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Abstract

Analysing long text documents of political discourse to identify check-worthy claims (claim detection)

is known to be an important task in automated fact-checking systems, as it saves the precious time of

fact-checkers, allowing for more fact-checks. However, existing methods use black-box deep neural NLP

models to detect check-worthy claims, which limits the understanding of the model and the mistakes they

make. The aim of this study is therefore to leverage an explainable neural NLP method to improve the

claim detection task. Specifically, we exploit well known integrated gradient-based input reduction on

textCNN and BiLSTM to create two different reduced claim data sets from ClaimBuster. We observe that a

higher recall in check-worthy claim detection is achieved on the data reduced by BiLSTM compared to the

models trained on claims. This is an important remark since the cost of overlooking check-worthy claims

is high in claim detection for fact-checking. This is also the case when a pre-trained BERT sequence

classification model is fine-tuned on the reduced data set. We argue that removing superfluous tokens

using explainable NLP could unlock the true potential of neural language models for claim detection,

even though the reduced claims might make no sense to humans. Our findings provide insights on task

formulation, design of annotation schema and data set preparation for check-worthy claim detection.
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1. Introduction

With the rise of concerns around misinformation threatening democracy and freedom in

recent decades, fact-checking has become an integral part of journalism. Fact-checking is

an extensively burdensome procedure as it requires a sequence of rigorous tasks including

identifying check-worthy claims, monitoring related fact-checks, collecting reliable evidence,

verifying the asserted facts, and publishing the fact-check [1]. Considering the volume and

the speed of dissemination of misleading content in today’s digital era, it is a demanding

task for the fact-checking community with its limited resources and manpower. Automated

fact-checking (AFC) technologies could evidently assist in expediting and scaling-up the process.
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In recent years, the breakthrough in Natural Language Processing (NLP) due to pre-trained

neural language models has led to a rapid growth in AFC-related research [2, 1, 3]. Several

end-to-end fact-checking systems have been proposed in the literature with promising results in

the experimental setting [4, 5, 6], and yet perform drastically poorly in practice [7, 8]. According

to a survey on AFC landscape by Reuters Institute for the Study of Journalism, fully automated

verification is an unattainable goal with today’s technology as fact-checkers rely on their

knowledge about the context, expertise, and unbiased judgment to verify a claim [7]. On the

other hand, studies on the user needs of fact-checkers show that monitoring social media and

political sources (to identify and rank claims to check) receive the highest preference among

other AFC tools [7, 8].

Automated claim detection is formalized as either a ranking or a classification problem,

where models are trained on data sets of long text parsed into sentences and labelled or ranked

by humans according to their check-worthiness [9]. There is solid evidence from various

perspectives that check-worthiness is rather associated with features manifested in specific spans
in the claim such as numerical values, past tense verbs, causation and prediction [9, 10, 11, 12].

However, to the best of our knowledge, there is no claim detection data set with span labels.

On the other hand, gradient-based explainable NLP has been studied [13, 14, 15] for attributing

the predictions to input features [16, 17]. This has motivated us to exploit the neural models to

reduce the inputs into minimal spans/tokens and inspect the behaviour of the claim detection

systems when trained on the reduced claims. To the best of our knowledge, this is the first

study of integrated gradient-based input reduction for claim detection. The aim here is not

to expose the nonsense in predictions, but to make sense of this nonsense. We contribute to

the AFC landscape by showcasing how explainable NLP methods could improve automated

claim detection. Our findings suggest that the problem of check-worthiness detection could

be extended to pivotal span/token identification. Another reflection of this work is providing

insights on the future of AFC on how to build claim detection data sets, interlaced with our

understanding of the model behaviour.

The rest of this paper is organized as follows. In Section 2, we review related studies on

automated claim detection. We explain and give details about our methodology in Section 3.

Section 4 presents the experiments conducted on ClaimBuster data set [18]. Finally, we conclude

the paper in Section 5 by summarizing our main finding and discussing possible future works.

2. Related Work

One of the first studies on claim detection for automated fact-checking was the work by Hassan

et al. [19] who employed traditional classification models to recognize check-worthy factual

statements (CFS) from non-factual statements (NFS) and unimportant factual statements (UFS)

in a data set of U.S. presidential debates [19]. This work was extended later to ClaimBuster, a fact-

checking platform with a claim spotting component based on NLP and supervised learning [9].

Their finding suggest that the two most discriminating features among sentiment, word count,

TF-IDF part of speech (PoS) tags and named entity (NE) types are two PoS tags: those that

mark the past tense of a verb and those that mark cardinal numbers. A few years later in 2020,

ClaimBuster data set of human-labeled claims extracted from U.S. presidential debates (1960-



2016) was published [18].

The check-worthiness detection sub-tasks in CLEF CheckThat! editions (introduced in

2018 and ongoing) grew more interest among the NLP researchers on claim detection [20, 21].

Different editions of CheckThat! Lab offer data sets in different languages including English,

Turkish, Arabic, Bulgarian, and Spanish for detecting check-worthy claims on Twitter and

political debates. Multiple teams have participated in the challenges by proposing solutions

mostly based on neural language models. For instance, the top ranked teams in CheckThat! 2020

adopted BERT [22] and RoBERTa [23] with enhanced generalization capability [24] to spot check-

worthy Tweets. For the task of detecting claims in political debates, none of the solutions could

beat the naive BiLSTM [25] model with GloVe embedding [26]. The problem of claim detection

from Twitter was also addressed by BERT and RoBERTa models enhanced by augmenting

training data with synthetic check-worthy claims generated by lexical substitutions using BERT-

based embedding [20]. Data augmentation by substitutions using WordNet was also employed

by the top-ranked team in claim detection from political debates [20]. Their BERTweet model

fine-tuned on normalized and augmented claims surpassed the reference n-gram model.

More recently, the prominence of the factors and features central to check-worthiness has

started to be noted in the literature. Kartal et al. [27] have incorporated domain specific

controversial topics compiled from Wikipedia as well as presence of comparative/superlative

adjectives to their logistic regression model [27]. FactRank, the first claim detection tool

for the Dutch language, operates based on a convolutional neural network (CNN) sentence

classifier [28]. They have firstly developed a detailed code-book created by expert fact-checkers

through an iterative process to define the “concept of check-worthiness” and to guide the

annotators in identifying check-worthy claims. Konstantinovskiy et al. [12] also points out

the complexity of claim detection and the inconsistency among human annotators [12]. They

have developed an annotation schema to define seven categories of claims and generated a

dataset of 5, 571 labelled sentences. The consistency of the schema has been evaluated by a

claim detection system based on sentence representations concatenated with PoS and NE tags,

and a logistic regression classifier. Alhindi et al. [29] have presented a data set of news articles

on climate change and shown that augmenting argumentative discourse structure of claims

annotated in the data improves the performance of the claim detection [29].

Reformulating the claim detection problem by incorporating more attributes such as the

claimer, their stance, the topic, the claim object, and the claim spans is the idea behind the

NewsClaims [30]. The NewsClaims data set annotated for the corresponding attributes was

released as part of their work. Claim span detection identifies the boundaries of what is called

the actual claim. These studies, despite seeming as disparate solutions for the claim detection

problem, allude to the idea that perhaps a subset of tokens in a claim bear check-worthiness

information whether they are particular NEs or a contiguous sequence of tokens. However,

there is a gap in the literature on how NLP models behave when the input is reduced to a subset

of tokens not necessarily sensible to humans.

On the other hand, as the neural language models become widespread, interpretability

methods serves to provide post-hoc explanations about model predictions. There are several

categories of interpretability approaches such as LIME, HotFLIP, adversarial examples, etc. [13].

An important category of these approaches is input feature explanation [13]. These methods

are adaptable to different models and provide a human understandable explanation on how



important the words/tokens are for a specific input [13]. A straightforward technique to input

feature explanation is based on gradient [16, 13]. Gradient-based explainable NLP has been

studying in rationalizing the neural predictions [31] and uncovering erroneous logic in the

models [17]. However, we are not aware of any study that has focused on gradient-based input

reduction to improve classification.

3. Methodology

In this work, we assess the performance of three NLP models, namely textCNN [32], BiLSTM [25],

and BERT [33] when trained on the claims reduced to a subset of tokens. Input reduction is one

of the adversarial attacks used to investigate on the pathologies of neural language models and

reveal the pivotal tokens behind some of their predictions [14]. It works by iterative removal of

the least important tokens from the input sequence until the model prediction changes. The

reduced input is thus presumed to be an important part of the input sequence that is critical for

the prediction.

Input reduction requires a technique to measure the importance of the tokens in the input

sequence. To identify the unimportant tokens, we use the attribution method layer integrated

gradients [16]. Feature attribution refers to a set of non-adversarial techniques for interpreting

deep neural networks. The attribution score measures the contribution of each of the input

dimensions to the model prediction. Integrated gradient is one of the most efficient attribution

methods with straightforward computation and no requirement for instrumentation of the

model [16]. In deep neural models, layer integrated gradient computes an attribution score for

each dimension of the token embedding vector.

Assume that the neural network model is denoted by a function 𝐹 : 𝑅𝑛 → [0, 1] with 𝑥 ∈ 𝑅𝑛
,

𝑥′ ∈ 𝑅𝑛
and𝐹 (𝑥) being the input, the reference input and the output of the network respectively.

The input is the embedding vector and the reference input is simply a zero embedding vector.

The gradient is calculated as the line integral of the gradients through the straight line path

in 𝑅𝑛
connecting input to the reference input. For the 𝑖th dimension of the given input, 𝑥, the

integrated gradient is defined as 𝐼𝐺𝑖(𝑥) as follows [16, 17].

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑥′𝑖)×
∫︁ 1

𝛼=0

𝜕𝐹 (𝑥′ + 𝛼× (𝑥− 𝑥′))

𝜕𝑥𝑖
𝑑𝛼,

where,
𝜕𝐹 (𝑥)
𝜕𝑥𝑖

refers to the gradient of 𝐹 (𝑥) along the 𝑖th dimension of 𝑥.

The integral in the formula could be approximated by the summation operator across the

points on the line connecting 𝑥 to 𝑥 with sufficiently small distance [16].

𝐼𝐺𝑖
˜ (𝑥) =

(𝑥𝑖 − 𝑥′𝑖)

𝑚
×

𝑚∑︁
𝑘=1

𝜕𝐹 (𝑥′ + 𝑘
𝑚 × (𝑥− 𝑥′))

𝜕𝑥𝑖
,

where 𝑚 denotes the number of steps in the Riemann approximation of the integral.



Table 1
Hyperparameter setting for textCNN and BiLSTM for claim reduction

textCNN BiLSTM

max_len = 50 max_len = 50
embedding_size = 300 embedding_size = 300
learning_rate = 0.001 learning_rate = 0.001
n_epochs = 15 n_epochs = 10
batch_size = 512 batch_size = 256
dropout = 0.5 dropout = 0.1

For a given claim, the token attribution score is obtained by summing up the attribution scores

across all embedding dimensions. The network is trained on the training split and the reduced

data is obtained from the unseen validation set. During the validation phase, the tokens are

iteratively removed from the input claim until the prediction is flipped. The minimal sequence

of tokens that maintains the predicted label is stored. This way, we ensure that the true labels

are not exposed during the reduction.

To form the reduced data set, we employ textCNN and BiLSTM. For the purpose of our

study, i.e. claim reduction, we prefer these simple sequence classification models over the more

powerful pre-trained models because the former embed less linguistic and other extraneous

information that could impact our results. Therefore, the reduced data set is formed purely

based on the patterns learnt from the input data. We use 50%− 50% as a train-validation split,

where the model is trained on the training split and the reduced claims are attained from the

validation split. Since we require deriving the reduced claims for the whole data, the train-test

splits are then swapped to get the reduced claims for the formerly training split. The results

are then concatenated to form the reduced data set. Admittedly, merging the results from two

models trained on different subsets of the data could be questioned. But it is an acceptable

framework to roughly generate the reduced claim data sets for the purpose of this study.

4. Experiments and Results

We conducted a set of experiments on the ClaimBuster claim detection dataset, which consists

of the statements from the transcripts of the U.S. presidential debates [18]. The sequences are

labelled as CFS, NFS and UFS. We use a set of the data which according to the publisher [18] has

been labelled under stricter criteria and is supposedly of higher quality for building the models.

This set includes in total 11, 056 statements, where 8, 292 are NFS and 2, 764 are CFS.

We use textCNN and BiLSTM for claim reduction and then detection. Pre-trained BERT is

also fine-tuned for the claim detection tasks.

4.1. Claim reduction

To implement the layer integrated gradient, the open source Captum library for model inter-

pretation is deployed. To generate the reduced claim data sets, PyTorch nn.Module is used to



Table 2
Examples from reduced data sets generated by our two models, textCNN and BiLSTM.

Claim Label Reduced claim
textCNN BiLSTM

‘saddam hussein was a risk to our country,
madam.’

NFS ‘saddam hus-
sein’

‘’

‘and we won the nomination by going out
into the streets - barbershops, beauty parlors,
restaurants, stores, in factory shift lines also in
farmers’ markets and livestock sale barns - and
we talked a lot, and we listened a lot and we
learned from the american people.’

NFS ‘into the
streets stores
shift lines also
in markets and’

‘the’

‘and i favor a shifting of the welfare cost away
from the local governments altogether.’

NFS ‘’ ‘’

‘secondly, in haiti, political violence is much,
much smaller than it was.’

CFS ‘’ ‘secondly in haiti po-
litical violence much
smaller than was’

‘he did not take that position on tibet.’ CFS ‘’ ‘’

‘we have spent over $600 billion so far, soon to
be $1 trillion’

CFS ’600’ ’we have spent over
600 to be trillion’

‘you know, because it sounds like you are in
the business, or you are aware of people in the
business – you know that we are now for the
first time ever energy-independent.’

CFS ‘you’ ‘sounds’

Table 3
The number of NFS and CFS statements reduced to empty sequences by textCNN and BiLSTM.

Label Total Reduced to empty sequence
textCNN BiLSTM

NFS 8,292 6,338 5,812

CFS 2,764 484 508

implement textCNN and BiLSTM. The data set is split into 50%− 50% Train-test set. For both

models, cross entropy loss is used, and the weights are optimized with Adam [34].

In the textCNN architecture, we use filter_sizes = [4, 5, 6] and num_filters = 64. In the BiLSTM

architecture, we set the hidden_size = 256 with average and max pooling. There is a linear layer

of size (ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒× 4, 64), a ReLU layer, and a linear output layer of size (64, 2).

The other hyperparameter configurations of the models are shown in Table 1.

Two reduced data sets are formed by textCNN and BiLSTM. Table 2 illustrates a few examples

of these reduced data sets. We observe that the majority of the NFS statements are reduced to

empty sequences by both models (See Table 3). This is in line with our earlier argument on CFSs



Figure 1: The probability densities of the number of words in NFS and CFS sequences.

(a) Claims

(b) Reduced claims by BiLSTM

being characterized by particular token/spans and not NFSs. An empty sequence is indeed an

NFS, but this phenomenon hinders further experiments. To tackle this issue, two replacement

scenarios were tested: substituting the empty entries with the unknown token [UNK] or with

the claim. As the [UNK] scenario resulted in extremely poor quality models, we consented to the

latter solution. It is important to ensure that we are not reducing the problem of distinguishing

between NFS and CFS to identifying long grammatical statements from short sequences of

tokens. Figure 1 illustrates the probability densities of the number of words in NFS and CFS

sequences for both claims and the reduced claims by BiLSTM. These plots visually confirm that

there is not a remarkable difference between the distributions in the two settings that would

drastically affect the system. A similar pattern is observed for claims reduced by textCNN.



Table 4
Hyperparameter setting for textCNN, BiLSTM and BERT for claim detection

textCNN/BiLSTM BERT

max_len = 50 -
embedding_size = 300 -
learning_rate = 0.01 learning_rate = 2e-5
optimizer = Adam optimizer = AdamW
n_epochs = 15 n_epochs = 2
batch_size = 512 batch_size = 8
dropout = 0.5 hidden_dropout = 0.5
- attention_dropout= 0.5
- classifier_dropout = 0.2
- weight_decay = 0.01

Table 5
Claim detection results by textCNN and BiLSTM on claims and reduced claims.

Model Data F1 Precision Recall

textCNN
Claims 0.719 (0.013) 0.727 (0.021) 0.743 (0.023)
Reduced by textCNN 0.659 (0.013) 0.712 (0.017) 0.630 (0.029)
Reduced by BiLSTM 0.723 (0.003) 0.662 (0.015) 0.797 (0.017)

BiLSTM
Claims 0.766 (0.007) 0.779 (0.017) 0.762 (0.014)
Reduced by textCNN 0.701 (0.003) 0.728 (0.0206) 0.684 (0.021)
Reduced by BiLSTM 0.766 (0.010) 0.758 (0.015) 0.775 (0.019)

4.2. Claim detection

Claim detection is a key component in AFC to reduce the search space for human fact-checkers.

In this problem, the cost of overlooking the positive class i.e. CFS is higher than the cost

of mistaking non-factual statement for CFS. As we rely on F1, precision, and recall in our

experiments to evaluate the performance of the models, recall should be more emphasized.

The first claim detection experiments are based on textCNN and BiLSTM models trained

on the claim data set and the reduced data sets. We conduct 5 runs of 5-fold cross validation

(80% train-20%-validation) with different random seed values. PyTorch nn.Module is used to

implement textCNN and BiLSTM for claim detection. For these two models, we conduct 5 runs

of 5-fold cross validation (80%− 20%) with different random seed values. For both textCNN

and BiLSTM models, cross entropy loss is used, and the weights are optimized with Adam [34].

In the textCNN architecture, we use filter_sizes = [4, 5, 6] and num_filters = 128. In the

BiLSTM architecture, we set the hidden_size = 256 with average and max pooling. There is a

linear layer of size (ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒× 4, 64), a ReLU layer, and a linear output layer of size (64, 2).

The BERT claim detection model is implemented using a pre-trained language model im-

plemented by the HuggingFace transformers library [35]. The model is fine-tuned with

AdamW [36] following a warmed-up. We split the data into train, validation, and test

sets (40%− 40%− 20%) and use the validation set to return the best model after two epochs



Table 6
Claim detection results by BERT on claims and reduced claims.

Data Validation Test
F1 Precision Recall F1 Precision Recall

Claims 0.826
(0.004)

0.851
(0.024)

0.803
(0.026)

0.820
(0.008)

0.839
(0.022)

0.804
(0.027)

Reduced by BiLSTM 0.805
(0.014)

0.797
(0.031)

0.815
(0.027)

0.800
(0.022)

0.789
(0.030)

0.812
(0.023)

(We observed that usually one or two epochs are enough to attain the best-fitting model).

The other hyperparameter configurations of the models are shown in Table 4.

To make a fair comparison, the data splits, the number of epochs, and the model parameters

maintain the same across all the runs. The validation scores in terms of F1, precision, and recall

are averaged across all runs. The positive class is CFS. Table 5 presents the average scores

and the standard deviations (numbers in parentheses). We observe that the data set of claims

reduced by BiLSTM results in the highest F1 and recall for both models. The improvement in F1

is not remarkable though as the reduction significantly decreases the precision. The highest

recall is achieved when textCNN is trained on the BiLSTM reduced data set. However, this

scenario leads to a profoundly low precision. In terms of precision, the BiLSTM model trained

on the claim data set leads to the highest score. The superiority of the BiLSTM reduced data

set over textCNN is not surprising as this model is more competent at claim detection prior to

reduction according to Table 5.

To further explore the potential of reduced data, the pre-trained distilled BERT model for

sequence classification is fine-tuned on the claim data set and the BiLSTM reduced data set.

We split the data into train, validation, and test sets (40%-40%-20%) and use the validation set

to return the best model after two epochs (We observed that usually one or two epochs are

enough to attain the best-fitting model). The tests are run for five times with different random

seed values for the data split. Performance scores on validation and test splits shown in Table 6

are averaged over the five runs with standard deviations in parentheses. It is the case that the

model trained on reduced data set exhibits significant drops in F1 and particularly in precision

when compared to the model trained on the claims. However, the reduced data set results in

a higher recall. We argue that reducing the input pushes the model predictions towards the

positive class. Since we replaced the empty NFSs by the claims, there are long sequences of the

negative class in the data and one might expect the model to learn the NFSs better. When this

is not the case, then the reduced CFSs clearly contain some tokens central to the classification

task.

5. Conclusion

In this study, we contribute to the AFC literature by inspecting the problem of claim detection

from a novel perspective. We study how the faulty behaviour of NLP models i.e. generating

predictions out of a subset of tokens nonsense to humans could be leveraged. Our experiments



confirm that the models trained on the artificially created reduced claim data sets result in a

higher recall compare to the models trained on the original claim data set. We argue that extend-

ing the claim detection task to the task of pivotal span/token identification while considering

the behaviour of NLP models could lead to a better performance. We believe that this work

provides insights into reformulating the task of claim detection, designing annotation schemes,

and preparing the data sets.

Limitations

The main limitations of this study are in the approach we followed to generate a set of reduced

claims from the whole data set. We had to merge the two data sets obtained from the two

models trained on different splits of the claim data set, that could result in inconsistencies. The

second limitation is replacing the empty claims with the original claim. Although it is shown

that the distribution of the length of claims are compatible, some heuristics could be devised

to guide the reduction as a future direction. Claim reduction could be studied by taking into

account the linguistic features of the claims. We will also consider analysing the reduced claims

for sensible patterns and comparing the patterns with the annotation schemes studied in the

literature.
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