
A Symmetric Petri Net Model of Generic
Publish-Subscribe Systems for Verification and
Business Process Conformance Checking
Tom Meyer

Institute for Visual and Analytic Computing, University of Rostock, Albert-Einstein-Straße 22, Rostock, 18059,
Germany

Abstract
The highly decoupled nature of distributed systems can greatly simplify modular development. How-
ever, it is easy to lose track of component interactions and emerging system behavior. To inspect the
behavior of the aggregated system, an abstract model and analysis tools can be of great help. In this
paper, we present such a model that follows the Event-Driven Architecture paradigm. We argue that a
Petri net model that captures the event flow, without modeling event data, is a useful abstraction to give
insight into a system composed of distributed components. We present a symmetric Petri net model
with publish-subscribe middleware and a generic abstraction of components. The model was designed
with the intention to produce a finite P/T net to be compatible with current Petri net model checking
tools. To build such a model, information about component behavior is necessary. We show that this
information is encoded in the system implementation, and we describe potential means for automatic
extraction. With the formal Petri net model, we enable the use of established verification methods. We
discuss ideas from business process conformance checking and other verification properties that may
deepen the system understanding. The proposed methods can be used either for static analysis during
design time or to automatically signal issues at runtime.

Keywords
Distributed System, Event-Driven Architecture, Publish-Subscribe, Petri Net Model, Conformance Check-
ing, Verification

1. Introduction

A distributed system is a collaboration between multiple self-contained modules or components.
Since these are usually individually developed separate code bases, this approach promotes
modular development with a high focus on the individual parts.

However, hard program borders facilitate ignorance to other components and alienate devel-
opers from foreign code bases. Additionally, in the running system, components can connect and
disconnect to the distributed system at any time, changing the system behavior continuously.
It is hard to keep the overview in this context making predictions on the emergent system
behavior exceedingly difficult. Can the required workflows be executed? Which event affects
which component? A simple look at the implementation does not answer these questions and
design documents and specifications also cannot consider every possible system adaptation.

PNSE’23: International Workshop on Petri Nets and Software Engineering, June 26–27, 2023, Lisbon, Portugal
" tom.meyer@uni-rostock.de (T. Meyer)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

88

mailto:tom.meyer@uni-rostock.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Tom Meyer CEUR Workshop Proceedings 88–110

However, a model of the implementation can be used in combination with a specification to
answer such questions with formal verification. Yet verification can be complicated and increases
development effort. To make these verification methods accessible, the implementation model
should be extracted directly from the implementation. Additionally, if this model uses adequate
abstractions, it stays humanly understandable, and formal methods can be used practically.

A common abstraction for distributed systems is the Event-Driven architecture paradigm
(EDA). In an EDA system a central middleware connects distributed components using a
standardized communication abstraction. Commonly a publish-subscribe interface is used here.

A benefit in using an EDA model to reason about the emergent system behavior is that message
contents are usually not relevant. Just knowing the event flow already gives a lot of insight,
while the precise forking conditions are often irrelevant for the general system capabilities.
Conveniently, if messages are represented by type instead of their content, messages can be
reduced to a token that is exchanged between communicating components. With this abstraction
Petri nets [1] become a suitable modeling formalism for publish-subscribe based communication.

With a Petri net system model we can use different verification methods to compare our
model with a given specification. The specification can take many forms such as logical formulas
and other formalisms such as workflow nets (WF-nets) [2]. Particularly, WF-nets can again
improve accessibility because they describe business processes that are already widely used
to specify tasks for production targets or services. Additionally, the topic of business process
conformance checking is under current research [3] as a verification method.

In this paper we present a Petri net model of a publish-subscribe system with a generic model
of components for verification purposes. We describe what is necessary to build the model auto-
matically from component implementations and give examples for usable verification methods.
In particular, we describe how a behavioral specification in form of business processes can be
integrated in the verification process by using methods from business process conformance
checking [3].

2. Background

In the following we give an overview of our mainly used concepts to compile a verification
approach for publish-subscribe systems.

2.1. Event-Driven Architecture (EDA)

In EDA, components observe events and notify other components about events using messages.
An event is a “significant change in state” [4], while the corresponding notification message is
only a representation of the event. Notifications are distributed by a central middleware, the
notification service (NoSe) using a publish-subscribe (pub/sub) API [5]. Components use the API
to publish messages on a topic. As a result all topic subscribers are informed. This results in a
decoupling of communication in time, space, and synchronization [6], so that components have
no information about each other and what publication effects they have. Only the notification
service implicitly keeps track of component connections by storing subscriptions.

With EDA, the computation capacity of distributed hardware can be leveraged, e.g. to run
interconnected web services, or to connect physically distributed devices as in IoT applications.

89

Tom Meyer CEUR Workshop Proceedings 88–110

2.2. Petri Nets

Petri nets are a formalism for concurrent processes [1]. The basic place-transition nets (P/T
net), are defined as a bipartite, directed graph connecting places with transitions and vice versa.

Transitions can consume and produce tokens on places, depending on the connecting arc
direction and weight. Arcs that connect a place 𝑝 with a transition 𝑡 in the direction from 𝑝 to 𝑡
make 𝑝 an input place of 𝑡. Similarly, if an arc connects a transition 𝑡 with a place 𝑝, 𝑝 is an
output place of 𝑡. The set of input places of a transition 𝑡 is denoted by ∙𝑡 and the set of output
places is denoted by 𝑡∙. A similar notation is used for the pre- and post-sets of places.

A transition is enabled if all input places contain at least as many tokens as the arc weights
specify. Enabled transitions can fire non-deterministically. A firing transition consumes tokens
from the input places and produces tokens on the output places according to the arc weights.

In a system model, tokens on places represent the system state and transitions represent the
state changes. P/T nets are well investigated, making them a good target for model checking.

However, in classical Petri nets, tokens are indistinguishable from each other. But, to model
systems with practical complexity it is often useful to discriminate them. Colored Petri nets
address this issue by extending Petri nets with a type (or color) for tokens [7]. To specify which
token types are affected by a firing transition, transitions can be annotated with a guard. A
guarded transition can only fire if the tokens in its input places satisfy the guard conditions.
Colored Petri nets can be unfolded to P/T nets, although the unfolding may be infinite. However,
a finite unfolding enables the use of P/T net model-checking methods.

A kind of colored Petri nets are Symmetric Petri nets (introduced as Stochastic Well-Formed
Colored Nets) defined by Chiola et al. [8]. This net introduces modeling restrictions for custom
analysis methods. In the paper, a grammar is introduced to define the allowed syntax of place
classes, arc labels and transition guards with a corresponding semantics. The class of a place
describes the color of the tokens that can be produced and consumed on that place. Token
colors can be a composition of multiple classes described as a tuple. Arc labels then describe
compositions of classes by an expression. Only tokens matching the expression are allowed as
input for the connected transition. Additionally, the transition guards are predicates that define
restrictions on classes and dependencies between input and output arcs.

Our model will follow the definition from Chiola et al. although we will abbreviate large
transition patterns. In these cases we will show an example for the unabbreviated patterns.
However, we observe that patterns can be unfolded into a P/T net for model-checking.

2.3. Business Processes

Business processes describe a collection of tasks that are used to build a product or that are
involved in a service. A business process may define a series of tasks, parallel tasks, tasks that
are executed conditionally or a combination of these options. There are a variety of business
process models [9] including Petri net models.

Van der Aalst was instrumental to formalize business processes as Petri nets including the
definition of a separate net class called workflow nets [2]. He defines a workflow net as follows:

90

Tom Meyer CEUR Workshop Proceedings 88–110

“A Petri net PN = (P ;T ;F) is a WF-net (Workflow net) if and only if:
(i) 𝑃𝑁 has two special places: 𝑖 and 𝑜. Place 𝑖 is a source place: ∙𝑖 = ∅. Place 𝑜 is a
sink place: 𝑜∙ = ∅.
(ii) If we add a transition 𝑡* to PN which connects place 𝑜 with 𝑖 (i.e. ∙𝑡* = {𝑜}
and 𝑡*∙ = {𝑖}), then the resulting Petri net is strongly connected.”

He then defines important properties such as safeness and soundness for workflow nets.
To facilitate the understanding of business processes in WF-nets, other process models define

translations back to Petri nets [10]. For example Dijkman et al. defined a translation [11] for
the Business Process Modeling Notation (BPMN) [12] and Hinz et al. give a translation [13] for
the Web Services Business Process Execution Language (BPEL) [14].

3. Related Work

Petri net models where used before in distributed systems. E.g.: Aldred et al. used Petri
nets to model different decoupling approaches in distributed systems [15]. They analyze the
implications for component interactions over the middleware.

Valero et al. and Gomez et al. modeled a publish-subscribe system in a timed colored Petri
net specifically for verification purposes. Their model targets web services with a focus on
message timing and timeouts [16, 17]. Hens et al. also used colored Petri nets to model a publish-
subscribe system [18]. These models focus on the middleware and do not further constraint the
component internals. However, the emergent system behavior dependents in large parts on the
component behavior. For verification purposes it is crucial which states are reachable in every
connected component and how the composed components can interact.

Unfortunately, the essence of software components is vague. Szyperski et al. summarize
it as follows: “One thing can be stated with certainty: components are for composition. [...]
Beyond this trivial observation, much is unclear.” [19]. Becker also identifies composability in
his component model as an important feature [20]. However, both Szyperski and Becker use the
component abstraction in the software design process and not for verification. They capitalize
on the reusability aspect that follows composability.

The EDA paradigm intrinsically exploits the composability by decoupling components [6].
This not only facilitates reusability but also enables components distribution. In EDA, compo-
nents mainly process events and react to them. Lamport et al. [21], describe this pattern as a
general feature in distributed computing:

“Underlying almost all models of concurrent systems is the assumption that
an execution consists of a set of discrete events, each affecting only part of the
system’s state. Events are grouped into processes, each process being a more or
less completely sequenced set of events sharing some common locality in terms of
what part of the state they affect. For a collection of autonomous processes to act
as a coherent system, the processes must be synchronized.”

Based on the former descriptions, we define components in an EDA system as a set of processes
that are executed as a reaction to incoming events. During the execution of a process, new

91

Tom Meyer CEUR Workshop Proceedings 88–110

events can be generated to synchronize component state with other components. With this
definition, we can model a publish-subscribe system more precisely and use the model to
improve verification accessibility and expressiveness.

An interesting verification branch uses runtime events to evaluate the system behavior. E.g.:
Schmerl et al. built a colored Petri net from runtime observations [22]. This relates to process
mining as described by van der Aalst [9]. He describes how processes can be discovered from
log traces and how to check them against a specification. The specification takes the form of
business processes, which are easy to understand in comparison to e.g.: formulas in a temporal
logic. Carmona et al. describes this process in detail in their book on conformance checking [3].
Hens et al. also have a take on this idea and compare their model with business processes [18].

However, models always suffer a credibility gap. While the system implementations can
deviate from manually created models, automatically discovered, log based models can always
be incomplete. Also, models created by both approaches get outdated when the system evolves.
This is why we like to explore system models that are close abstractions from the implementation.
We aim at a model that can be automatically generated from code, to be used for verification.
This approach would make model checking much more user-friendly and affordable.

4. Publish-Subscribe Model

In this section we introduce our Petri net model of a publish-subscribe system. We will first
highlight our assumptions. After that, we break down the parts, explain their modeling and
functionality. The parts are then extended with a synchronization structure for fairness con-
straints. At the end of this section, we describe what system information is needed to build the
model and how we envision an automatic extraction from the implementation. The complete
model is shown in Figure 9.

4.1. Assumptions

If we want to analyze the behavior of a complex distributed system, we cannot model every
detail of the component implementations. Instead, we should find the right balance between
abstraction and detail. Our assumptions try to balance model expressiveness and simplicity.

Given our system follows the EDA paradigm it is reasonable to orient our abstractions
towards EDA principles. This means that the movement of events is a central concept. To
analyze the system behavior it is not essential to know the event content, but which actions
can follow. If the event content determines an event reaction, non-determinism can be used
instead. Consequently, we do not model event contents, only event types.

Additionally, we use channels as event filtering mechanism [5][Chapter 2.3.1]. This is a
pragmatic limitation to reduce the complexity of the Petri net model, but we believe that the
model can be extended to use more complex filtering mechanisms i.e. subject-based filtering.

Our model use case is to verify a specification is covered; we want to know if a specified
behavior is executable in the system. Therefore, we do not model unexpected failures like e.g.
link failures or message loss and target the analysis of the expected system.

Also, we only consider the known components. If previously unknown components connect
to the system, the model has to be rewritten.

92

Tom Meyer CEUR Workshop Proceedings 88–110

1 EnvEvent = ee[1-m]
2 Notification = n[1-n]
3 SubState = [true, false]
4 ComponentEvent = EnvEvent, Notification
5 AllEvents = ComponentEvent, SubEvent
6 Component = cpt[1-o]
7 Process = p[1-p]
8 Action = a[1-p]_[1-q]
9 Channel = [envch, ch[1-r]]

Figure 1: Color classes used to build the color domains of places.

Finally, we exclude loops and recursive functions for publishing behavior. Although valid
in EDA components, we presume that loops are used to compute values, not to communicate.
With this assumption the reachability graph of component processes should be finite.

4.2. Color Classes

Tokens that are produced on places must satisfy a color domain which is composed of color
classes, e.g.: the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡𝑠 place (see next section) has a domain composed of two
classes 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 × 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡. In a P/T net this composition is unfolded so that
there is a place for every component-event combination.

In the implementation the color domain represents required information to execute the
behavior that is molded by the consuming transitions. Following the example this would be the
affected component and what event type is received.

The color classes our model is based on are shown in Figure 1. Classes can be an indexed
list of items (e.g. p[1-p] defines a list containing the processes 𝑝1 to 𝑝𝑝), a list of named items
(e.g. SubState class), or a combination of both (see [8] for the syntax definition). The indexed
lists are placeholders for named identifiers that are used in an instantiated model e.g.: instead
of an enumeration of event types, we assume a final model will use type names. In particular
the elements of the action class are a placeholder for action instances. While the two indexes
suggest each process (index 𝑝) has the same amount of tasks (index 𝑞), a model instance will
have a varying number of tasks for each process. The next section gives an example how color
classes are used to define place domains by introducing two central event places.

4.3. Events

Events are the central communication messages sent over the network. However, our usage
of the term ’event’ is not equivalent to the usage in an EDA since our environment exceeds the
EDA borders. We distinguish between three types of events as depicted in Figure 2a:

1. Environment events are sent between components and entities that are not part of the
communication via the NoSe.

2. Subscription events are sent from components to the NoSe to update subscription states.
3. Notifications are used for intercomponent communication. They are published on a

specific channel and forwarded to all channel subscribers by the NoSe.

93

Tom Meyer CEUR Workshop Proceedings 88–110

(a) Components communicate with three kinds of
events: (1) environment events are used to
communicate with the environment, (2) Pub-
SubEvents are sent to the NoSe and can be a
subscription update or a notification, and (3) the
NoSe distributes notifications back to the compo-
nents.

1 NoSeEvents = Component x Channel x AllEvents
2 ComponentEvents = Component x ComponentEvent

(b) All events leaving a component (including
environment events) are produced on the
NoSeEvents place. All incoming events are
produced on the ComponentEvents place.

Figure 2: Event communication and event place domains.

Events are tokens with a given type. The event type is also a placeholder for the event
contents. Places holding events will unfold to at least one place for every event type.

Components interact with two main event places (see Figure 4a) 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡𝑠 and
NoSeEvents . 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡𝑠 cannot be subscription updates and are always directed at
a specific component. NoSeEvents can be any of the three event types and are sent from a
source component. Additionally, 𝑁𝑜𝑆𝑒𝐸𝑣𝑒𝑛𝑡𝑠 are sent on a specific channel. If the event is a
subscription, the channel is the target for the subscription update. If the event is a notification,
the channel is used by the NoSe to determine the affected subscribers. If the event is an
environment event, the channel should always be the special type 𝑒𝑛𝑣𝑐ℎ to be consistent with
the place domain. In practice this channel will not be used by the environment.

4.4. Notification Service

The fundamental purpose of the Notification Service (NoSe) is to forward events from one
component to other components. In a publish-subscribe system, components can subscribe
to a topic of events. The NoSe then filters all incoming events according to the subscriptions
before forwarding. There are a variety of filtering mechanisms [5]. We use the simplest one:
the concept of channels (see Figure 3a). Event producers publish all events with an associated
channel, event consumers can subscribe on the different channels, and all components that are
subscribed to the associated channel will be notified.

Internally the Nose has to

1. track subscription states,
2. forward events to all components where the subscription filter applies,
3. drop all events where the filter does not apply, and
4. update the subscription state according to special events.

We describe this behavior as depicted in Figure 3b and 3c. The Distribute transition forwards
events of type Notification from NoseEvents to all components on the DistributedEvents
place. The broadcast is modeled by using the SComponent identifier which encodes the set of
every component defined by the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 class (see [8]). The distributed events are then
either dropped or forwarded to the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡𝑠 place, depending on the state of the
𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 place.

94

Tom Meyer CEUR Workshop Proceedings 88–110

Component 1

e1

e1

e2

e1 e2 e2

Component 2 Component 3

C
h
a
n
n
e
l 1

C
h
a
n
n
e
l 2

(a) For each channel and each incoming
event, the NoSe forwards the event to all
components subscribed to the channel.

Sub Drop

Notify Drop

Subscribe Distribute

Notify

Distributed
Events

Component
Events

NoSe
Events

<cmpt, chnl,
notification>

<
S

C
o
m

p
o
n
e
n
t , ch

n
l, n

o
tifi

ca
tio

n
>

<cmpt, chnl, subdate><cmpt, chnl, subdate>

<cmpt, chnl,
subdate>

<cmpt, chnl,
substate>

<
re

ce
iv

e
r,

n
o
ti
fi
ca

ti
o
n
>

<receiver, chnl, notification>

<
re

ce
iv

e
r,

 c
h
n
l,

su

b
st

a
te

>

<nonSubscriber,
chnl,

notification>

D(event) = SubState D(event) = NotificationD(event) = SubState

substate <> subdate

subState = true

subState = false

cmpts.all ⨯
chnls.all ⨯
{false}

Subscriptions

<nonSubscriber,

chnl, substate>

<cm
pt, c

hnl,

su
bdate>

(b) The NoSe distributes notifications to subscribers
or updates subscriptions. The subscription func-
tion is idempotent.

1 Subscriptions = Component x Channel x SubState
2 DistributedEvents = Component x Channel x Notification
3

4 Subscribe | D(event) = SubState AND subdate <> substate
5 NoSeEvents.Subscribe = <component, channel, subdate>
6 Subscriptions.Subscribe = <component, channel, substate>
7 Subscribe.Subscriptions = <component, channel, subdate>
8

9 SubDrop | D(event) = SubState
10 NoSeEvents.SubDrop = <component, channel, subdate>
11 Subscriptions.SubDrop = <component, channel, subdate>
12 SubDrop.Subscriptions = <component, channel, subdate>
13

14 Distribute | D(event) = Notification
15 NoSeEvents.Distribute = <component, channel, notification>
16 Distribute.DistributedEvents = <S_Component x channel x notification>
17

18 Notify | subState = true
19 Distribute.Notify = <receiver, channel, notification>
20 Notify.Subscriptions = <receiver, channel, substate>
21 Subscriptions.Notify = <receiver, channel, substate>
22 Notify.ComponentEvents = <receiver, notification>
23

24 NotifyDrop | subState = false
25 Distribute.NotifyDrop = <nonSubscriber, channel, notification>
26 Subscriptions.NotifyDrop = <nonSubscriber, channel, subState>
27 NotifyDrop.Subscriptions = <nonSubscriber, channel, subState>

(c) The NoSe transitions in a textual definition.

Figure 3: Behavior of the Notification Service (NoSe).

The distribution strongly benefits from a colored Petri net approach. For every combination of
sender, channel and notification type, notifications can be sent to every receiver. In an unfolded
P/T net every place-transition-combination has to be instantiated, resulting in a large structure.

The 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 transition updates the subscription state of a component if the event is of type
SubState . Additionally, the current subscription has to be different from the update. If so the

95

Tom Meyer CEUR Workshop Proceedings 88–110

guard is fulfilled, a token with the old subscription state is consumed for the given component
and channel, and a new token with the new state is produced. If the subscription state is
equal to the received subscription event, the update has to be ignored so that subscriptions are
idempotent [5]. This case is handled by the SubDrop transition.

4.5. Components

Connected to the NoSe are the distributed components. We put forward a pattern of how
components behave in publish-subscribe systems. This pattern can be explicit or implicit, but
we argue an explicit implementation is beneficial. The pattern consists of the following parts
(illustrated in Figure 4a, 5a and 5b):

• An initialization routine, which may or may not produce events. Often, this routine will
be used to subscribe to channels.

• Receiving events from other components, or the environment (e.g. a sensor or the OS).
• Event deconstruction of received events to select a process as reaction or to drop the event.
• And the execution of the selected Process, which may or may not produce new events.

Following this pattern a component is a collection of executable processes including one
initialization routine. A component reacts to an incoming event by executing a process based on
the incoming event type and content. The process execution is split into a sequence of actions
that change the system state. For our Petri net model, we only consider actions that publish an
event and the order in which actions can be sequenced.

Incoming events trigger a deconstruction mechanism. In the implementation this is usually a
switch case equivalent. In our model the deconstruction explicitly either selects a process to
react or ignores the event with two transitions.

Component
Drop

Deconstruct

Undefined

Init
Process

Process

Next
Process

NoSe
Events

Component
Events

<cmpt, chnl, event>

<cmpt, event>

<cmpt, init>

<
cm

p
t>

<cmpt, p>

<cmpt, p>

<cmpt,
event>

event ∉ mustProcess(event)

p ∈ deconstruct(event)

init = initProcess(cmpt)

cmpts.
all

(a) Transitions of a component. Events are re-
ceived in the ComponentEvents place and send
by a process to the NoSeEvents place. Pro-
cesses are selected based on incoming events
by the deconstruction transition. A special init
process is executed on component startup.

Start
Process

End
Process

Action

Running

NoSe
Events

<cmpt, chnl, event>

<cmpt, p, actn>

<cmpt, p, actn><cmpt, p, post>

<cmpt, p, actn>

(event, chnl, post) ∈ eventAction(cmpt, p, actn)

actn = a[process]_1

actn ∈ endAction(cmpt, p)

(b) After it is started a process is in a running
state until it finishes. A running process can
change the system state with actions. Only
actions that produce events are modeled.

Figure 4: Graphical definition of Components. The dotted Process transition is replaced by the process
definition on the right.

96

Tom Meyer CEUR Workshop Proceedings 88–110

1 NextProcess = Component x Process
2

3 Deconstruct | process ∈ deconstruct(event)
4 ComponentEvents.Deconstruct = <component, event>
5 Deconstruct.NextProcess = <component, process>
6

7 ComponentDrop | event /∈ mustProcess(event)
8 ComponentEvents.ComponentDrop = <component,

event>

(a) Component deconstruction of incoming events.
Each event can trigger a process, be dropped or
both.

1 Undefined = Component
2

3 InitProcess | initProcess = initProcess(
component)

4 Undefined.InitProcess = <component>
5 InitProcess.NextProcess = <component,

initProcess>

(b) Every component is initialized with a spe-
cific process. Only initialized components
can receive events.

1 Running = Component x Process x Action
2

3 StartProcess | action = a[process]_1
4 NextProcess.StartProcess = <component, process>
5 StartProcess.Running = <component, process, action>
6

7 Action | (event, channel, postAction) ∈ eventAction(component, process, action)
8 Running.Action = <component, process, action>
9 Action.Running = <component, process, postAction>

10 Action.NoSeEvents = <component, channel, event>
11

12 EndProcess | action ∈ endAction(component, process)
13 Running.EndProcess = <component, process, action>

(c) Processes are selected by the deconstruction mechanism. Each event received by a component can
trigger a process as an event reaction.

Figure 5: Textual definitions of the component behavior.

The 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐷𝑟𝑜𝑝 transition discards events that should be ignored. We abbreviate its
guard predicate with the formula 𝑒𝑣𝑒𝑛𝑡 /∈ 𝑚𝑢𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡). To expand the
formula, all cases that do not require a reaction are enumerated as shown in Figure 6b. The
drop transition is enabled for all events that return 𝑓𝑎𝑙𝑠𝑒 for the 𝑚𝑢𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 relation.

The 𝐷𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 transition is enabled for all events that may return a process. An event can
result in multiple processes non-deterministically. We abbreviate this behavior with the formula
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∈ 𝑑𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡). The formula expands to the pattern shown in
Figure 6d. For every event where 𝑚𝑢𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is 𝑡𝑟𝑢𝑒, 𝑑𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 cannot be 𝑓𝑎𝑙𝑠𝑒. Or
∀𝑒 ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 : 𝑚𝑢𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑒) ⇒ 𝑑𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑒). However, an event can be
dropped or deconstructed non-deterministically.

During startup, a component usually initializes its state, connects to the NoSe and often
subscribes to a channel. We model this behavior with the 𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 transition. Before the
𝐼𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 transition has fired, the corresponding component state is undefined, and it cannot
receive events (see Section 4.7). Only after initialization, more processes can be queued. We
abbreviate the transition predicate with the formula 𝑖𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) → 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
as shown in Figure 6c. The formula defines exactly one process for each component.

A component can produce new events in processes. Figure 1 shows that processes are uniquely

97

Tom Meyer CEUR Workshop Proceedings 88–110

1 (action = a_x1 AND postAction = a_y1 AND event = e_z1 AND channel = type1) OR
2 (action = a_x2 AND postAction = a_y2 AND event = e_z2 AND channel = type2) OR
3 ...

(a) Action transition pattern.

1 event != e1 AND
2 event != e2 AND
3 ...

(b) Component drop transition pattern.

1 (component = c1 AND init = p1) OR
2 (component = c2 AND init = p2) OR
3 ...

(c) Init process transition pattern.

1 (event = e1 AND process = p1) OR
2 (event = e1 AND process = p2) OR
3 (event = e2 AND process = p1) OR
4 (event = e2 AND process = p3) OR
5 ...

(d) Deconstruct transition pattern.

1 action = ax1_y1 OR
2 action = ax1_y2 OR
3 action = ax1_y3 OR
4 ...

(e) End Process transition pattern.

Figure 6: Component transition patterns

identified with an ID, indicated by the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 class. In the model a process is gated by a start
and an end transition. Between these two transitions, the process is in its running state,
where a sequence of actions is executed. In the component implementation, the start transition
corresponds to the function call of the given process. The guard of the start transition ensures
that the first action of the given process is produced.

Each action is executed by the 𝐴𝑐𝑡𝑖𝑜𝑛 transition and always produces an event. Actions are
indexed by a process ID and an action ID (see Figure 1). An action that produces a Notification
corresponds to a call to the 𝑝𝑢𝑏𝑙𝑖𝑠ℎ function in the publish-subscribe interface. An action that
produces a 𝑆𝑢𝑏𝑆𝑡𝑎𝑡𝑒 event corresponds to a call to the 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 or 𝑢𝑛𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 function in
the publish-subscribe interface. An action that produces an EnvEvent corresponds to the part
of the code that interacts with the environment.

In a custom framework it might be useful to publish environment events with the publish-
subscribe interface, on the special 𝑒𝑛𝑣𝑐ℎ channel, for easy parsing.

The action transition predicate generates all possible action sequences and is abbreviated with
the formula (𝐴𝑙𝑙𝐸𝑣𝑒𝑛𝑡𝑠, 𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝐴𝑐𝑡𝑖𝑜𝑛) ∈ 𝑒𝑣𝑒𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠,𝐴𝑐𝑡𝑖𝑜𝑛).
If a process includes a condition that produces multiple event sequences, an action can produce
different followup actions. Thus, multiple transitions are enabled non-deterministically. Conse-
quently, the guard maps the parameters from the 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 place domain to at least one tuple of
(𝑒𝑣𝑒𝑛𝑡, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝑝𝑜𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛). The expanded pattern is shown in Figure 6a

The end transition corresponds to the return statement of the function previously called with
the start transition. The guard of the end transition is an enumeration of end actions abbreviated
by the formula 𝐴𝑐𝑡𝑖𝑜𝑛 ∈ 𝑒𝑛𝑑𝐴𝑐𝑡𝑖𝑜𝑛(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠). The pattern expansion is shown
in Figure 6e. It is possible that 𝐴𝑐𝑡𝑖𝑜𝑛 and end action are simultaneously enabled to allow
conditional endings of a process. However, every action sequence requires an end action as last
action to ensure process termination.

98

Tom Meyer CEUR Workshop Proceedings 88–110

1 EnvEvents = Component x EnvEvent
2

3 Sense | - // no guard
4 EnvEvents.Sense = <component, event>
5 Sense.ComponentEvents = <component, event>
6

7 EnvironmentOut | D(event) = EnvEvent
8 | channel = envch
9 NoSeEvents.EnvironmentOut = <component, channel, event>

10

11 EnvironmentIn | -
12 EnvironmentIn.EnvEvents = <component, event>

Figure 7: Environment interaction of Components

4.6. Environment Model

The system environment contains every entity that cannot use EDA abstractions to communicate
with components, e.g.: human interaction, sensors or OS events. Because it is highly individual,
we make no assumptions of its behavior. However, for a basic compatibility we define a default
behavior with two transitions: EnvironmentIn and EnvironmentOut . These transitions can
produce and consume EnvEvents in any order; at any time.

In general each component has a unique sensing capability (e.g. a specific combination of
sensors). Therefore, produced environment events always target a component. Consequently,
the domain of the EnvEvents place is a tuple consisting of a produced event and a targeted
component. Idle components can then sense environment events, deconstruct them and react
with process actions.

For verification purposes it is useful to restrict the production of events to specific start events
and collect produced events. This can be achieved by removing the EnvironmentIn transition,
putting the desired start event on the EnvEvents place, and adding an output place to the
EnvironmentOut transition that collects the events consumed from the NoseEvents place.

4.7. Synchronization

Modelling just the communication routes of our system is insufficient if events and processes
have ordering constraints. To bind the arrival of an event to a process execution, we introduce
a ComponentIdle place. If an event arrives via Notify or Sense , a token from the receivers
ComponentIdle place is consumed. Components cannot receive new events with an empty
ComponentIdle place. The ComponentEvents place is therefore safe. The StartProcess tran-
sition returns the ComponentIdle token after deconstruction, freeing the event reception. As
a result, component processes can run in parallel. The execution order depends on the event
arrival order. Initially the ComponentIdle place is not marked to ensure the 𝑖𝑛𝑖𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 is
always started first.

Events can only accumulate in an arbitrary order in the NoSeEvents and DistributedEvents
places; the models only unbounded places (excluding environment places like EnvEvents since
the environment has no canonical form). However, often it is desirable to guarantee event
ordering constraints. A similar problem is formulated in the literature for distributed event

99

Tom Meyer CEUR Workshop Proceedings 88–110

1 Source = Component
2 Sync = Component
3 ComponentIdle = Component
4 NoSeIdle = {}
5

6 StartProcess.ComponentIdle = <component>
7 ComponentDrop.Idle = <component>
8 ComponentIdle.Sense = <component>
9 ComponentIdle.Notify = <receiver>

10

11 Sync.Action = <component>
12 EnvironmentOut.Sync = <component>
13

14 Distribute.Source = <component>
15 Subscribe.Source = <component>
16 SubDrop.Source = <component>

1 Done = {}
2

3 Notify.Done = <{}>
4 NotifyDrop.Done = <{}>
5 Subscribe.Done = <{}>
6 SubDrop.Done = <{}>
7

8 NoseIdle.Distribute = <{}>
9 NoseIdle.SubDrop = <{}>

10 NoseIdle.Subscribe = <{}>
11

12 Resume | - // no guard
13 Resume.NoseIdle = <{}>
14 Resume.Sync = <component>
15 Source.Resume = <component>
16 Done.Resume = <{}>

Figure 8: Synchronization places and arcs for FIFO ordering.

systems. Muehl et. al. [5][Chapter 2.5.3] distinguish four orderings:

1. No ordering: No guarantees are given on the event ordering.
2. FIFO ordering: "[...] the notifications that are published by a component 𝐶1 should not

be delivered to a component 𝐶2 in an order different from the order in which they were
published." All outgoing events from a single Component are ordered. Events can be
shuffled, but events from a single source arrive in the order that they were sent.

3. Causal ordering: "[...] if there is a sequence of components 𝐶1, ..., 𝐶𝑘 such that each
component 𝐶𝑖 publishes a notification 𝑛𝑖 that is notified to component 𝐶𝑖+1 if 𝑖 < 𝑘 then
a component 𝑌 should not be notified about 𝑛1 after it was notified about 𝑛𝑘." In causal
ordering, event chains that span multiple components are ordered.

4. Total ordering: "[...] if a component 𝐶1 is notified about 𝑛1 and eventually notified about
𝑛2, then a component 𝐶2 should not be notified about 𝑛1 after it was notified about 𝑛2."
Events are ordered globally, but events can be omitted for single components.

We add a synchronization mechanism between components and NoSe to ensure event ordering
constraints. The NoSe can only process events if NoseIdle is marked. After the final transition
has fired (i.e. Notify , Subscribe or the corresponding drop transitions) a token is produced on
the 𝐷𝑜𝑛𝑒 place and the 𝑅𝑒𝑠𝑢𝑚𝑒 transition resets the event processing transitions.

The Sync place then ensures synchronization between NoSe and Components. A 𝑆𝑦𝑛𝑐 token
is required to enable the 𝐴𝑐𝑡𝑖𝑜𝑛 transition. We can guarantee FIFO ordering with a Sync place
domain over all 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, or Total ordering with a single shared token for all components.
Only after the previous event has been delivered and the 𝑅𝑒𝑠𝑢𝑚𝑒 transition has fired the next
action can produce a new event.

To guarantee Causal ordering the notification service needs to store additional information.
Firstly, the past notification order, and secondly, which event was already delivered to which
consumer. This would be a complex addition to the model and is therefore excluded.

100

Tom Meyer CEUR Workshop Proceedings 88–110

S
e
n
se

C
o
m

p
o
n
e
n
t

D
ro

p

D
o
n
e

R
e
su

m
e

S
u
b
 D

ro
p

s
u
b
S
t
a
t
e

=

f
a
l
s
e

N
o
ti

fy
 D

ro
p

S
u
b
sc

ri
b
e

D
is

tr
ib

u
te

N
o
ti

fy

E
n
v
ir

o
n
m

e
n
t

In

E
n
v
ir

o
n
m

e
n
t

O
u
t

D
e
co

n
st

ru
ct

U
n
d
e
fi
n
e
d

In
it

P
ro

ce
ss

S
ta

rt
P
ro

ce
ss N

e
x
t

P
ro

ce
ss

E
n
d

P
ro

ce
ss

A
ct

io
n

R
u
n
n
in

g

N
o
se

Id
le

N
o
S
e

E
v
e
n
ts

D
is

tr
ib

u
te

d
E
v
e
n
ts

C
o
m

p
o
n
e
n
t

E
v
e
n
ts

E
n
v

E
v
e
n
ts

S
y
n
c

C
o
m

p
o
n
e
n
t

Id
le

C
o
m

p
o
n
e
n
t

N
o
ti
fi
ca

ti
o
n
 S

e
rv

ic
e

E
n
v
ir

o
n
m

e
n
t

P
ro

ce
ss

<
cm

p
t,

 c
h
n
l,
 e

v
e
n
t> <

cm
p
t,

 c
h
n
l,
 e

v
e
n
t>

<
cm

p
t,

e
v
e
n
t>

<
cm

p
t,

e
v
e
n
t>

<
cm

p
t,

 e
v
e
n
t>

<
cm

p
t>

<
cm

pt
>

<
cm

p
t>

 <

cm
p
t,

 c
h
n
l,

n
o
ti
fi
ca

ti
o
n
>

<SComponent, chnl, notification>

<
cm

pt
>

<
cm

pt
>

<
cm

p
t>

<
cm

p
t,

 c
h
n
l,
 s

u
b
d
a
te

>
<

cm
p
t,

 c
h
n
l,
 s

u
b
d
a
te

>

<
cm

p
t,

 c
h
n
l,

su
b
d
a
te

>

<
cm

p
t,

 c
h
n
l,

su
b
st

a
te

>

<
cm

pt
>

<
cm

p
t,

 i
n
it

>

<cmpt>

<
cm

p
t,

 p
>

<
cm

p
t,

 p
,
a
ct

n
>

<
cm

p
t,

 p
,
a
ct

n
>

<
cm

p
t,

 p
,
p
o
st

>

<
cm

p
t,

 p
,
a
ct

n
>

<
cm

p
t,

 p
>

<
cm

p
t,

e
v
e
n
t>

<
cm

pt
, e

ve
nt

>

<
cm

p
t>

<
cm

pt
>

<
re

ce
iv

e
r,

 n
o
ti
fi
ca

ti
o
n
>

<
re

ce
iv

e
r>

<
re

ce
iv

e
r,

 c
h
n
l,
 n

o
ti
fi
ca

ti
o
n
>

<receiver, chnl,
 substate>

<
n
o
n
S
u
b
sc

ri
b
e
r,

 c
h
n
l,
 n

o
ti
fi
ca

ti
o
n
>

(
e
v
e
n
t
,

c
h
n
l
,

p
o
s
t
)

∈

e
v
e
n
t
A
c
t
i
o
n
(
c
m
p
t
,

p
,

a
c
t
n
)

D
(
e
v
e
n
t
)

=

S
u
b
S
t
a
t
e

D
(
e
v
e
n
t
)

=

N
o
t
i
f
i
c
a
t
i
o
n

D(event)= EnvEvent
channel = envch

D
(
e
v
e
n
t
)

=

S
u
b
S
t
a
t
e

s
u
b
s
t
a
t
e

<
>

s
u
b
d
a
t
e

event ∉ mustProcess(event)

p

∈

d
e
c
o
n
s
t
r
u
c
t
(
e
v
e
n
t
)

i
n
i
t

=

i
n
i
t
P
r
o
c
e
s
s
(
c
m
p
t
)

actn = a[process]_1

a
c
t
n

∈

e
n
d
A
c
t
i
o
n
(
c
m
p
t
,

p
)

cm
p
ts

.a
ll
⨯

ch
n
ls

.a
ll
⨯

{
fa

ls
e
}

cm
p
ts

.
a
ll

cm
p
ts

.
a
ll

<cm
pt>

C
la

ss
e
s:

N
o
t
i
f
i
c
a
t
i
o
n

=

n
[
1
-
n
]

E
n
v
E
v
e
n
t

=

e
e
[
1
-
m
]

S
u
b
S
t
a
t
e

=

O
r
d
e
r
e
d

[
t
r
u
e
,

f
a
l
s
e
]

C
o
m
p
o
n
e
n
t
E
v
e
n
t

=

E
n
v
E
v
e
n
t
,

N
o
t
i
f
i
c
a
t
i
o
n

A
l
l
E
v
e
n
t
s

=

C
o
m
p
o
n
e
n
t
E
v
e
n
t
,

S
u
b
S
t
a
t
e

C
h
a
n
n
e
l

=

[
e
n
v
c
h
,

c
h
[
1
-
r
]
]

C
o
m
p
o
n
e
n
t

=

c
p
t
[
1
-
o
]

P
r
o
c
e
s
s

=

p
[
1
-
p
]

A
c
t
i
o
n

=

a
[
1
-
p
]
_
[
1
-
q
]

S
u
b
sc

ri
p
ti

o
n
s

<
no

nS
ub

sc
rib

er
,

 c

hn
l,

su
bs

ta
te

>

S
o
u
rc

e

<
cm

pt
, c

hn
l,

su
bs

ta
te

>

s
u
b
S
t
a
t
e

=

t
r
u
e

Fi
gu

re
9:

G
ra

ph
ic

al
re

pr
es

en
ta

tio
n

of
th

e
co

m
pl

et
e

pu
bl

is
h-

su
bs

cr
ib

e
m

od
el

.A
co

m
po

ne
nt

ca
n

re
ce

iv
e

ev
en

ts
on

th
e
𝐶
𝑜𝑚

𝑝
𝑜𝑛

𝑒𝑛
𝑡𝐸

𝑣
𝑒𝑛

𝑡𝑠
pl

ac
e.

In
co

m
in

g
ev

en
ts

ca
n

ei
th

er
be

𝑑
𝑟𝑜
𝑝
𝑝
𝑒𝑑

or
st

ar
t

a
pr

oc
es

s
de

pe
nd

in
g

on
th

e
𝐷
𝑒𝑐
𝑜𝑛

𝑠𝑡
𝑟𝑜
𝑐𝑡

tr
an

si
ti

on
.

A
pr

oc
es

s
ca

n
pu

bl
is

h
ne

w
ev

en
ts

in
a

se
qu

en
ce

of
𝐴
𝑐𝑡
𝑖𝑜
𝑛

s.
Ev

en
ts

ar
e

ei
th

er
se

nd
be

tw
ee

n
co

m
po

ne
nt

s
vi

a
th

e
N

ot
ifi

ca
tio

n
Se

rv
ic

e
(N

oS
e)

or
to

th
e

en
vi

ro
nm

en
t.

T
he

no
tifi

ca
tio

n
se

rv
ic

e
fo

rw
ar

ds
in

co
m

in
g

ev
en

ts
to

al
ls

ub
sc

ri
be

rs
of

th
e

as
so

ci
at

ed
ev

en
t-

ty
pe

.T
he

𝑆
𝑦
𝑛
𝑐

pl
ac

e
en

fo
rc

es
a

FI
FO

ev
en

to
rd

er
in

g.

101

Tom Meyer CEUR Workshop Proceedings 88–110

4.8. Building the Net

The complete model is shown in Figure 9. For assembly, all variables need to be instantiated,
i.e.: the final enumeration for all color classes (Figure 1) and the final transition guards. We
distinguish between the following kind of information:
Static information is encoded in the component implementations and known at compile
time. For each compiled component the processes and action transitions are static. As a result
the Process and 𝐴𝑐𝑡𝑖𝑜𝑛 classes can be enumerated completely at compile time. Additionally,
initialization processes and event deconstruction is static. Consequently, the transition guards
for the initProcess , deconstruct and mustProcess transition can be generated.

However, action sequences are still incomplete since the used channels and event types can
depend on the component state. Hence, the remaining classes are dynamic.
Dynamic information For behavior that depends on the component state, we need assump-
tions or further knowledge to build the model. This knowledge might be known by the system
designers or accumulated dynamically at runtime. However, newly discovered information then
requires a rebuild of the model making all previous analysis obsolete.

The most characteristic dynamic information in the model are the involved components.
During the system lifetime components can disconnect and entirely new components can
connect. Thus, the enumeration of components in the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡-class changes. Newly
introduced components also introduce new events and channels. This makes the Notification ,
EnvEvent and Channel classes also dynamic.

Furthermore, actions may change the channels on which events are published. While the
domain of event types is static, channels are usually unrestricted i.e.: represented as strings.
Creating an infinite number of new channels is entirely possible. Consequently, for newly
introduced event-channel combination, a new action instance has to be added to the guard of
the 𝐴𝑐𝑡𝑖𝑜𝑛 transition. If this action is also an end action, the EndProcess transition has to be
updated as well. The new action instance will still have the same ID and post action.
Environment Information is what interacts with the system not using a publish-subscribe
interface. However, the environment transitions introduced in Section 4.6 can be replaced with a
more sophisticated environment model. In this case, the environment model has to be provided
for the system composition.
The Initial marking depends on the use case. Yet, the ComponentEvents place is the most
noteworthy to be marked. An initial set of events can be defined here. If desired components can
be individually initialized by moving tokens from the Undefined place to the ComponentIdle
place and setting the subscription state for a set of component-channel combinations to 𝑡𝑟𝑢𝑒.
Additionally, the NoSeIdle place should be marked initially.

4.9. Automatic Extraction of Static Information

Manually collecting information that is already available in the component implementation
is cumbersome and prone to errors. Instead, it is desirable to parse the implementation for
information. We think this is possible with a static code analysis at compile time if the code:

102

Tom Meyer CEUR Workshop Proceedings 88–110

1. uses a recognizable publish-subscribe-interface,
2. marks the initialization process,
3. has a deconstruction function of the form 𝑑𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡(𝑒𝑣𝑒𝑛𝑡) → 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 with parsable

event cases,
4. uses the same kind of event deconstruction for environmentally caused processes, and
5. marks environment interactions in a manner that is parsable, e.g.: with an interface,

structured logs or comments.

This functionality could be integrated to an existing publish-subscribe client library. Besides
the already existing publish-subscribe interface, this library could export a component interface
with a deconstruction function and a distinct function to send environment events. Additionally,
a basic process interface could be provided to encapsulate the event reactions. Then a static code
analysis has to extract the following information from the implementation for each component:

1. The process that is used for initialization.
2. All possible event-process combinations in the deconstruction routine.
3. All possible action sequences.

The initialization process can be assigned to a known variable, so it can be extracted by reading
this variable.

To parse the event-process combinations the return values (started processes) of the decon-
struction function have to be related to a causing event. We assume this is usually done in a
switch-case block, a matching statement or similar kinds of case distinction. Given the simple
form that each event is handled by one case arm and each case returns at least one process, an
extraction method traverses all case arms, stores the event for each case, and adds the returned
processes to the stored event.

To extract the action sequences from a process, the process implementation has to be searched
for all sequence paths. For this, we can build a reduced control flow graph, which only contains
the event publishing statements. Occurring function calls can be replaced with the control flow
of the called function. As long as no recursion is used, the graph will be finite.

In the reduced control flow graph every event publishing is an action and the possible
successor actions as well as end actions are known. For actions with static channels, we
can then build the complete transition guard. However, for actions with variable publishing
information we can only build an action template at compile time. If no further input is given
by the system designer, we require runtime information to generate the action instances.

5. Using the Publish-Subscribe Model for Verification

After model assembly we can use it to further our system understanding. This can be done with
different verification methods at different stages in the software life cycle.

On the one hand we can run a static analysis during design time, before deployment. In this
stage the system has no current state i.e. we do not know which components are connected.
Instead, a reference state has to be defined for verification. This can be a default state or a
scenario of interest. Since static analysis is not constrained by runtime requirements, it can be
used with time or computation intensive verifications methods on dedicated hardware.

103

Tom Meyer CEUR Workshop Proceedings 88–110

On the other hand, the model can be continuously updated for a dynamic analysis at runtime,
to verify properties on the current system state. Although, dynamic analysis can be resource
limited, it has the advantage of direct feedback. With our model we can reflect on the currently
executable behavior to inform about errors or trigger required system adaptations. This is
comparable to use cases envisioned in models@run.time by Blair et al. [23].

Additionally, not only the analysis phase influences the used verification methods, but also
the unique system features. However, during modeling we collected properties that may indicate
structural or semantic mistakes in the system design. Such properties can be defined once by
experienced people and used anywhere in a general toolkit. Before we address custom business
process specifications we like to give a short record of potentially general properties.

5.1. General Verification Problems

The model can be used with current Petri net model-checking tools for verification. During
modeling we thought of this non-exhaustive list of properties that might be of interest to
evaluate:

• Live locks: Usually the system reacts to an input event with a finite sequence of followup
events. Afterwards the system returns into a listening state where no transition can fire
before a new environment event is introduced into the system.

• Dead components: can this component be reached from an initial marking?
• Distance: Given an event produced by a component, how many other components are

needed before a token is produced on the event input of a target component?
• Dead messages: is there an unproduced message type for an initial marking.
• Short circuits: is there a component that can send messages to itself for any incoming

message type? This behavior can cause a live lock and message flooding.
• Event cascades: which events can be caused by a starting event (up to a maximum depth)?

If all possible cascades are finite the system will always "terminate" into a listing state.
• Event sequences: can a sequence of events occur from a given initial marking?

However, a graphical workflow specification can make verification more accessible, since it
is more comprehensive. But to use workflows, a mapping to the system model is needed.

5.1.1. Business Process Mapping

For the comparison of the publish-subscribe model with a business process, we first need a
mapping relation between both. We assume the business process has the form of a WF-net and
will address them as workflow from here on.

Finding a mapping is potentially the largest added human labor in our approach. Each task
in the workflow needs to be mapped to a substructure in the implementation model. With a
careful design the additional development overhead can be limited i.e. by mapping task names
to matching event names. But this may not always be possible.

Every well-formed WF-net has three features that need to be mapped: a single start event a
single end event and the tasks that describe the business process.

104

Tom Meyer CEUR Workshop Proceedings 88–110

Mapping the start event: Van der Aalst makes the case that workflows [2] can be best
analyzed on a single case basis to avoid case mixing. Therefore, the start event is mapped
to a single token on the 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡𝑠 place. The place’ color domain, 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ×
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡, gives a hint to the token semantics: it encodes an event sensing component
and the sensed event, which is either an environment event or a notification. As a result, the
corresponding marking has the form EnvEvents(startcomponent , startevent).

Mapping the end event: An end event is mapped to a token on the NoseEvents place with
the color domain 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡× 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ×𝐴𝑙𝑙𝐸𝑣𝑒𝑛𝑡. The token must be contained in a set
of possible end tokens where the event type fixed and 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡× 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 is variable. A
marking with such a token is equivalent to a workflow in its end state. The marking in our
model has the form 𝐸𝑛𝑣𝐸𝑣𝑒𝑛𝑡𝑠(𝑆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, 𝑆𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑒𝑛𝑑𝑒𝑣𝑒𝑛𝑡) where 𝑆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 are
all connected components, 𝑆𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 are all known channels and 𝑒𝑛𝑑𝑒𝑣𝑒𝑛𝑡 is the fixed event
type of the final event.

In contrast to a workflow in its end state, the execution of the publish-subscribe model can
continue. Usually other events exist and other component processes can be executed.

Mapping Tasks: The task semantics in a workflow is vague. Van der Aalst states that it
"corresponds to a generic piece of work" [2] and that transitions in its Petri net representation,
"abstracts from the internal behavior of a task".

As a result an abstract workflow task transition may not map directly to a transition in
our model, because they represent dissimilar concepts. However, it is reasonable to assume
that a workflow task is constraint by a component process for the following reason: software
components in general encapsulate some functionality for system composition [19]. In the
context of our model, this is the ’work’ component processes do. The work done by a workflow
task is related to the same behavior, just from another point of view. Given this relation, the
case that a workflow task is more general than a component process, seems unlikely.

Yet, tasks and processes are not equivalent. Indeed, multiple tasks can be executed in a single
process. In a special case, every task is represented by a single action. However, since actions are
derived from code while tasks are derived from business processes, this perfect fit is unreliable.
Actions with and without an associated task usually take turns.

Thus, some actions can be executed without an associated task and tasks may be associated
with multiple actions. The latter case is divided into two variants: either the actions represent
the same work just on different paths in the implementation (e.g. a call to publish in a function
that is called at different locations), or the task spans multiple actions. If the task spans multiple
actions it begins with an initial action and ends with a succeeding action in the current process.
We know that the task is done, when the last successor action has fired. If multiple actions mark
the end of a task because of conditions in the path, executing one is sufficient to mark the end.

In an additional, undesirable relation there is no transition a task can be mapped to. This is
the case for tasks that do not result in a significant state change in the publish-subscribe model.
As a result no action transition is generated. Again, we assume this to be a rare case, because
chances are, a system specification is reflected in the system implementation.

Nonetheless, this case needs to be resolved with a surrogate transition, marking task comple-
tion. A special surrogate is the execution of the end process transition: given a task is finished
somewhere in a process, we know it is finished not later than the containing process. Alterna-

105

Tom Meyer CEUR Workshop Proceedings 88–110

tively, a dummy action, publishing a dummy event, added to the component implementation
can be used as surrogate. Since a task completion is usually desired information, we can even
consider this state change as significant and require a published event. Such events might also
be desirable in other parts of the development, e.g. for logging. Otherwise, another existing
action can act as surrogate if it is known to be executed after the task is done.

This leaves us with the following mapping possibilities:

1. Mapping the task to a single action.
2. Mapping the task to the last action(s) of a collection of connected actions.
3. Mapping the task to multiple actions that represent the same unit of work.
4. Mapping the task to a surrogate transition where the surrogate is one of the following:

a) The Process End transition.
b) A synthetic action added in the implementation, i.e.: publishing an additional event.
c) A single or multiple actions on different paths, that are known to be executed directly

after the given task has been finished.

The mapping relation then is a relation task → target where target ⊆ Action ∨ target ∈ Process .

5.2. Business Process Verification

With a workflow specification, the publish-subscribe model and a mapping relation between
the two, we can collect assurance that the model conforms to the workflow.

Compared to the conformance checking literature [3] we have a special case. Usually confor-
mance checking is done on previously gathered event traces. Either to check if the business
process models an observed trace or to check if a trace conforms to the business process. How-
ever, instead of an event trace, we have a Petri net model that is able to generate all possible
event traces. We want to know if our implementation model conforms to a business process
(represented as WF-net). In this section we like to sketch out how this can be achieved.

A minimal conformance requirement is the existence of the previously discussed mapping. In
a running system, components can connect and disconnect to the broker at any time. However,
disconnected components cannot react to events making all internal actions unreachable. Since
unreachable parts cannot be executed, we cannot map tasks of a business process to them.
As a result a first inexpensive test can check the existence of a given mapping to all connected
components. If no complete mapping exists, the workflow cannot be executed in our system.

If a mapping exists, further methods can be applied. Rule checking is a conformance checking
method that can be extended to our model. In rule checking, different rules are extracted from
the workflow to confirm the rules are observed in the event trace [3]. For example, a certain
activity always precedes another or two activities are never executed in the same case. The same
rules should hold in the publish-subscribe model. If they are translated into a logical formula, a
model checker can be used to search for proof that the rule holds, or generate counterexamples.

A more extensive, but also a more expensive, verification method can be based on a reachability
analysis. For both the workflow and the publish-subscribe model we can build a reachability
graph (given a finite state space). Having both graphs, we can check for similarity with different
approaches. Hens et al. suggested [18] to show that the publish-subscribe net is branching
bisimilar [24] to the business process, preserving its branching structure. This results in an

106

Tom Meyer CEUR Workshop Proceedings 88–110

observational equivalence so that the same event sequences can be observed (including silent
intermediate events). Branching bisimilarity requires a symmetric relation that relates both
graphs and fulfill some properties [24]. If it can be shown that our mapping relation fulfills
these properties, our publish-subscribe model is observational equivalent to the workflow.

Without a pure equivalence we may show that all, or at least some possible workflow event
sequences are observable in the publish-subscribe model. For this all transition sequences can
be generated, and a model checking tool can verify the existence in the publish-subscribe net.

An even weaker equivalence can measure the alignment of transition sequences between
workflow and implementation model [3]. Alignment of two transition sequences increases
the more synchronous moves workflow and system model do, i.e. transitions related by our
mapping fire in the same order. If related transitions fire in a different order, alignment decreases.
Depending on the requirements, an imperfect alignments may suffice to show conformance.

Additionally, van der Aalst describes workflow related properties that could be applied to our
model [2]. E.g. all transitions in a WF-net should be alive and on a path between start place to
end place. These properties should also hold for the mapped tasks. A weaker version of this
property can verify the reachability of an end marking from the initial marking.

During runtime, our model changes e.g. if previously unknown components connect to the
NoSe. As a result previously evaluated properties have to be reevaluated. Therefore, runtime
evaluations need to be adjusted to the model complexity and the available resources. For
example checking the existence of a mapping should be cheap while reachability based methods
can get impractical. The methods of conformance checking seem like a good middle way
between computability and expressiveness as well. And they have the added benefit to be
directly applicable on observed logs besides event traces that where sampled from our model.

6. Conclusion

In this paper we presented a symmetric Petri net model of a publish-subscribe system for
verification. We explicitly included a generic component model to represent the state of the
composed system. Since the behavior of an EDA system is largely characterized by components
interchanging events, our abstractions reduce events to types without event contents.

A framework conforming to our component model could use static code analysis to auto-
matically compose a model instance from component implementations. However, the resulting
model may depend on runtime information like involved components and channel names. In
this case the model can be managed and adapted by the central notification service at runtime.

We showed which part of the model is static and which is dynamic. Since components are
modelled explicitly, a mapping of business process tasks to model transitions can be found. This
enables a comparison of the system capabilities, with business processes behavior specified as
workflow nets. We showed a variety of methods that can be used for the comparison partially
inspired by business process conformance checking. Some of these methods are inexpensive
enough to be tested at runtime to increase assurance.

A framework implementation that supports building the model with a high level of automation
is desirable future work. The minimally constraining component model still allows expressive
process behavior but may also make model checking highly accessible for EDA systems.

107

Tom Meyer CEUR Workshop Proceedings 88–110

References

[1] C. A. Petri, Kommunikation mit Automaten, Ph.D. thesis, University of Bonn, 1962.
[2] W. M. P. Van Der Aalst, THE APPLICATION OF PETRI NETS TO WORKFLOW MAN-

AGEMENT, Journal of Circuits, Systems and Computers 08 (1998) 21–66. doi:10.1142/
S0218126698000043.

[3] J. Carmona, B. van Dongen, A. Solti, M. Weidlich, Conformance Checking: Relating
Processes and Models, Springer International Publishing, Cham, 2018. doi:10.1007/
978-3-319-99414-7.

[4] K. M. Chandy, Event-driven applications: Costs, benefits and design approaches, Gartner
Application Integration and Web Services Summit 2006 (2006).

[5] G. Mühl, L. Fiege, P. Pietzuch, Distributed Event-Based Systems, Springer-Verlag, Berlin,
2006.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of publish/sub-
scribe, ACM Computing Surveys 35 (2003) 114–131. doi:10.1145/857076.857078.

[7] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Springer Science & Business Media, 1996.

[8] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, Stochastic well-formed colored
nets and symmetric modeling applications, IEEE Transactions on Computers 42 (1993)
1343–1360. doi:10.1109/12.247838.

[9] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes, Springer, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-19345-3.

[10] N. Lohmann, E. Verbeek, R. Dijkman, Petri Net Transformations for Business Processes –
A Survey, in: K. Jensen, W. M. P. van der Aalst (Eds.), Transactions on Petri Nets and Other
Models of Concurrency II, volume 5460, Springer Berlin Heidelberg, Berlin, Heidelberg,
2009, pp. 46–63. doi:10.1007/978-3-642-00899-3_3.

[11] R. M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business process models
in BPMN, Information and Software Technology 50 (2008) 1281–1294. doi:10.1016/j.
infsof.2008.02.006.

[12] O. F. A. Specification, Business process modeling notation specification, février (2006).
[13] S. Hinz, K. Schmidt, C. Stahl, Transforming BPEL to Petri Nets, in: W. M. P. van der

Aalst, B. Benatallah, F. Casati, F. Curbera (Eds.), Business Process Management, Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, 2005, pp. 220–235. doi:10.1007/
11538394_15.

[14] S. OASIS, Web services business process execution language version 2.0, http://www.
oasis-open. org/committees/tc_home. php? wg_abbrev= wsbpel (2007).

[15] L. Aldred, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, On the Notion of
Coupling in Communication Middleware, in: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 2005, pp. 1015–1033. doi:10.1007/11575801_6.

[16] V. Valero, H. Macià, G. Díaz, M. E. Cambronero, Colored Petri Net Modeling of the
Publish/Subscribe Paradigm in the Context of Web Services Resources, in: M. Núñez,
M. Güdemann (Eds.), Formal Methods for Industrial Critical Systems, Lecture Notes in
Computer Science, Springer International Publishing, Cham, 2015, pp. 81–95. doi:10.

108

http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/12.247838
http://dx.doi.org/10.1007/978-3-642-19345-3
http://dx.doi.org/10.1007/978-3-642-00899-3_3
http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.1007/11538394_15
http://dx.doi.org/10.1007/11538394_15
http://dx.doi.org/10.1007/11575801_6
http://dx.doi.org/10.1007/978-3-319-19458-5_6
http://dx.doi.org/10.1007/978-3-319-19458-5_6

Tom Meyer CEUR Workshop Proceedings 88–110

1007/978-3-319-19458-5_6.
[17] A. Gómez, R. J. Rodríguez, M.-E. Cambronero, V. Valero, Profiling the publish/subscribe

paradigm for automated analysis using colored Petri nets, Software & Systems Modeling
18 (2019) 2973–3003. doi:10.1007/s10270-019-00716-1.

[18] P. Hens, M. Snoeck, G. Poels, M. De Backer, A Petri Net Formalization of a Publish-Subscribe
Process System, 2011. doi:10.2139/ssrn.1886198.

[19] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-oriented Program-
ming, Pearson Education, 2002.

[20] S. Becker, The palladio component model, in: Proceedings of the First Joint WOSP/SIPEW
International Conference on Performance Engineering - WOSP/SIPEW ’10, ACM Press,
San Jose, California, USA, 2010, p. 257. doi:10.1145/1712605.1712651.

[21] L. Lamport, N. Lynch, Chapter on Distributed Computing:, Technical Report, Defense
Technical Information Center, Fort Belvoir, VA, 1989. doi:10.21236/ADA208996.

[22] Schmerl, Bradley, Aldrich, Jonathan, Garlan, David, Kazman, Rick, Yan, Hong, DiscoTect:
A System for Discovering the Architectures of Running Programs Using Colored Petri
Nets, Technical Report, Carnegie-Mellon University Pittsburgh, 2006.

[23] G. Blair, N. Bencomo, R. B. France, Models@ run.time, Computer 42 (2009) 22–27.
doi:10.1109/MC.2009.326.

[24] T. Basten, Branching bisimilarity is an equivalence indeed!, Information Processing Letters
58 (1996) 141–147. doi:10.1016/0020-0190(96)00034-8.

109

http://dx.doi.org/10.1007/978-3-319-19458-5_6
http://dx.doi.org/10.1007/978-3-319-19458-5_6
http://dx.doi.org/10.1007/s10270-019-00716-1
http://dx.doi.org/10.2139/ssrn.1886198
http://dx.doi.org/10.1145/1712605.1712651
http://dx.doi.org/10.21236/ADA208996
http://dx.doi.org/10.1109/MC.2009.326
http://dx.doi.org/10.1016/0020-0190(96)00034-8

	1 Introduction
	2 Background
	2.1 Event-Driven Architecture (EDA)
	2.2 Petri Nets
	2.3 Business Processes

	3 Related Work
	4 Publish-Subscribe Model
	4.1 Assumptions
	4.2 Color Classes
	4.3 Events
	4.4 Notification Service
	4.5 Components
	4.6 Environment Model
	4.7 Synchronization
	4.8 Building the Net
	4.9 Automatic Extraction of Static Information

	5 Using the Publish-Subscribe Model for Verification
	5.1 General Verification Problems
	5.1.1 Business Process Mapping

	5.2 Business Process Verification

	6 Conclusion

