡̂︀𝑝,𝑘𝑖𝑙𝑙 which synchronises

with 𝑡𝑘𝑖𝑙𝑙.
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The effect of the synchronous kill-event is that the net-token is dead afterwards (but usually

contains useless tokens on the places other than the run-place). We like to establish that an

empty run-place always indicates that the net-token has broken down. In this case we could drop

the explicit tag 𝑘 from the state because it is implicitly given by the number of net-tokens with

an empty run-place. However, this is not true, since the Eos firing rule ‘collects’ the net-tokens

markings from all incoming arcs and ‘distributes’ this sum over all net-tokens generated on the

outgoing arcs. For a system net transition that has, e.g., one incoming arc and two outgoing

arcs, one of the generated net-tokens must have an empty run-place. However, the net-token

should not be regarded as a break-down.

Figure 3: Construction for Run-Places in the Eos OS*
.

We can ‘repair’ this problem in the following way: We replace each system net transition ̂︀𝑡
by a simple subnet (cf. Fig. 3) that removes the tokens from the 𝑚 incoming places ̂︀𝑝𝑖 (using the

synchronisation channel ⟨off⟩𝑚 times) and individually re-creates one token on each run-place

in each net-token on the 𝑛 outgoing places ̂︀𝑝′𝑖 (using the synchronisation channel ⟨on⟩ at the

internal transitions ̂︀𝑡𝑖). We replace each system net transition with such a subnet.
3

The resulting

Eos is denoted as OS *
.

Due to this construction, an empty run-place in a net-token (except for those net-tokens in

the intermediate place ̂︀𝑝′′𝑖 of the subnet) is equivalent to a break-down.

When we consider the 𝑛 intermediate transitions ̂︀𝑡𝑖 as ‘silent’ events, then the constructed

net OS *
is bisimilar to the original state space OS .

Proposition 3. The extended EosOS *
is the syntactical representation of the *-failure extension

of OS , i.e. both state spaces are bisimilar: RG*(OS ) ≈ RG(OS *)

With a small modification of the extended Eos OS *
we can also describe the 𝑘-failure

extension of OS :

• We add a global pool-place to the system net that contains exactly 𝑘 black tokens.

• Each kill-transition removes one token from the global pool-place.

We denote this modification of the Eos as OS𝑘.

Note that after 𝑘 kill-events the pool place is empty and further kill-events are disabled.

The behaviour of OS𝑘 is similar to the extension OS *
except that we restrict the number of

break-downs to 𝑘.

3

We could skip this construction for system net transitions which have exactly one place in the preset and one

in the postset.
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Proposition 4. The extended EosOS𝑘 is the syntactical representation of the 𝑘-failure extension

of OS , i.e. both state spaces are bisimilar: RG𝑘(OS ) ≈ RG(OS𝑘)

In the absence of break-downs, i.e., for 𝑘 = 0, the normal semantics coincides with the

extended semantics and the given Eos coincides with its extension:

Fact 3. For 𝑘 = 0 we obtain that all systems coincide: RG(OS ) ≃ RG0(OS ) ≈ RG(OS 0).

With these constructions we have reduced checking properties w.r.t. robustness to a usual

state space based query.

5. Conclusion

In this paper, we have shown that Nets-within-Nets have an intuitive representation of the

concept of a ‘computational unit’: the net-tokens. Based on this, we could define a break-down

of net-tokens and define the satisfiability of properties in the context of break-downs.

Our concept of robustness relies on an extension of the state space. We provided a reduction of

this semantical definition (which extends the Petri net semantics) to a syntactical one (where we

use the usual semantics): We transformed the Eos OS into the Eos OS *
such that the ‘normal’

reachability graph of OS *
is bisimilar to the break-down extension RG*(OS ). Therefore, we

could still use existing tools to investigate robustness.

We plan to extend the simple – though popular – let it crash-based model, e.g., by allowing

the computational units (net-tokens) to gracefully degrade.

In future work, we will apply this notion of robustness to our multi-agent system Sonar

[11], especially with a focus on the analysis of adaptivity as we have started with our previous

work on the analysis of adaption processes [30] and adapting agent architectures [31]. In [30]

we used the set of different types of net-tokens that occur in the current marking to define

the system’s gene-pool. Our current research hypothesis is that a more diverse gene-pool in

adapting agent architectures [31] leads to more robust systems in general.
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A. Petri Nets

The definition of Petri nets relies on the notion of multisets. A multiset m on the set 𝐷 is

a mapping m : 𝐷 → N. Multisets are generalisations of sets in the sense that every subset

of 𝐷 corresponds to a multiset m with m(𝑑) ≤ 1 for all 𝑑 ∈ 𝐷. The empty multiset 0
is defined as 0(𝑑) = 0 for all 𝑑 ∈ 𝐷. Multiset addition for m1,m2 : 𝐷 → N is defined

component-wise: (m1 +m2)(𝑑) := m1(𝑑) +m2(𝑑). Multiset-difference m1 −m2 is defined

by (m1 −m2)(𝑑) := max(m1(𝑑)−m2(𝑑), 0). We use common notations for the cardinality

of a multiset |m| :=
∑︀

𝑑∈𝐷 m(𝑑) and multiset ordering m1 ≤ m2, where the partial order ≤
is defined by m1 ≤ m2 ⇐⇒ ∀𝑑 ∈ 𝐷 : m1(𝑑) ≤ m2(𝑑).

A multiset m is finite if |m| < ∞. The set of all finite multisets over the set 𝐷 is denoted

MS (𝐷). The set MS (𝐷) naturally forms a monoid with multiset addition + and the empty

multiset 0. Multisets can be identified with the commutative monoid structure (MS (𝐷),+, 0).
Multisets are the free commutative monoid over 𝐷 since every multiset has the unique repre-

sentation in the form m =
∑︀

𝑑∈𝐷 m(𝑑) ·𝑑, where m(𝑑) denotes the multiplicity of 𝑑. Multisets

can also be represented as a formal sum in the form m =
∑︀𝑛

𝑖=1 𝑥𝑖, where 𝑥𝑖 ∈ 𝐷.

Any mapping 𝑓 : 𝐷 → 𝐷′
is extended to a multiset homomorphism 𝑓 ♯ : MS (𝐷) → MS (𝐷′):

𝑓 ♯ (
∑︀𝑛

𝑖=1 𝑥𝑖) =
∑︀𝑛

𝑖=1 𝑓(𝑥𝑖). This includes the special case 𝑓 ♯(0) = 0. We simply write 𝑓
to denote the mapping 𝑓 ♯

. The notation is in accordance with the set-theoretic notation

𝑓(𝐴) = {𝑓(𝑎) | 𝑎 ∈ 𝐴}.

Definition 4. A p/t net 𝑁 is a tuple 𝑁 = (𝑃, 𝑇,pre,post), such that 𝑃 is a set of places, 𝑇 is a

set of transitions, with 𝑃 ∩𝑇 = ∅, and pre,post : 𝑇 → MS (𝑃 ) are the pre- and post-condition

functions. A marking of 𝑁 is a multiset of places: m ∈ MS (𝑃 ). A p/t net with initial marking

m0 is denoted 𝑁 = (𝑃, 𝑇,pre,post,m0).

We use the usual notations for nets like
∙𝑥 for the set of predecessors and 𝑥∙ for the set of

successors for a node 𝑥 ∈ (𝑃 ∪ 𝑇 ). For 𝑡 ∈ 𝑇 we have
∙𝑡 = {𝑝 ∈ 𝑃 | pre(𝑡)(𝑝) > 0} and

𝑡∙ = {𝑝 ∈ 𝑃 | post(𝑡)(𝑝) > 0}. For 𝑝 ∈ 𝑃 we have
∙𝑝 = {𝑡 ∈ 𝑇 | post(𝑡)(𝑝) > 0} and

𝑝∙ = {𝑡 ∈ 𝑇 | pre(𝑡)(𝑝) > 0}.

A transition 𝑡 ∈ 𝑇 of a p/t net 𝑁 is enabled in marking m iff ∀𝑝 ∈ 𝑃 : m(𝑝) ≥ pre(𝑡)(𝑝)
holds. The successor marking when firing 𝑡 is m′(𝑝) = m(𝑝) − pre(𝑡)(𝑝) + post(𝑡)(𝑝) for

all 𝑝 ∈ 𝑃 . Using multiset notation enabling is expressed by m ≥ pre(𝑡) and the successor

marking is m′ = m− pre(𝑡) + post(𝑡). We denote the enabling of 𝑡 in marking m by m
𝑡−→
𝑁

.

Firing of 𝑡 is denoted by m
𝑡−→
𝑁

m′
. The net 𝑁 is omitted if it is clear from the context.

Firing is extended to sequences 𝑤 ∈ 𝑇 *
in the obvious way: (i) m

𝜖−→ m; (ii) If m
𝑤−→ m′

and m′ 𝑡−→ m′′
hold, then we have m

𝑤𝑡−→ m′′
. We write m

*−→ m′
whenever there is some

𝑤 ∈ 𝑇 *
such that m

𝑤−→ m′
holds. The set of reachable markings is RS (m0) := {m | ∃𝑤 ∈

𝑇 * : m0
𝑤−→ m}.
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B. Elementary Object Systems

An elementary object system (Eos) is composed of a system net, which is a p/t net
̂︀𝑁 =

( ̂︀𝑃 , ̂︀𝑇 ,pre,post) and a set of object nets 𝒩 = {𝑁1, . . . , 𝑁𝑛}, which are p/t nets given as

𝑁 = (𝑃𝑁 , 𝑇𝑁 ,pre𝑁 ,post𝑁 ), where 𝑁 ∈ 𝒩 . In extension we assume that all sets of nodes

(places and transitions) are pairwise disjoint. Moreover we assume
̂︀𝑁 ̸∈ 𝒩 and the existence of

the object net ∙ ∈ 𝒩 , which has no places and no transitions and is used to model anonymous,

so called black tokens.

Typing The system net places are typed by the mapping 𝑑 : ̂︀𝑃 → 𝒩 with the meaning, that

a place ̂︀𝑝 ∈ ̂︀𝑃 of the system net with 𝑑(̂︀𝑝) = 𝑁 may contain only net-tokens of the object net

type 𝑁 .
4

No place of the system net is mapped to the system net itself since
̂︀𝑁 ̸∈ 𝒩 .

A typing is called conservative iff for each place ̂︀𝑝 in the preset of a system net transition ̂︀𝑡 such

that 𝑑(̂︀𝑝) ̸= ∙ there is place in the postset being of the same type: (𝑑(∙̂︀𝑡)∪{∙}) ⊆ (𝑑(̂︀𝑡∙)∪{∙}).
An Eos is conservative iff its typing 𝑑 is.

An Eos is p/t-like iff it has only places for black tokens: 𝑑( ̂︀𝑃 ) = {∙}.

Nested Markings Since the tokens of an Eos are instances of object nets, a marking of an

Eos is a nested multiset. A marking of an Eos OS is denoted 𝜇 =
∑︀|𝜇|

𝑘=1(̂︀𝑝𝑘,𝑀𝑘), where ̂︀𝑝𝑘 is

a place of the system net and 𝑀𝑘 is the marking of a net-token with type 𝑑(̂︀𝑝𝑘). To emphasise

the nesting, markings are also denoted as 𝜇 =
∑︀|𝜇|

𝑘=1 ̂︀𝑝𝑘[𝑀𝑘]. Markings of the form ̂︀𝑝[0] with

𝑑(̂︀𝑝) = ∙ are abbreviated as ̂︀𝑝[].
The set of all markings which are syntactically consistent with the typing 𝑑 is denoted ℳ,

where 𝑑−1(𝑁) ⊆ ̂︀𝑃 is the set of system net places of the type 𝑁 :

ℳ := MS
(︁⋃︁

𝑁∈𝒩

(︀
𝑑−1(𝑁)×MS (𝑃𝑁 )

)︀)︁
(5)

We define the partial order ⊑ on nested multisets by setting 𝜇1 ⊑ 𝜇2 iff ∃𝜇 : 𝜇2 = 𝜇1 + 𝜇.

A more liberal variant is the order ⪯ defined by:

𝛼 ⪯ 𝛽 ⇐⇒ 𝛼 =
∑︀𝑚

𝑖=1 ̂︀𝑎𝑖[𝐴𝑖] ∧ 𝛽 =
∑︀𝑛

𝑗=1
̂︀𝑏𝑗 [𝐵𝑗 ] ∧

∃ injection 𝑓 : {1, ...,𝑚} → {1, ..., 𝑛} :

∀1 ≤ 𝑖 ≤ 𝑚 : ̂︀𝑎𝑖 = ̂︀𝑏𝑓(𝑖) ∧𝐴𝑖 ≤ 𝐵𝑓(𝑖)

(6)

For 𝛼 ⪯ 𝛽 the injection 𝑓 generates a sub-marking of 𝛽 which is denoted 𝑓(𝛼) =∑︀𝑚
𝑖=1 ̂︀𝑎𝑓(𝑖)[𝐴𝑓(𝑖)].
Note that 𝛼 ⊑ 𝛽 is a special case of 𝛼 ⪯ 𝛽, where 𝐴𝑖 ≤ 𝐵𝑓(𝑖) is restricted to 𝐴𝑖 = 𝐵𝑓(𝑖).

4

In some sense, net-tokens are object nets with its own marking. However, net-tokens should not be considered

as instances of an object net (as in object-oriented programming), since net-tokens do not have an identity. This is

reflected by the fact that the firing rule joins and distributes the net-tokens’ markings.

Instead, all net-tokes of an object net act as a collective entity, like a group. This group can be considered as

an object with identy – an object with its state distributed over the net-tokens. For in in-depth discussion of this

semantics cf. [7].
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Events Analogously to markings, which are nested multisets 𝜇, the events of an Eos are also

nested. An Eos allows three different kinds of events – as illustrated by the following Eos:

1. System-autonomous: The system net transition 𝑡 fires autonomously which moves the

net-token from 𝑝1 to 𝑝2 without changing its marking.

2. Object-autonomous: The object net fires transition 𝑡1, which “moves” the black token

from 𝑞1 to 𝑞2. The object net itself remains at its location 𝑝1.

3. Synchronisation: The system net transition 𝑡 fires synchronously with 𝑡1 in the object

net. Whenever synchronisation is demanded, autonomous actions are forbidden.

The set of events is denoted Θ. Events are formalised as a pair ̂︀𝜏 [𝜗], where ̂︀𝜏 is either the

transition that fires in the system net or a special “idle” transition id ̂︀𝑝 (cf. below); and 𝜗 is a

function such that 𝜗(𝑁) is the multiset of transitions, which have to fire synchronously with ̂︀𝜏 ,

(i.e. for each object net 𝑁 ∈ 𝒩 we have 𝜗(𝑁) ∈ MS (𝑇𝑁 )).5

In general ̂︀𝜏 [𝜗] describes a synchronisation, but autonomous events are special subcases:

Obviously, a system-autonomous events is the special case, where 𝜗 = 0 with 0(𝑁) = 0 for all

object nets 𝑁 . To describe an object-autonomous event we assume the set of idle transitions

{id ̂︀𝑝 | ̂︀𝑝 ∈ ̂︀𝑃}, where id ̂︀𝑝 formalises object-autonomous firing on the place ̂︀𝑝:

1. Each idle transition id ̂︀𝑝 has ̂︀𝑝 as a side condition: pre(id ̂︀𝑝) = post(id ̂︀𝑝) := ̂︀𝑝.

2. Each idle transition id ̂︀𝑝 synchronises only with transitions from 𝑁 = 𝑑(̂︀𝑝):
∀̂︀𝜏 [𝜗] ∈ Θ : ̂︀𝜏 = id ̂︀𝑝 =⇒ ∀𝑁 ∈ 𝒩 : (𝜗(𝑁) ̸= 0 ⇐⇒ 𝑁 = 𝑑(̂︀𝑝))

Definition 5 (Elementary Object System, EOS). An elementary object system (Eos) is a tu-

ple OS = ( ̂︀𝑁,𝒩 , 𝑑,Θ, 𝜇0), where:

1.
̂︀𝑁 is a p/t net, called the system net.

2. 𝒩 is a finite set of disjoint p/t nets, called object nets.

3. 𝑑 : ̂︀𝑃 → 𝒩 is the typing of the system net places.

4. Θ is the set of events.

5. 𝜇0 ∈ ℳ is the initial marking.

Example Figure 4 shows an Eos with the system net
̂︀𝑁 and the object nets 𝒩 = {𝑁1, 𝑁2}.

The system has four net-tokens: two on place ̂︀𝑝1 and one on ̂︀𝑝2 and ̂︀𝑝3 each. The net-tokens on̂︀𝑝1 and ̂︀𝑝2 share the same net structure, but have independent markings.

5

In the graphical representation the events are generated by transition inscriptions. For each object net 𝑁 ∈
𝒩 a system net transition ̂︀𝑡 is labelled with a multiset of channels

̂︀𝑙(̂︀𝑡)(𝑁) = ch1 + · · · + ch𝑛, depicted as

⟨𝑁 :ch1, 𝑁 :ch2, . . .⟩. Similarily, an object net transition 𝑡 may be labelled with a channel 𝑙𝑁 (𝑡) = ch – depicted as

⟨:ch⟩ whenver there is such a label. We obtain an event ̂︀𝑡[𝜗] by setting 𝜗(𝑁) := 𝑡1 + · · ·+ 𝑡𝑛 to be any transition

multiset such that the labels match: 𝑙𝑁 (𝑡1) + · · ·+ 𝑙𝑁 (𝑡𝑛) = ̂︀𝑙(̂︀𝑡)(𝑁).
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Figure 4: An Elementary Object Net System

The system net is
̂︀𝑁 = ( ̂︀𝑃 , ̂︀𝑇 ,pre,post), where

̂︀𝑃 = {̂︀𝑝1, . . . , ̂︀𝑝6} and
̂︀𝑇 = {̂︀𝑡}.

One object net is 𝑁1 = (𝑃1, 𝑇1,pre1,post1) with 𝑃1 = {𝑎1, 𝑏1} and 𝑇1 = {𝑡1}.

Another object net is 𝑁2 = (𝑃2, 𝑇2,pre2,post2) with 𝑃2 = {𝑎2, 𝑏2, 𝑐2} and 𝑇2 = {𝑡2}.

The typing is 𝑑(̂︀𝑝1) = 𝑑(̂︀𝑝2) = 𝑑(̂︀𝑝4) = 𝑁1 and 𝑑(̂︀𝑝3) = 𝑑(̂︀𝑝5) = 𝑑(̂︀𝑝6) = 𝑁2.

The labelling generates one event: Θ = {̂︀𝑡[𝑁1 ↦→ 𝑡1, 𝑁2 ↦→ 𝑡2]}.

The initial marking has two net-tokens on ̂︀𝑝1, one on ̂︀𝑝2, and one on ̂︀𝑝3:

𝜇 = ̂︀𝑝1[𝑎1 + 𝑏1] + ̂︀𝑝1[0] + ̂︀𝑝2[𝑎1] + ̂︀𝑝3[𝑎2 + 𝑏2]

Note that for Figure 4 the structure is the same for the three net-tokens on ̂︀𝑝1 and ̂︀𝑝2 but the

net-token markings are different.

B.1. Firing Rule

The projection Π1
on the first component abstracts from the substructure of all net-tokens for a

marking of an Eos:

Π1
(︁∑︁𝑛

𝑘=1
̂︀𝑝𝑘[𝑀𝑘]

)︁
:=

∑︁𝑛

𝑘=1
̂︀𝑝𝑘 (7)

The projection Π2
𝑁 on the second component is the sum of all net-token markings 𝑀𝑘 of the

type 𝑁 ∈ 𝒩 , ignoring their local distribution within the system net:

Π2
𝑁

(︁∑︁𝑛

𝑘=1
̂︀𝑝𝑘[𝑀𝑘]

)︁
:=

∑︁𝑛

𝑘=1
1𝑁 (̂︀𝑝𝑘) ·𝑀𝑘 (8)

where the indicator function 1𝑁 : ̂︀𝑃 → {0, 1} is 1𝑁 (̂︀𝑝) = 1 iff 𝑑(̂︀𝑝) = 𝑁 . Note that Π2
𝑁 (𝜇)

results in a marking of the object net 𝑁 .

A system event ̂︀𝜏 [𝜗] removes net-tokens together with their individual internal markings.

Firing the event replaces a nested multiset 𝜆 ∈ ℳ that is part of the current marking 𝜇, i.e.

𝜆 ⊑ 𝜇, by the nested multiset 𝜌. Therefore the successor marking is 𝜇′ := (𝜇 − 𝜆) + 𝜌. The

enabling condition is expressed by the enabling predicate 𝜑OS (or just 𝜑 whenever OS is clear

from the context):
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𝜑(̂︀𝜏 [𝜗], 𝜆, 𝜌) ⇐⇒ Π1(𝜆) = pre(̂︀𝜏) ∧Π1(𝜌) = post(̂︀𝜏) ∧
∀𝑁 ∈ 𝒩 : Π2

𝑁 (𝜆) ≥ pre𝑁 (𝜗(𝑁)) ∧
∀𝑁 ∈ 𝒩 : Π2

𝑁 (𝜌) = Π2
𝑁 (𝜆)− pre𝑁 (𝜗(𝑁)) + post𝑁 (𝜗(𝑁))

(9)

With
̂︁𝑀 = Π1(𝜆) and

̂︁𝑀 ′ = Π1(𝜌) as well as 𝑀𝑁 = Π2
𝑁 (𝜆) and 𝑀 ′

𝑁 = Π2
𝑁 (𝜌) for all

𝑁 ∈ 𝒩 the predicate 𝜑 has the following meaning:

1. The first conjunct expresses that the system net multiset
̂︁𝑀 corresponds to the pre-

condition of the system net transition ̂︀𝜏 , i.e.
̂︁𝑀 = pre(̂︀𝜏).

2. In turn, a multiset
̂︁𝑀 ′

is produced, that corresponds to the post-set of ̂︀𝜏 .

3. A multi-set 𝜗(𝑁) of object net transitions is enabled if the sum 𝑀𝑁 of the net-token

markings (of type 𝑁 ) enable it, i.e. 𝑀𝑁 ≥ pre𝑁 (𝜗(𝑁)).

4. The firing of ̂︀𝜏 [𝜗] must also obey the object marking distribution condition: 𝑀 ′
𝑁 = 𝑀𝑁 −

pre𝑁 (𝜗(𝑁)) + post𝑁 (𝜗(𝑁)), where post𝑁 (𝜗(𝑁))− pre𝑁 (𝜗(𝑁)) is the effect of the

object net’s transitions on the net-tokens.

Note that conditions 1. and 2. assure that only net-tokens relevant for the firing are included

in 𝜆 and 𝜌. Conditions 3. and 4. allow for additional tokens in the net-tokens.

For system-autonomous events ̂︀𝑡[0] the enabling predicate 𝜑 can be simplified further. We

have pre𝑁 (0(𝑁)) = post𝑁 (0(𝑁)) = 0. This ensures Π2
𝑁 (𝜆) = Π2

𝑁 (𝜌), i.e. the sum of

markings in the copies of a net-token is preserved w.r.t. each type 𝑁 . This condition ensures

the existence of linear invariance properties

Analogously, for an object-autonomous event we have an idle-transition ̂︀𝜏 = id ̂︀𝑝 for the

system net and the first and the second conjunct is: Π1(𝜆) = pre(id ̂︀𝑝) = ̂︀𝑝 = post(id ̂︀𝑝) =
Π1(𝜌). So, there is an addend 𝜆 = ̂︀𝑝[𝑀 ] in 𝜇 with 𝑑(̂︀𝑝) = 𝑁 and 𝑀 enables 𝜗(𝑁).

Definition 6 (Firing Rule). Let OS be an Eos and 𝜇, 𝜇′ ∈ ℳ markings. The event ̂︀𝜏 [𝜗] is

enabled in 𝜇 for the mode (𝜆, 𝜌) ∈ ℳ2
iff 𝜆 ⊑ 𝜇 ∧ 𝜑(̂︀𝜏 [𝜗], 𝜆, 𝜌) holds.

An event ̂︀𝜏 [𝜗] that is enabled in 𝜇 for the mode (𝜆, 𝜌) can fire: 𝜇
̂︀𝜏 [𝜗](𝜆,𝜌)−−−−−→

OS
𝜇′

. The resulting

successor marking is defined as 𝜇′ = 𝜇− 𝜆+ 𝜌.

We write 𝜇
̂︀𝜏 [𝜗]−−→
OS

𝜇′
whenever 𝜇

̂︀𝜏 [𝜗](𝜆,𝜌)−−−−−→
OS

𝜇′
for some mode (𝜆, 𝜌).

Note that the firing rule makes no a-priori assumptions about how to distribute the object

net markings onto the generated net-tokens. Therefore we need the mode (𝜆, 𝜌) to formulate

the firing of ̂︀𝜏 [𝜗] in a functional way.

Example Consider the Eos of Figure 4 again. The current marking 𝜇 of the Eos enableŝ︀𝑡[𝑁1 ↦→ 𝑡1, 𝑁2 ↦→ 𝑡2] in the mode (𝜆, 𝜌), where

𝜇 = ̂︀𝑝1[0] + ̂︀𝑝1[𝑎1 + 𝑏1] + ̂︀𝑝2[𝑎1] + ̂︀𝑝3[𝑎2 + 𝑏2] = ̂︀𝑝1[0] + 𝜆
𝜆 = ̂︀𝑝1[𝑎1 + 𝑏1] + ̂︀𝑝2[𝑎1] + ̂︀𝑝3[𝑎2 + 𝑏2]
𝜌 = ̂︀𝑝4[𝑎1 + 𝑏1 + 𝑏1] + ̂︀𝑝5[0] + ̂︀𝑝6[𝑐2]
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Figure 5: The EOS of Figure 4 illustrating the firing of ̂︀𝑡[𝑁1 ↦→ 𝑡1, 𝑁2 ↦→ 𝑡2] in the mode (𝜆, 𝜌)

The net-token markings are added by the projections Π2
𝑁 resulting in the markings Π2

𝑁 (𝜆).
The sub-synchronisation generates Π2

𝑁 (𝜌). (The results are shown above and below the transi-

tion ̂︀𝑡.) After the synchronisation we obtain the successor marking 𝜇′
with net-tokens on ̂︀𝑝4,̂︀𝑝5, and ̂︀𝑝6 as shown in Figure 5:

𝜇′ = (𝜇− 𝜆) + 𝜌 = ̂︀𝑝1[0] + 𝜌
= ̂︀𝑝1[0] + ̂︀𝑝4[𝑎1 + 𝑏1 + 𝑏1] + ̂︀𝑝5[0] + ̂︀𝑝6[𝑐2]

Note, that we have only presented one mode (𝜆, 𝜌) and that other modes are possible, too.

B.2. Properties of the Firing Rule

In the following we relate those nested multisets, that coincide in their projections. The

projection of a marking 𝜇 is defined as follows:

Π(𝜇) := (Π1(𝜇), (Π2
𝑁 (𝜇))𝑁∈𝒩 ) (10)

Obviously, there are several markings 𝜇 with the same projection, i.e. 𝜇 is not uniquely defined

by Π(𝜇). The nested multisets, that coincide in their projections give rise to the equivalence

∼= ⊆ ℳ2
, called projection equivalence defined by:

𝛼 ∼= 𝛽 : ⇐⇒ Π(𝛼) = Π(𝛽)
⇐⇒ Π1(𝛼) = Π1(𝛽) ∧ ∀𝑁 ∈ 𝒩 : Π2

𝑁 (𝛼) = Π2
𝑁 (𝛽)

(11)

The relation 𝛼 ∼= 𝛽 abstracts from the location, i.e. the concrete net-token, in which a object

net’s place 𝑝 is marked as long as it is present in 𝛼 and 𝛽. For example, for 𝑑(̂︀𝑝) = 𝑑(̂︀𝑝′) we

have ̂︀𝑝[𝑝1 + 𝑝2] + ̂︀𝑝′[𝑝3] ∼= ̂︀𝑝[𝑝3 + 𝑝2] + ̂︀𝑝′[𝑝1]
which means that

∼= allows the tokens 𝑝1 and 𝑝3 to change their locations (i.e. between ̂︀𝑝 and̂︀𝑝′).
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Since an event collects all relevant object nets of the firing mode and combines them to one

“virtual object net” that is only present at the moment of firing, the location of the object nets’

tokens is irrelevant and can be ignored. These virtual object nets Π2
𝑁 (𝜆) are also shown in the

example of Figure 4. This invariance can be expressed as follows:

Lemma 1. The enabling predicate is invariant with respect to the relation
∼=:

𝜑(̂︀𝜏 [𝜗], 𝜆, 𝜌) ⇐⇒ (∀𝜆′, 𝜌′ : 𝜆′ ∼= 𝜆 ∧ 𝜌′ ∼= 𝜌 =⇒ 𝜑(̂︀𝜏 [𝜗], 𝜆′, 𝜌′))

Proof From the definition of 𝜑 one can see that the firing mode (𝜆, 𝜌) is used only via its

projection by Π. Since 𝜆′ ∼= 𝜆, 𝜌′ ∼= 𝜌 expresses equality modulo projection, the predicate 𝜑
cannot distinguish between 𝜆′

and 𝜆, resp. 𝜌′ and 𝜌. □ qed.

As for p/t nets the firing rule has several nice properties

• Let OS be an Eos and 𝜇 a marking. The event ̂︀𝜏 [𝜗] is enabled in the mode (𝜆, 𝜌) iff it is

enabled in the mode (𝜆′, 𝜌′) such that 𝜆′ ∼= 𝜆∧𝜌′ ∼= 𝜌. This is an immediate consequence

of Lemma 1.

• Firing is reversible, i.e. for each Eos OS we obtain OS 𝑟𝑒𝑣
by inverting the arcs and have:

𝜇1
𝜃−−→

OS
𝜇2 ⇐⇒ 𝜇2

𝜃𝑟𝑒𝑣−−−−→
OS𝑟𝑒𝑣

𝜇1.

• The behaviour of an Eos is a conservative extension of p/t nets in the following sense:

When one abstract from the net-tokens structure by the projection Π1
, then the behaviour

of the system net in the Eos cannot be distinguished from the system net
̂︀𝑁 regarded as

a p/t net, i.e. 𝜇
̂︀𝑡[𝜗]−−→
OS

𝜇′ =⇒ Π1(𝜇)
̂︀𝑡−→̂︀𝑁 Π1(𝜇′).

• The invariance calculus for p/t nets can be extended to Eos in a compositional way,

i.e. invariance equations can be obtained from the invariance equations of the constituent

components separately.
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