
Exploring L* for Process Mining
Karnika Shivhare1, Rushikesh K. Joshi1

1Department of Computer Science Engineering, Indian Institute of Technology Bombay, Mumbai, India.

Abstract
When processes execute through their business logic, their activities generate event logs, which contribute to trace sets. Since
its introduction, the field of process mining has evolved, however, accuracy issues persist. In this paper, we explore the L*
algorithm in the context of process mining, especially towards development of interactive process mining techniques. We
discuss the results of our experiments, the limitations of the approach, and possible future directions towards adapting the
technique for covering richer set of features.

Keywords
Process, Traces, Trace Sets, Process Mining, Interactiveness, L* Algorithm, Automatons, Grammar Inferencing

1. Introduction
Processes are progressions of activities that execute and
generate event logs in the form of trace sets. These event
logs present executed traces of the processes, and they
are routinely used by Process Mining algorithms to mine
processes from them. Process Mining has been explored
for more than a decade, but discovering a process accu-
rately from its given trace set is still an attractive research
proposition that needs attention. A Trace from a process
represents a control flow of the process during an execu-
tion run, and it can be represented as a string of activities.
Such a string can be obtained from a process execution
engine through its logs. Similarly, automatons can be con-
sidered as execution engines where strings of alphabets
are produced by virtue of transitions between states.

The set of strings generated by an automaton repre-
sents the language accepted by the automaton, while the
process execution engine generates strings of activities
representing the trace set of the process. The former
is a complete set, whereas, the latter is a set generated
by a finite number of executions. The L* algorithm [1]
is an algorithm that generates automatons from given
regular language represented in terms of set of strings.
The algorithm learns a deterministic finite automaton
(DFA) from a set of positive and negative examples. It
begins with an initial hypothesis DFA that accepts all of
the positive examples and none of the negative examples.
It then iteratively refines the hypothesis through inter-
action with an oracle to tailor the alterations to obtain

International Workshop on Petri Nets and Software Engineering 2023,
PNSE’23
$ karnika@cse.iitb.ac.in (Karnika); rkj@cse.iitb.ac.in
(Rushikesh K.)
� https://www.cse.iitb.ac.in/~karnika/ (Karnika);
https://www.cse.iitb.ac.in/~rkj/ (Rushikesh K.)
� 0000-0001-6490-0380 (Karnika); 0000-0002-2712-1406
(Rushikesh K.)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

a finite automaton for the given automaton language. It
generates minimalistic DFAs [1].

Other related works in this direction of automata learn-
ing and grammar extraction include learning of context
free languages such as by Omphalos [2], extracting con-
text free languages in extended Backus–Naur form [3]
and learning of probabilistic finite state machines such
as by PAutomaC [4]. Several other works [5] [6] [7]
provide surveys in this field of grammar inferencing [8]
with a focus on constructing grammar for the underlying
language by learning through examples.

We observe that the field of Process Mining can benefit
by placing automaton learning in proximity with Process
Discovery. Process models can be learnt like formal gram-
mars by using the idea of positive examples in learning
automatons and applying them to event log trace sets.

2. Our Approach
We present the observations and results (Table 1) of our
exploration of the L* algorithm to mine processes. In our
approach, processes are mined as DFAs with the help of
an oracle that validates the generated DFA by providing
counterexamples for incorrect DFAs. The algorithm is
unaware about the process behavior to be mined, the
correctness of its mined DFA, it’s iteration stage, or the
point of incorrectness of its result. It is an interactive
learning (or refining) algorithm that continues to take
counterexamples and learn. This brings flexibility to the
algorithm as to repeat its learn-and-refine cycle until a
correct DFA is constructed, in contrast to other process
mining algorithms that generate either a correct or an
incorrect process. L* is an iterative approach to extract
regular grammar, and we utilize its iterations for extract-
ing processes. We view process traces as strings in L*
algorithm, and begin with a hypothesis of an empty tran-
sition as the only trace in the trace set of the process to
be mined. The hypothesis is then iteratively refined until

mailto:karnika@cse.iitb.ac.in
mailto:rkj@cse.iitb.ac.in
https://www.cse.iitb.ac.in/~karnika/
https://www.cse.iitb.ac.in/~rkj/
https://orcid.org/0000-0001-6490-0380
https://orcid.org/0000-0002-2712-1406
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Table 1

Microconfigurations Process
Trace Set

Number
of DFA
Constructions

DFA Developments Count of
Successes
from [9]

Correct Mining
by L* for
Process Mining

Correct DFA
Obtained

Counterexample
Provided

Type of
Counterexample

Bowtie [9] {acd, bce} 04

✗ acd Positive

00 ✓✗ bce Positive

✗ cce Negative

Critical Section [9] {abcd, cdab} 04

✗ abcd Positive

00 ✓✗ cdab Positive

✗ bdab Negative

Crossover [9]
{abcd, pqrs,
pcd, ars}

05

✗ pqrs Positive

02 ✓
✗ pcd Positive

✗ bcd Negative

✗ abcd Positive

Early Completion [9] {acb, abd} 04

✗ abd Positive

00 ✓✗ bce Positive

✗ adb Negative

Initial Bypass [9] {abcde, de} 03
✗ abcde Positive

02 ✓
✗ cbcde Positive

Intertwined Active
Bypass [9]

{abcde, abge,
afde}

03 ✗ abcde Positive 04 ✓

✗ acde Negative

Intertwined Vanilla
Bypass [9]

{abcde, abde,
acde}

03 ✗ abcde Positive 01 ✓

✗ abcdeabcde Negative

Intertwined
Long Bypass [9]

{abcde,
abe, ade}

03 ✗ abcde Positive 02 ✓

✗ abcdeabcde Negative

Seniority [9] {a, b, ab} 02 ✗ bb Negative 01 ✓

Ordered
Subsequences [9]

{ab, bc, ac} 04

✗ ac Positive

00 ✓✗ bc Positive

✗ cc Negative

Asynchronous
Service Loop [9]

{ac, abc, acb
abbc, abcb, acbb,
abbbc, abbcb,
abcbb, acbbb }

03

✗ ac Positive

00 ✓✗ bac Negative

Concurrent
Branching [9]

{abc, acb, cab } 05

✗ abc Positive

02 ✓
✗ acb Positive

✗ aab Negative

✗ cab Positive

Ticketed
Service [9]

{ad, abd, acd,
abcd, acbd, abbd,
accd, abbcd,
abcbd, acbbd,
accbd, acbcd, abccd }

03

✗ ad Positive

00 ✓
✗ bad Negative

𝑎𝑛𝑏𝑛 (Later negative
counterexample)

{𝜖, ab, aabb,
aaabbb,
aaaabbbb,
aaaaabbbbb}

not defined

✗ aabb Positive

-
✗

✗ aaabbb Positive

✗ aaaabbbb Positive

✗ aaaaabbbbb Positive

✗ bbbbbb Negative

𝑎𝑛𝑏𝑛 (Early negative
counterexample)

{𝜖, ab, aabb,
aaabbb,
aaaabbbb,
aaaaabbbbb}

not defined

✗ aab Negative

- ✗

✗ bbb Negative

✗ aaabbb Positive

✗ aaaabbbb Positive

✗ aaaaabbbbb Positive

the intended behavior of the process is accurately built. It
visualizes all next possible traces and their subsequences
by spanning the transition space from the traces and their
subsequences in trace set built by the algorithm at that
progression stage. The component of Oracle interactivity
is included as a record of all the traces of the given trace
set. We experiment this adaptation of L* for process min-

ing with Trace language configurations [9] for testing
purposes.

3. Experiments and Results
As part of experimentation, we have implemented the L*
algorithm [1] for Process Mining. This adaptation of L*



algorithm is then used to mine the microconfigurations
presented by Karnika and Joshi in [9]. They presented
thirteen inherent patterns among processes, which they
call as micro-configurations [9]. Moreover, they identi-
fied them as failure points for some process mining algo-
rithms, and presented the test results of five algorithms
that are obtained on testing these micro-configurations
using pm4py [10] framework [9].

Table 1 presents experimentation results of apply-
ing the L* algorithm for Process Mining over 14 micro-
configurations using their corresponding trace sets in-
cluded in the table. The table also includes relevant re-
sults and details corresponding to various iterations and
DFA constructions witnessed during mining by L*, such
as counterexamples provided by Oracle, their types (pos-
itive or negative), and the count of DFAs that are con-
structed by L* algorithm before producing the correct
result.

The table also sums up the results of [9] to present
a count of process mining algorithms that were found
in [9] to successfully discover that micro-configuration.
However, the table marks a - (hyphen) to indicate a result
of micro-configuration that was not presented by them.

We identify that all the microconfigurations, presented
as fracture points for most of the mining algorithms, were
successfully mined by L* algorithm for Process Mining.

The algorithm correctly identifies processes that gen-
erate regular trace sets, and it continues its iterations for
processes that generate non-regular trace sets. For exam-
ple, as shown in the last two entries in Table 1, the two
runs of the algorithm on a non-regular trace set {𝑎𝑛𝑏𝑛}
produce correct result only upto the current iteration
generating net to accept {𝑎𝑘−1𝑏𝑘−1} at 𝑘𝑡ℎ iteration.

The algorithm generates DFAs, which may have mul-
tiple occurrences of transition labels, whereas processes
tend to have unique transition labels, since they represent
activities in processes.

As the algorithm progresses, behavioral dependencies
across transitions are learned by the algorithm. However,
sometimes, false positives mislead as it appears at an
outset that the algorithm has learned some relationship,
but subsequent iterations of DFA miss out on required
traces.

The last two entries in the Table 1 represent algorith-
mic results with change in order of type of counterexam-
ples. In the first attempt, all negative counterexamples are
tried before giving any positive counterexample. With an
expectation to reduce the number of required negative
counterexamples, strategies to have positive counterex-
amples in the beginning are attempted. However, it can
be observed in this case, that the negative counterexam-
ples were still required to eliminate unwanted traces.

4. Conclusion
We explored the L* algorithm in the context of process
mining, drawing an analogy between trace sets and lan-
guages. We observed that several earlier trace patterns
which were found to be fracture points in most of the
mining algorithms are correctly identified by L*. How-
ever, the algorithm requires an oracle in order to iterate
with its help to generate correct process model. In future,
the oracle can be replaced by an automated machine that
validates the generated results by comparing two trace
sets. Since the algorithm works for trace sets express-
ible with regular expressions, as future work, it can be
explored to solve those sub-parts of trace sets that are
not solvable by it. Further, since the algorithm generates
DFAs, the models generated by the algorithm need to
be accurately converted into Petri Nets, and removal of
duplicity of transition labels is a challenge in conversion.

Acknowledgments We thank Paritosh K. Pandya for
suggesting the L* algorithm for our explorations.

References
[1] D. Angluin, Learning regular sets from queries and

counterexamples, Information and Computation
75 (1987) 87–106.

[2] A. Clark, Learning deterministic context free gram-
mars: The omphalos competition, Machine Learn-
ing 66 (2007) 93–110.

[3] N. Wirth, What can we do about the unnecessary
diversity of notation for syntactic definitions?, Com-
mun. ACM 20 (1977).

[4] S. Verwer, R. Eyraud, C. de la Higuera, Pautomac: a
probabilistic automata and hidden markov models
learning competition, Machine Learning (2014).

[5] C. Higuera, A bibliographical study of grammatical
inference, Pattern Recognition 38 (2005).

[6] W. Daelemans, Colin de la higuera: Grammatical
inference: learning automata and grammars, 2010,
Machine Translation 24 (2010) 291–293.

[7] A survey of grammatical inference in software en-
gineering, Science of Computer Programming 96
(2014) 444–459.

[8] M. Young-Lai, Grammar Inference, Springer US,
Boston, MA, 2009, pp. 1256–1260.

[9] K. Shivhare, R. Joshi, Trace language: Mining micro-
configurations from process transition traces, 2022.

[10] A. Berti, S. van Zelst, W. Aalst, Process mining for
python (pm4py): Bridging the gap between process-
and data science, 2019.


	1 Introduction
	2 Our Approach
	3 Experiments and Results
	4 Conclusion

