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Abstract

Optimisation is highly relevant in many problems in artificial intelligence, machine learning, engineering

and statistics. In these situations, optimisation by means of evolutionary computation becomes especially

relevant as it makes few assumptions (such as differentiability) about the objective function. Problems

such as these represent various research opportunities, both in the Norwegian and European contexts. In

this work we present an open-source software framework, EvoLP.jl, as an effort to support the research

in this niche. EvoLP.jl is a Julia package that implements reusable pieces of code for experimenting with

single-objective evolutionary computation algorithms and its components. The framework is composed

of blocks that span the separate phases of the evolutionary process: population initialisation, selection,

crossover, and mutation. These blocks can be put together to create a modular solver, where each of

the components can easily be swapped for testing. In addition, we provide some built-in algorithms

and a few optional utilities for analysis (like benchmark test functions, result reporting and statistics

logging). EvoLP.jl is an effort of the Norwegian Open Artificial Intelligence Lab and strives to comply

with the guidelines of the Julia scientific community. It is well-tested, provides extensive documentation

and is free—available for everyone to use under an open-source license. It is our intention that EvoLP.jl

becomes a useful tool not only for research in evolutionary computation but also in the education and

innovation scenarios.

Keywords
Evolutionary Algorithms, Genetic Algorithms, Particle Swarm Optimisation, Evolutionary Computation

Software Tools

1. Introduction

The concept of Artificial Intelligence (AI) was originally used to refer to the science and engineer-

ing of intelligent agents [1]. In the last decade, however, the dominant research topic—Machine

Learning (ML) and its applications—has overshadowed other areas of AI research. In Norway,

for example, the trend has been similar. In the last three annual reports from the Norwegian Re-

search Center for AI Innovation (NorwAI), several publications and projects in AI are described

but none of them mention any optimisation techniques, let alone any of those belonging to the

Evolutionary Computation (EC) family [2, 3, 4].
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A quick search in the project bank of The Research Council of Norway shows 375 projects

when searching for “artificial intelligence”, “AI” or their Norwegian translation, between 2018

and 2023 [5]. In contrast, performing a similar search for the same period using the keyword

“evolutionary” (or its Norwegian translation) yields only 14 projects [6]. We believe there is

potential in delving deeper in this line of research and its methods, as they can also be used for

(and in conjunction with) AI algorithms [7].

As an effort to increase the interest in optimisation by means of EC in the Norwegian scientific

community, we propose a software package in Julia that provides reusable computing patterns

for experimenting and analysing several components for single-objective EC algorithms. The

framework focuses on the idea of using small building blocks that can be put together, and

encompass the different stages of an evolutionary process: initialisation of the population,

parent selection, recombination, mutation and survival. In addition, it provides a few built-in

algorithms—namely the 1+1 Evolutionary Algorithm (EA), a generational Genetic Algorithm

(GA) and a Particle Swarm Optimisation (PSO) solver—and test functions to try them out. We

aimed our attention to the components and their connections: how to put together the different

tools available to play around (as in a playground) with a new solver.

Our framework, EvoLP.jl—which is a short form of Evolusjonær Lekeplass1
—is free and open-

source, and is also accessible via the General Julia Registry: it can be installed from the package

manager in a couple of instructions. Fully guided tutorials and short examples are available in

the documentation, which can be browsed through the Julia REPL as well, and are detected by

most linting services in IDEs.

2. Related Work

Research on EC can take on many different forms and paths, and the differences between

solvers can become very specific. Nevertheless, many modular software tools have succeeded in

creating abstractions that are general enough to apply to several of the algorithms they include.

For Java, JCLEC [8] and its multi-objective variation JCLEC-MO [9] are two examples. More

recently, JGEA [10] continued with this similar modular design. HeuristicLab [11] is another

framework developed entirely in C# and employing a graphical user interface. DEAP [12],

developed in Python 2.0, posed many interesting components that we wanted to include in our

design. However, the framework has not been entirely rewritten to Python 3, so it suffers from

many compatibility issues.

Python running times are not competitive against compiled languages, but several frameworks

have found solutions around that fact. For example, EvoJax [13] uses hardware acceleration for

neuroevolution, or LEAP [14] which uses Dask for building a computational graph that is easy

to parallelise. Another example in this category is pygmo which is a Python wrapper for the

pagmo C++ optimisation library [15].

Julia has been a rapidly growing programming language in the scientific community due to its

performance and simple syntax, and offers similar software tools. The optimisation landscape

in Julia consists of many different packages, for example SciML [16] which encompasses a
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whole scientific environment for machine learning and optimisation, JuMP [17] for mathe-

matical optimisation, and Metaheuristics [18] and BlackBoxOptim [19] for non-convex and

non-differentiable problems. Specific solutions for EC also exist (like EBIC.jl [20], Cambrian [21]

and Evolutionary [22]).

3. Design Principles

The decision of developing EvoLP.jl in Julia comes from different standpoints. First is the

performance against Python (which is the go-to scripting language for AI). Although scientific

libraries (like numpy or scipy in Python) have been compiled for faster performance, they require

that the code is vectorisable. This is not an easy task for EC algorithms, where many stochastic

decisions are taken in an iterative manner. Another consideration about the programming

language was the paradigm they use. Although iterative in nature, each of the phases of the

evolutionary process can be abstracted to a single function modifying an object at a time (as

opposed to an object being modified by its own methods). The functional paradigm also fits

better with the scientific notation used in this line of research. EvoLP.jl takes advantage of these

features of the Julia programming language along with polymorphism by multiple dispatch.

Unlike C++ or Java, Julia uses structs (also known as types in other functional programming

languages) instead of objects. Therefore, all procedures and operations that manipulate such

types need to be implemented as functions instead of being methods inside an object. In this

way, abstraction is easier to achieve since a single function represents a single step in the

evolutionary process.

The polymorphic nature of Julia allows functions to behave differently using multiple dispatch.

This enables the programmer to create multiple ‘versions’ of a function, for example the mutate
function, which will behave differently depending on the type of mutation in an algorithm and

the arguments passed. By doing so, we encapsulate all the specifics of a given operator inside

a single function. This is useful for maintenance as there are no complicated program flows

in a big mutate function, but rather several small mutate functions. The other advantage is

extensibility: to add a new mutator one needs only to add a new function.

The framework is built to capitalise on these features, and provides small, reusable pieces of

code that we refer to as blocks. These blocks can be either one of two kinds: type or function
blocks, and can be put together to generate evolutionary algorithms in a few lines of code,

where swapping components is simple and easy. EvoLP.jl started as an extension to the GA and

PSO implementations presented by Kochenderfer and Wheeler [23]. We later added important

features that are common in an analysis work flow (e.g., result reporting or logging of statistics)

and extended most of the functions to ensure reproducibility when dealing with stochastic

components. In this way, experiments are easy to reproduce and share, which makes EvoLP.jl a

good alternative when designing and analysing EC algorithms.

After creating a development cycle we were content with, the first version of EvoLP.jl was

published and registered as an official Julia package. The code, along with documentation,

examples and the development roadmap can be found in the GitHub repository.
2
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4. Examples

This section includes complete, illustrative examples where blocks are coupled together in a

single work flow for two well-known optimisation problems. A detailed description of the

framework components is included in posterior sections.

4.1. The Rosenbrock function

In this example, we solve a minimisation benchmark for continuous optimisation, the Rosenbrock

function [24]. For this problem, the following components are used:

• Generator: Continuous normal, i.e., with a population of 2D vectors x ∈ 𝑋 such that

𝑋 ∼ 𝒩 (𝜇, 𝜎2) with 𝜇 =
[︀
0
0

]︀
and 𝜎2 =

[︀
1 0
0 1

]︀
• Selector (S): Rank-based, generational.

• Recombinator (C): Interpolation crossover with 𝜆 = 0.5

• Mutator (M): Gaussian mutation with 𝜎 = 0.5

• Objective function: 2-dimensional version of the Rosenbrock built-in test function, i.e.

𝑓(x) = (𝑎− 𝑥1)
2 + 𝑏(𝑥2 − 𝑥21)

2
with default values of 𝑎 = 1 and 𝑏 = 5. The optimum is

𝑓([𝑎, 𝑎2]) = 0.

• Logbook: Calculating maximum, minimum, mean and median fitness values of the

population at every iteration.

• Algorithm: Built-in generational GA, with a population size |𝑋| = 500 and termination

after 100 generations. Both crossover and mutation probabilities are 100%.

• Result: The return value of the algorithm, available for further inspection.

The code can be implemented in a single file:

using EvoLP, OrderedCollections, Statistics

X_size = 500
k_max = 100
X = normal_rand_vector_pop(X_size, [0, 0], [1 0; 0 1])
S = RankBasedSelectionGenerational()
C = InterpolationCrossover(0.5)
M = GaussianMutation(0.5)
statnames = ["mean_f", "max_f", "min_f", "median_f"]
fns = [mean, maximum, minimum, median]
log_dict = LittleDict(statnames, fns)
statsbook = Logbook(log_dict)

result = GA(statsbook, rosenbrock, X, k_max, S, C, M)
@show optimum(result)
@show optimizer(result)
@show f_calls(result)
@show statsbook.records[end]



Here is one possible output of the example above:

optimum(result) = 0.0015029528354023858
optimizer(result) = [1.0367119356341026, 1.0803427525882299]
f_calls(result) = 50050
(mean_eval = 3.7839504926952294, max_f = 22.281919411164413, min_f =

0.0015029528354023858, median_f = 2.429775485243721)→˓

This full example is available as a guided tutorial in the documentation of EvoLP.jl.
3

4.2. The 8-queen problem

This example deals with a classical combinatorial problem in AI where the goal is to place

eight queens in a chess board such that no queen checks each other [1]. Figure 1 shows three

configurations where the constraints and possible clashes are highlighted.

(a) Constraints of a queen (b) Conflicts between queens (c) A possible solution

Figure 1: The 8-queen problem. 1a shows the constraints (in pink) imposed by the placement of a single
queen piece (in blue). 1b highlights the conflicts arising from a possible configuration of the board. 1c
illustrates one possible solution with no conflicts.

For this example, we use the following components:

• Generator: random permutation, i.e., with a population of 8D vectors x ∈ 𝑋 such that

𝑋 ∼ 𝒰(𝒮8) where 𝒮8 is the set of permutations of [8] = {1, 2, . . . , 8}
• Selector (S): Random tournament selection of size 𝑇𝑠 = 5.

• Recombinator (C): Order one crossover for permutation vectors.

• Mutator (M): Swap mutation.

• Objective function: 𝑓(x) =
∑︀𝑖=8

𝑖=1 DiagConstraints(𝑞𝑖) where DiagConstraints

is a custom procedure (coded separately) which counts the number of conflicts of each

queen 𝑞𝑖.

• Logbook: Calculating maximum, minimum, mean and median fitness values of the

population at every iteration.

3
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• Algorithm: Custom steady-state GA that generates two offspring per generation, with a

population size |𝑋| = 100, and termination after 500 generations. Crossover probability

is 100% while mutation probability is 80%.

• Result: The return value of the algorithm, available for further inspection.

The code can be implemented in a single file, although it needs three parts: an objective

function DiagConstraints, an algorithm, and a wrapper script. For simplicity, we show the

last two components below:

function 8QSteadyGA(statsbook, f, X, k_max, S, C, M, mrate)
n = length(X)
# Generation loop
for _ in 1:k_max

fitnesses = f.(X)
parents = select(S, fitnesses) # this will return 2 parents
parents = vcat(parents, select(S, fitnesses)) # add 2 more
offspring = [cross(C, X[parents[1]], X[parents[2]])] # get first
offspring = vcat(offspring, [cross(C, X[parents[3]],

X[parents[4]])])→˓

X = vcat(X, offspring) # add to population
# Mutation loop
for i in eachindex(X)

if rand() <= mrate
X[i] = mutate(M, X[i])

end
end
fitnesses = f.(X)
compute!(logbook, fitnesses)

# Find worst and remove, twice
for _ in 1:2

worst = argmax(fitnesses)
deleteat!(X, worst)
deleteat!(fitnesses, worst)

end
end
# Result reporting
best, best_i = findmin(f, X)
n_evals = 2 * k_max * n + n
result = Result(best, X[best_i], X, k_max, n_evals)
return result

end

Then, the wrapper script which uses the 8QSteadyGA algorithm to solve the problem using



the remaining blocks:

using EvoLP, OrderedCollections, Statistics

X_s = 100
T_s = 5
X = permutation_vector_pop(X_s, 8, 1:8)
S = TournamentSelectionSteady(T_s)
C = OrderOneCrossover()
M = SwapMutation()
statnames = ["mean_f", "max_f", "min_f", "median_f"]
fns = [mean, maximum, minimum, median]
log_dict = LittleDict(statnames, fns)
statsbook = Logbook(log_dict)
f = diag_constraints(x)

result = mySteadyGA(statsbook, diag_constraints, X, 500, S, C, M,
0.8)→˓

@show optimum(result)
@show optimizer(result)
@show f_calls(result)
@show statsbook.records[end]

Here is one possible output of the example above:

optimum(result) = 0
optimizer(result) = Any[5, 1, 8, 6, 3, 7, 2, 4]
f_calls(result) = 100100
(mean_eval = 9.392156862745098, max_f = 20, min_f = 0, median_f = 8.0)

A visual representation of this specific solution is shown in Figure 1c. The full example

(described at a greater detail) is available in the documentation of EvoLP.jl.
4

5. The Framework

In this section, we detail the blocks of EvoLP.jl, some of which were showcased in the examples

section.

5.1. Block Taxonomy in EvoLP.jl

Every basic block in EvoLP.jl is categorised into one of the following essential steps of EC:

• Generators. Function blocks for randomly initialising the population.

4
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• Selectors. Type blocks for selecting parents for recombination via the select function.

• Recombinators. Type blocks for performing crossover via the cross function.

• Mutators. Type blocks for performing mutation on a single individual via the mutate
function.

Extra functionality is also provided in EvoLP.jl through a few optional blocks:

• Result. A type block for reporting the results of algorithms.

• Logbook. A type block for computing and storing statistics throughout a run.

• Test functions. A curated list of pseudoboolean and continuous benchmark functions

from the literature [23, 25, 26] to test an algorithm.

• Built-in algorithm. A small selection of algorithms (1+1 EA [27], GA [28] and PSO [29])

that are ready to use, all in function block form.

5.2. Initialisation

To initialise the population in EvoLP.jl, we provide several population generators. These

blocks generate random individuals and put them in a vector (known as the population). The

population can be of different data types depending on the type of generator invoked:

• Binary. Generates a population of 𝑛 random boolean vectors.

• Continuous uniform. Generates a population of 𝑛 floating point vectors, from random

values uniformly sampled between a lower and upper bound.

• Continuous Gaussian. Similar to the continuous uniform, this generator returns a

population of floating point vectors but instead sampled from a normal distribution with

known means and variances.

• Discrete combination/permutation. Returns a random sample from a discrete domain,

set or container. Sampling can be performed with or without replacement.

Continuous generators (both uniform and normal variants) for Particles are provided as

well, which generate a Particle population that can be used with the PSO built-in algorithm.

5.3. Parent Selection

In EvoLP.jl, the selection phase is performed in two steps:

1. Choose one of the available selection operators (or selectors) and instantiate it.

2. Then, use it to perform the selection. This is achieved using the select function.

The select function uses the chosen selector to obtain indices from a vector (which is usually

the vector of fitness evaluations of all individuals in the population). EvoLP.jl implements these

selectors as if solving a minimisation problem, so every selector is comparable to an argmin
function with some degree of stochasticity. The available selectors are:

• Roulette wheel. This selector uses a fitness proportionate probability of selection.



• Rank-based. The probability of selection considers the rank of the fitness instead of its

values.

• Random tournament. A winner is obtained from a tournament among a random sample

of size 𝑘. This process is repeated a second time to determine the second parent.

• Truncation. Two random indices are selected from the top 𝑘 individuals.

The selection is commonly performed once (known in the literature as steady-state). However,

sometimes it may be desirable to perform the selection 𝑛 times (i.e., once per every individual

in the population), especially when working with generational algorithms. EvoLP.jl provides

both variants for each selector.

After the desired selector has been instantiated, the user can call the select function inside

the main loop of an algorithm (as was showcased in the examples in Section 4). Here is an

illustrative snippet featuring the rank based selector in its steady-state variant:

# Instantiate outside the algorithm
S = RankBasedSelectionSteady()
...
function exampleAlgorithm(S, ...)

...
# Main loop
for gen in 1:k_max

... # Do something
parents = select(S, fitnesses)

end
...

end

The same select function can behave differently depending on the chosen selector (thanks

to polymorphism). Continuing with the rank-based selector example, here is the implementation

of its select function:

function select(::RankBasedSelectionSteady, y; rng=Random.GLOBAL_RNG)
ranks = ordinalrank(y, rev = true)
cat = Categorical(normalize(ranks, 1))
return rand(rng, cat, 2)

end

Additional selectors can be added by creating a new selector type and implementing its

corresponding select function (see Section 5.6).

5.4. Crossover

In a similar fashion to the selection process, the crossover step of an EA is performed in two

parts in EvoLP.jl: first choose a crossover operator (or recombinator) and then invoke the



appropriate function to carry out the crossover. The function in this case is called cross, and

generates one offspring only. The latest version of EvoLP.jl (v1.0 at the time of writing of this

article) provides recombinators only for vector-based populations. The available recombinators

are the following:

• Single point crossover (1PX). Select a random index and combine the parents at that

point. Works on numeric vectors (i.e. boolean, integer or continuous) and combination of

discrete values.

• Two-point crossover. Similar to 1PX, but using two cutting points instead. Works on

the same types of vectors as 1PX.

• Uniform crossover. For numeric vectors and combination of discrete values. Each value

is randomly selected between the parents.

• Interpolation crossover. For continuous vectors. The result is a scaled addition of both

parents.

• Order One crossover. For discrete permutation-based individuals. This operator ensures

that values remain unique after the crossover.

After choosing one of the recombinators, the crossover takes place when the appropriate

cross function is called inside the main loop of the algorithm.

Currently, the recombinators do not check against the type of the individuals they are working

on. This is important to consider, since using a numeric-only recombinator on a permutation-

based problem (where values of an individual need to be unique) could result in generating

an unfeasible solution. In future versions of EvoLP.jl, we plan to introduce a type for solution

encoding, to ensure that only compatible blocks can be connected.

It is also important to note that some recombinators (as well as some selectors and mutators)

have parameters that modify their behaviour. When instantiating this kind of operators, the

desired value is passed as an argument to the constructor method.

5.5. Mutation

As with selection and crossover, the mutation phase in an EA is performed in EvoLP.jl by using

the same two-step approach: choosing a mutator first and then calling the mutate function in

the algorithm. The available mutators for numeric vectors in EvoLP.jl are:

• Bitwisemutator. For boolean vectors only. It has a controlling parameter which modifies

the probability 𝜆 of independently flipping each bit.

• Gaussian mutator. For continuous vectors only. Adds Gaussian noise with a standard

deviation 𝜎 which is controlled via a parameter.

Mutators for permutation-based individuals are also provided:

• Swap mutator. Swaps the values of two randomly chosen positions in the chromosome.

• Insert mutator. Inserts a value in another position, shifting the rest of the chromosome.

• Scramble mutator. Randomly selects a sub-string and then shuffles it.



• Inversion mutator. Randomly selects a sub-string and reverses it.

When one of the mutation operators has been instantiated outside of the algorithm, the

mutate function can be invoked in the main loop of a solver to perform the mutation. As with

recombinators, some mutators work on numeric vectors only, and using them on permutation-

based individuals could lead to generating an unfeasible solution.

5.6. Custom Operators

EvoLP.jl was designed to be extensible, with the idea that a user can add custom blocks if needed.

This process is, again, a two-step task (in line with the operators described in previous sections).

To create a new operator block, the user needs to provide:

1. A subtype for the desired block

2. An appropriate function to operate on such subtype

For example, let us consider that the user wants to implement a new mutation operator,

CrazyMutation. All mutator blocks are subtypes of the abstract MutationMethod supertype.
By creating a new type that is derived from MutationMethod, the user is creating a new type

block (i.e. CrazyMutation) and essentially completing the first step. As with the other blocks,

this new mutator would need a special case of the mutate function. This is the second step:

create a new mutate function that can receive the CrazyMutation block as an argument and

modifies the individual as desired. To implement new selectors or recombinators, a similar

process is followed. The three abstract types that EvoLP.jl provides for extending the type

blocks are the following:

• SelectionMethod. The base of all selectors. It is used along with select.

• CrossoverMethod. The base of all recombinators. It is used along with cross.

• MutationMethod. The base of all mutators. It is used along with mutate.

Since generators and algorithm blocks are function blocks, they do not have an abstract

supertype (unlike selectors, recombinators and mutators). To add a new generator or algorithm,

the user needs only to provide a new function.

Regardless of the kind of functionality a user wishes to add, it is recommended to consider

reproducibility. In EvoLP.jl, all blocks that deal with stochastic components (i.e., generators,

selectors, recombinators and mutators) posses a keyword argument that can receive a Random

Number Generator (RNG) instance. Using a StableRNG object (provided by the StableRNGs.jl

package [30]), we can ensure that a fixed seed will always return the same results. With this

addition in mind, experiments become reproducible and can be shared in an executable form.

5.7. Extra Utilities

As mentioned in Section 5.1, EvoLP.jl includes as well additional blocks that provide useful

functionality for designing, testing and analysing EAs. For a description of its capabilities and

usage, we invite the reader to refer to the full documentation.
5
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6. Conclusion and Future Work

In this paper we presented EvoLP.jl, a framework focused on providing reusable computing

patterns for whenever scientists design and analyse multiple components for single-objective

EC solvers. By using the metaphor of building blocks, we developed an abstraction that is easy

for the user to understand. In this way, both using the framework and extending it becomes a

user-friendly experience. We described all basic blocks that the framework includes, covering

all phases of an evolutionary process—initialisation, selection, crossover and mutation—as well

as referred to further reading for its optional features. The quality of the framework is ensured

by following the conventions and sticking to the requirements of the Julia scientific community:

unit testing, version control, extensive documentation and availability of the source code for

everyone to use and modify. We believe that this is one of the strengths of the software tool

(in addition to the EC niche it tackles inside the Julia community), and plan to continue the

development of the package further in hopes that it becomes a useful tool for research, education

and innovation.

For future releases of EvoLP.jl we contemplate the addition of more test functions, mostly in

the pseudoboolean domain. Support for key-word arguments in constructors is also planned, as

well as introducing support for multi-objective problems. Types for solution encoding, survival

and replacement (niching, crowding and other diversity-preserving mechanisms) are being

considered as potential block additions although further experimentation is required. Finally, a

predefined set of metrics for the logbook block is also in the works. Since EvoLP.jl is a free and

open-source project, the code is available for anyone to try. We invite the reader to play around

and contribute through any of the available channels in the repository.
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