
Is the Proof Length a Good Indicator of Hardness for
Reason-able Embeddings?
Jedrzej Potoniec1

1Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965 Poznan, Poland

Abstract
Reason-able embeddings are recently proposed embeddings for knowledge bases (KBs) in the description
logic 𝒜ℒ𝒞 capable of casting multiple KBs into a single latent space using a transferable neural reasoner.
While they exhibit remarkable performance on real-world KBs, it is so far unknown what are their exact
limits. In this paper, we systematically investigate their performance using a set of synthetic KBs in the
description logic ℰℒ, a subset of 𝒜ℒ𝒞. We use the proof length as a measure of reasoning complexity
and present a random KB generator taking the proof length into account. We train the reason-able
embeddings with and without transfer learning and investigate whether the complexity of the training
set and the test set is related to the reasoning performance of the embeddings and their neural reasoner.

Keywords
description logics, reason-able embeddings, transfer learning, neural-symbolic reasoning

1. Introduction

The past 10 years brought numerous solutions for embedding concepts from knowledge bases
(KBs) into high-dimensional latent spaces, from a relatively simple TransE to complex archi-
tectures such as recurrent transformers [1, 2, 3, 4, 5]. However, with a few notable exceptions
such as RDF2Vec [6], OWL2Vec* [7], and TransOWL [8] the focus was on large KBs with
shallow semantics. On the other side, there were approaches to replace deductive approaches
traditionally used to perform inference from logical KBs, with neural reasoners based on the
recent advancements in deep learning, e.g., [9, 10, 11, 12].

Recently proposed reason-able embeddings are a combination of these two trends, offering
learnable embeddings for KBs with complex semantics and a transferable, neural reasoner [13].
In experimental evaluation with a set of real-world KBs, they exhibited remarkable performance,
yet there remains a suspicion that due to the complexity of the description logic (DL) 𝒜ℒ𝒞
they target, they cannot address all the aspects of 𝒜ℒ𝒞. In this paper, we aim to tackle this
problem, by constructing a set of artificial KBs with measurable complexity and assessing the
performance of reason-able embeddings as a function of the complexity of their input. Our goal
is to answer the following research questions:

NeSy 2023, 17th International Workshop on Neural-Symbolic Learning and Reasoning, Certosa di Pontignano, Siena,
Italy
$ jedrzej.potoniec@put.poznan.pl (J. Potoniec)
� 0000-0002-6115-6485 (J. Potoniec)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jedrzej.potoniec@put.poznan.pl
https://orcid.org/0000-0002-6115-6485
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

RQ1 Does the complexity of the training set influence the reasoning performance on the test
set derived from the same KBs?

RQ2 Does the complexity of the training set of the embeddings influence the reasoning perfor-
mance on previously unseen KBs?

RQ3 What is the interplay between the complexity of the training set for the reasoner, the
complexity of the training set for the embeddings, and the reasoning performance on
previously unseen KBs?

To facilitate reproducibility we publish the experimental code in Python in a GitHub repository
at https://github.com/jpotoniec/reasonable-embeddings/tree/main/src/elpp.

The contributions of the paper are as follows:

• A way to measure reasoning complexity by means of the proof length, described in
subsection 2.2. It exploits a preexisting reasoning algorithm by Baader et al. [14].

• A generator of synthetic, difficult knowledge bases, described in subsection 2.4.
• A method to split training and test sets according to the reasoning complexity, described

in subsection 2.5.
• Experimental evaluation and analysis presented in section 3.

Neither the description logic ℰℒ (presented in subsection 2.1) nor the reason-able embeddings
(described in subsection 2.3) are contributions of this work, and they are presented here only to
make the paper self-contained.

The rest of the paper is organized as follows: subsection 2.1 introduces the DL ℰℒ, subsec-
tion 2.2 explains how we measure the complexity, the reason-able embeddings are introduced in
subsection 2.3, we describe the KB generator in subsection 2.4, and the details of the employed
dataset in subsection 2.5. In subsections of section 3, we report the answers to the posed research
questions. We discuss the results and conclude in section 4.

2. Materials and methods

2.1. The description logic ℰℒ

Description logics (DLs) are a family of logics developed for their desirable computational
properties, to be used in computer systems requiring formal semantics and reasoning capabilities.
In this paper, we concentrate on the DL ℰℒ, one of the simplest of practical use [14].

Concepts in ℰℒ are constructed inductively from a set of constructors, a set of atomic concepts
𝑁𝐶 , and a set of atomic roles 𝑁𝑅. Their semantics is defined in terms of an interpretation
ℐ = (Δℐ , ·ℐ), where Δℐ is a non-empty domain, and ·ℐ is the interpretation function, mapping
every atomic concept 𝐴 to 𝐴ℐ ⊆ Δℐ , and every atomic role 𝑟 to 𝑟ℐ ⊆ Δℐ ×Δℐ . Since ℰℒ has
formal semantics, it is possible to extend ·ℐ to arbitrary concepts, summarized in Table 1.

A ℰℒ KB consists of a set of subsumption axioms 𝐶 ⊑ 𝐷, and we say that ℐ is a model of the
KB if for every such axiom 𝐶ℐ ⊆ 𝐷ℐ . In the DLs, one of the core problems is the subsumption
problem, i.e., given two concepts 𝐶,𝐷, and a KB 𝐾𝐵, deciding whether a subsumption 𝐶 ⊑ 𝐷
holds in every model of the KB, denoted 𝐾𝐵 |= 𝐶 ⊑ 𝐷. One of the interesting properties of
ℰℒ is that there exists a polynomial algorithm for solving the subsumption problem.

https://github.com/jpotoniec/reasonable-embeddings/tree/main/src/elpp

Table 1
Syntax and semantics of ℰℒ. 𝐶,𝐷 denote arbitrary concepts and 𝑟 an arbitrary role.

Name Syntax Semantics
top ⊤ Δℐ

bottom ⊥ ∅
conjunction 𝐶 ⊓𝐷 𝐶ℐ ∩𝐷ℐ

existential restriction ∃𝑟.𝐶 {𝑥 ∈ Δℐ : ∃𝑦 ∈ Δℐ (𝑥, 𝑦) ∈ 𝑟ℐ ∧ 𝑦 ∈ 𝐶ℐ}

In this paper, we call a subsumption 𝐶 ⊑ 𝐷 an atomic subsumption if 𝐶,𝐷 ∈ 𝑁𝐶 ∪ {⊥,⊤}.
If 𝐾𝐵 |= 𝐶 ⊑ 𝐷, we say the subsumption follows from the KB.

Throughout this work, we are interested in KBs in the normal form, where the axioms
must be of one of the following forms: 𝐶 ⊑ 𝐸, 𝐶 ⊓ 𝐷 ⊑ 𝐸, 𝐶 ⊑ ∃𝑟.𝐷, ∃𝑟.𝐶 ⊑ 𝐷, where
𝐶,𝐷 ∈ 𝑁𝐶 ∪ {⊤} and 𝐸 ∈ 𝑁𝐶 ∪ {⊤,⊥}. It was shown that any ℰℒ KB can be transformed
to a KB in normal form in polynomial time.

2.2. Measuring the proof length

Since we consider only KBs in the normal form, to solve the subsumption problem, we can apply
a rule-based algorithm presented in [14] for ℰℒ++, a superset of ℰℒ. The algorithm performs
classification of a KB, i.e., it computes all atomic subsumptions following from the KB. We refer
to this set of atomic subsumption as logical consequences of the KB1.

We extend the algorithm to keep track, for every atomic subsumption, of the shortest proof,
i.e, a set of rules and their parameters that must be executed in order to generate this particular
conclusion. The algorithm starts by creating a set 𝑆(𝐶) = {(𝐶, ∅), (⊤, ∅)} for every 𝐶 ∈
𝑁𝐶 ∪ {⊤,⊥}, and a set 𝑅(𝑟) = ∅ for every 𝑟 ∈ 𝑁𝑅. Then, rules presented in Table 2 are
executed to update the sets 𝑆(𝐶) and 𝑅(𝑟) until a fixpoint is not reached, i.e., there are changes
to 𝑆(𝐶) or to 𝑅(𝑟). After the algorithm terminates, 𝑆(𝐶) represents the subsumption hierarchy:
if (𝐷,𝑃) ∈ 𝑆(𝐶), it means that 𝐾𝐵 |= 𝐶 ⊑ 𝐷 and at least |𝑃 | rule executions are necessary
to prove it. We call |𝑃 | the proof length of 𝐶 ⊑ 𝐷 and use it as a complexity measure of atomic
subsumptions throughout the paper. It must be noted that this measure is defined only for
subsumptions that follow from a KB and that it measures the length of the shortest proof, not
any proof. However, since it is supposed to measure reasoning complexity, we believe the
shortest proof is the right choice, as it denotes the minimal number of reasoning steps one
must make in order to prove a given subsumption, and all the rules seem to be of comparable
complexity.

As an example, consider the following KB: 𝐾𝐵 = {𝛼 ⊑ 𝛽, 𝛼 ⊑ 𝛾, 𝛽 ⊓ 𝛾 ⊑ 𝛿, 𝛼 ⊑
∃𝑟.𝛽,∃𝑟.𝛽 ⊑ 𝛿, 𝛽 ⊑ ⊥}. Unconventionally, we use Greek letters to clearly distinguish concept
names present in the KB from the variable names used in the rules. We will consider a few steps
of the algorithm, and we chose one possible order of execution for ease of explanation. First,
sets 𝑆(·) and 𝑅(·) are initialized: 𝑆(𝛼) = {(𝛼, ∅), (⊤, ∅)}, 𝑆(𝛽) = {(𝛽, ∅), (⊤, ∅)}, 𝑆(𝛾) =
{(𝛾, ∅), (⊤, ∅)}, 𝑆(𝛿) = {(𝛿, ∅), (⊤, ∅)}, 𝑅(𝑟) = ∅. Next, the rules are executed:

1The term usually denotes a much broader set. However, we concentrate only on atomic subsumptions in the paper
and thus can hack the term without introducing ambiguity.

Table 2
Reasoning rules used to classify a KB and compute proof lengths for every atomic subsumption following
from the KB. Each rule is first presented using formal symbols, and then a corresponding textual
description is given. (𝐴, ·) ̸∈ 𝐵 is an abbreviation for ∀𝑦 (𝐴, 𝑦) ̸∈ 𝐵.

CR1 If (𝐶 ′, 𝑃𝐶′) ∈ 𝑆(𝐶), 𝐶 ′ ⊑ 𝐷 ∈ 𝐾𝐵, (𝐷, ·) ̸∈ 𝑆(𝐶) or (𝐷,𝑃𝐷) ∈ 𝑆(𝐶) and |𝑁𝑃 | < |𝑃𝐷|, then
𝑆(𝐶)← 𝑆(𝐶)∖{(𝐷,𝑃𝐷)} ∪ {(𝐷,𝑁𝑃)}, where 𝑁𝑃 = 𝑃𝐶′ ∪ {(CR1, 𝐶, 𝐶 ′, 𝐷)}
If 𝐶 ′ is known to be a superclass of 𝐶 , it is asserted in the KB that 𝐶 ′ ⊑ 𝐷, and either 𝐷 is not
known to be a superclass of 𝐶 or it is known, but the proof is longer than can be achieved by
using this rule, then add/replace the existing proof with the new proof 𝑁𝑃 .

CR2 If (𝐶1, 𝑃𝐶1
), (𝐶2, 𝑃𝐶2

) ∈ 𝑆(𝐶), 𝐶1 ⊓ 𝐶2 ⊑ 𝐷 ∈ 𝐾𝐵, (𝐷, ·) ̸∈ 𝑆(𝐶) or (𝐷,𝑃𝐷) ∈ 𝑆(𝐶)
and |𝑁𝑃 | < |𝑃𝐷|, then 𝑆(𝐶) ← 𝑆(𝐶)∖{(𝐷,𝑃𝐷)} ∪ {(𝐷,𝑁𝑃)}, where 𝑁𝑃 = 𝑃𝐶1

∪ 𝑃𝐶2
∪

{(CR2, 𝐶, 𝐶1, 𝐶2, 𝐷)}
If it is known that 𝐶1 and 𝐶2 are superclasses of 𝐶 , it is asserted in the KB that 𝐶1 ⊓ 𝐶2 ⊑ 𝐷,
and either 𝐷 is not known to be a superclass of 𝐶 or it is known, but the proof is longer than can
be achieved by using this rule, then add/replace the existing proof with the new proof 𝑁𝑃 .

CR3 If (𝐶 ′, 𝑃𝐶′) ∈ 𝑆(𝐶), 𝐶 ′ ⊑ ∃𝑟.𝐷 ∈ 𝐾𝐵, ((𝐶,𝐷), ·) ̸∈ 𝑅(𝑟) or ((𝐶,𝐷), 𝑃𝐶𝐷) ∈ 𝑅(𝑟) and
|𝑁𝑃 | < |𝑃𝐶𝐷|, then 𝑅(𝑟) ← 𝑅(𝑟)∖{((𝐶,𝐷), 𝑃𝐶𝐷)} ∪ {((𝐶,𝐷), 𝑁𝑃)}, where 𝑁𝑃 = 𝑃𝐶′ ∪
{(𝐶𝑅3, 𝐶, 𝐶 ′, 𝑟,𝐷)}
If 𝐶 ′ is known to be a superclass of 𝐶 , it is asserted in the KB that 𝐶 ′ ⊑ ∃𝑟.𝐷, and either 𝐶 is
not known to be a subclass of ∃𝑟.𝐷 or it is known, but the proof is longer than can be achieved
by using this rule, then add/replace the existing proof with the new proof 𝑁𝑃 .

CR4 If ((𝐶,𝐷), 𝑃𝐶𝐷) ∈ 𝑅(𝑟), (𝐷′, 𝑃𝐷′) ∈ 𝑆(𝐷), ∃𝑟.𝐷′ ⊑ 𝐸 ∈ 𝐾𝐵, (𝐸, ·) ̸∈ 𝑆(𝐶) or (𝐸,𝑃𝐸) ∈
𝑆(𝐶) and |𝑁𝑃 | < |𝑃𝐸 |, then 𝑆(𝐶) ← 𝑆(𝐶)∖{(𝐸,𝑃𝐸)} ∪ {(𝐸,𝑁𝑃)}, where 𝑁𝑃 = 𝑃𝐶𝐷 ∪
𝑃𝐷′ ∪ {(CR4, 𝐶,𝐷, 𝑟,𝐷′, 𝐸)}
If 𝐶 is known to be a subclass of ∃𝑟.𝐷, 𝐷′ is known to be a superclass of 𝐷, it is asserted in the
KB that ∃𝑟.𝐷′ ⊑ 𝐸, and either 𝐸 is not known to be a superclass of 𝐶 or it is known, but the
proof is longer than can be achieved by using this rule, then add/replace the existing proof with
the new proof 𝑁𝑃 .

CR5 If ((𝐶,𝐷), 𝑃𝐶𝐷) ∈ 𝑅(𝑟), (⊥, 𝑃𝐷) ∈ 𝑆(𝐷), (⊥, ·) ̸∈ 𝑆(𝐶) or (⊥, 𝑃𝐶) ∈ 𝑆(𝐶) and |𝑁𝑃 | < |𝑃𝐶 |,
then 𝑆(𝐶)← 𝑆(𝐶)∖{(⊥, 𝑃𝐶)} ∪ {(⊥, 𝑁𝑃)}, where 𝑁𝑃 = 𝑃𝐶𝐷 ∪ 𝑃𝐷 ∪ {(CR5, 𝐶,𝐷, 𝑟)}
If 𝐶 is known to be a subclass of ∃𝑟.𝐷, 𝐷 is known to be an unsatisfiable concept, and either 𝐶
is not known to be an unsatisfiable concept or it is known, but the proof is longer than can be
achieved by using this rule, then add/replace the existing proof with the new proof 𝑁𝑃 .

1. CR1 for 𝐶 = 𝐶 ′ = 𝛼, 𝐷 = 𝛽 and 𝑃𝐶′ = ∅. The conditions are satisfied:
(𝛼, ∅) ∈ 𝑆(𝛼), 𝛼 ⊑ 𝛽 ∈ 𝐾𝐵 and (𝛽, ·) ̸∈ 𝑆(𝛼). The new proof can thus be
computed as 𝑁𝑃 = ∅ ∪ {(CR1, 𝛼, 𝛼, 𝛽)} and included in the set 𝑆(𝛼): 𝑆(𝛼) =
{(𝛼, ∅), (⊤, ∅), (𝛽, {(CR1, 𝛼, 𝛼, 𝛽)})}

2. CR1 for 𝐶 = 𝐶 ′ = 𝛼, 𝐷 = 𝛾 and 𝑃𝐶′ = ∅. The conditions are sat-
isfied: (𝛼, ∅) ∈ 𝑆(𝛼), 𝛼 ⊑ 𝛾 ∈ 𝐾𝐵 and (𝛾, ·) ̸∈ 𝑆(𝛼). The new
proof can thus be computed as 𝑁𝑃 = ∅ ∪ {(CR1, 𝛼, 𝛼, 𝛾)} and thus: 𝑆(𝛼) =
{(𝛼, ∅), (⊤, ∅), (𝛽, {(CR1, 𝛼, 𝛼, 𝛽)}), (𝛾, {(CR1, 𝛼, 𝛼, 𝛾)})}

3. CR2 for 𝐶 = 𝛼,𝐶1 = 𝛽,𝐶2 = 𝛾,𝐷 = 𝛿, 𝑃𝐶1 = {(CR1, 𝛼, 𝛼, 𝛽)}, 𝑃𝐶2 =
{(CR1, 𝛼, 𝛼, 𝛾)}. The conditions are satisfied: (𝛽, 𝑃𝐶1) ∈ 𝑆(𝛼)), (𝛾, 𝑃𝐶2) ∈
𝑆(𝛼), 𝛽 ⊓ 𝛾 ⊑ 𝛿 ∈ 𝐾𝐵, (𝛿, ·) ̸∈ 𝑆(𝐴). The new proof can thus

be computed as 𝑁𝑃 = 𝑃𝐶1 ∪ 𝑃𝐶2 ∪ {(CR2, 𝛼, 𝛽, 𝛾, 𝛿)}, and we arrive at:
𝑆(𝛼) = {(𝛼, ∅), (⊤, ∅), (𝛽, {(CR1, 𝛼, 𝛼, 𝛽)}), (𝛾, {(CR1, 𝛼, 𝛼, 𝛾)}), (𝛿, {(CR1, 𝛼, 𝛼, 𝛽),
(CR1, 𝛼, 𝛼, 𝛾), (CR2, 𝛼, 𝛽, 𝛾, 𝛿)})}

4. CR3 for 𝐶 = 𝐶 ′ = 𝛼,𝐷 = 𝛽, 𝑃𝐶′ = ∅. The conditions are satisfied: (𝛼, ∅) ∈ 𝑆(𝛼),
𝛼 ⊑ ∃𝑟.𝛽 ∈ 𝐾𝐵, ((𝛼, 𝛽), ·) ̸∈ 𝑅(𝑟). The new proof can thus be computed as 𝑁𝑃 =
{(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽)} and 𝑅(𝑟) can be updated: 𝑅(𝑟) = {((𝛼, 𝛽), {(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽)})}.

5. CR4 for 𝐶 = 𝛼,𝐷 = 𝛽,𝐷′ = 𝛽,𝐸 = 𝛿, 𝑃𝐶𝐷 = {(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽)}, 𝑃𝐷′ =
∅, 𝑃𝐸 = {(CR1, 𝛼, 𝛼, 𝛽), (CR1, 𝛼, 𝛼, 𝛾), (CR2, 𝛼, 𝛽, 𝛾, 𝛿)}. The conditions are satisfied:
((𝛼, 𝛽), 𝑃𝐶𝐷) ∈ 𝑅(𝑟), (𝛽, ∅) ∈ 𝑆(𝛽), ∃𝑟.𝛽 ⊑ 𝛿 ∈ 𝐾𝐵, and (𝛿, 𝑃𝐸) ∈ 𝑆(𝛼). This appli-
cation of a rule is different from previous ones: there already is a proof (𝑃𝐸), and it must
be determined whether it can be replaced. The new proof is thus computed as 𝑁𝑃 =
{(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽)}∪∅∪{(𝐶𝑅4, 𝛼, 𝛽, 𝑟, 𝛽, 𝛿)}, and we conclude it is shorter than the pre-
existing proof, since |𝑃𝐸 | = 3 > |𝑁𝑃 | = 2. We thus proceed with updating 𝑆(𝛼), which
now becomes: 𝑆(𝛼) = {(𝛼, ∅), (⊤, ∅), (𝛽, {(CR1, 𝛼, 𝛼, 𝛽)}), (𝛾, {(CR1, 𝛼, 𝛼, 𝛾)}),
(𝛿, {(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽), (𝐶𝑅4, 𝛼, 𝛽, 𝑟, 𝛽, 𝛿)})}

6. CR1 for 𝐶 = 𝐶 ′ = 𝛽,𝐷 = ⊥, 𝑃𝐶′ = ∅. The conditions are satisfied: (𝛽, ∅) ∈
𝑆(𝛽), 𝛽 ⊑ ⊥ ∈ 𝐾𝐵 and (⊥, ·) ̸∈ 𝑆(𝛽). The new proof can thus be com-
puted as 𝑁𝑃 = ∅ ∪ {(CR1, 𝛽, 𝛽,⊥)} and included in the set 𝑆(𝛽): 𝑆(𝛽) =
{(𝛽, ∅), (⊤, ∅), (⊥, {(CR1, 𝛽, 𝛽,⊥)})}.

7. CR5 for 𝐶 = 𝛼,𝐷 = 𝛽, 𝑃𝐶𝐷 = {(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽)}, 𝑃𝐷 = {(CR1, 𝛽, 𝛽,⊥)}. The
conditions are satisfied: ((𝛼, 𝛽), 𝑃𝐶𝐷) ∈ 𝑅(𝑟) and (⊥, 𝑃𝐷) ∈ 𝑆(𝛽). The new proof can
thus be computed as 𝑁𝑃 = {(𝐶𝑅3, 𝛼, 𝛼, 𝑟, 𝛽)} ∪ {(CR1, 𝛽, 𝛽,⊥)} ∪ {(𝐶𝑅5, 𝛼, 𝛽, 𝑟)}
and 𝑆(𝛼) can be extended with (⊥, 𝑁𝑃).

The presented example covers all the proposed rules and the crucial part, namely, replacing
longer proofs with shorter ones. While it does not present the entirety of the execution for the
given KB, nor the termination condition by reaching a fixpoint, we can still read proof lengths
(albeit - since the algorithm did not terminate - not necessarily the shortest), as seen in item 5.

A similar idea is present in the research on DLs under the term justifications, which con-
centrates on computing a minimal subset of KB for a subsumption to follow from it [15]. The
proofs we compute are more complex, e.g., because the rule CR5 does not reference any KB
axiom, yet is included in proofs. The purpose is also different: justifications are meant as means
of explanations for humans, whereas here proofs are an internal artifact to assess complexity.

Exploiting the properties of rule-based reasoning for lightweight DLs was also used in
the context of finding unexplainable triples in RDF graphs [16] or in the work on emulating
deductive reasoning with recurrent neural networks [17].

2.3. Reason-able embeddings

Reason-able embeddings are a recently proposed framework to compute embedding vectors
for concepts in the 𝒜ℒ𝒞 DL [13]. They have several interesting properties that differentiate
them from pre-existing embeddings. First, they are tailored to an expressive DL, instead of
to a simple semantics of a knowledge graph. Second, the framework consists of two major
components: the embeddings themselves which must be trained for each KB separately, and a

neural reasoner, which is shared between multiple KBs, and once trained can be reused in a
transfer learning manner for reasoning on KBs not available during its training. Third, they are
capable of computing an embedding of a complex expression given the embeddings of its parts.

The neural reasoner consists of two parts: a reasoner head, which is a binary classifier that,
given two concept embeddings from the same KB, answers whether one of the concepts is a
subclass of the other; and a set of neural operators, which correspond to the logical operators
of 𝒜ℒ𝒞 and can, e.g., compute the embedding of an intersection of two concepts given the
embeddings of those concepts.

In [13], a two-step training procedure was proposed: first, a neural reasoner and embeddings
are trained jointly on a set of KBs. Multiple KBs are employed during this step to ensure the
reasoner is not tailored to any particular KB but rather is capable of shaping the latent space of
embeddings such that it can accommodate multiple KBs. In the second step, the reasoner is
frozen and the embeddings for the KB(s) of interest are trained by backpropagation through the
frozen reasoner.

Both training and testing a neural reasoner require subsumptions along with a binary label
denoting whether a subsumption follows from the corresponding KB or not. We call such a
pair an example. Since the label is contextual w.r.t. a KB, it is necessary to keep track of which
example is related to which KB. However, this information is not a part of an example and is
not presented to the neural reasoner during training. The subsumptions themselves may be
synthetic, as long as the label associated with them is correct.

A two-step procedure requires two-level separation into training and test set: first, there is a
training set of KBs used to jointly train the reasoner and the embeddings, and there is a test set
of KBs used to assess the quality of the trained, frozen reasoner. However, embeddings for the
KBs in the test must somehow be trained. Thus, for each KB, be it from the training set or from
the test set, a training set and a test set of examples must be constructed. The training set is
used to train embeddings for the KB, while the test set is used to evaluate them.

There are numerous hyperparameters that could be tuned in the framework. In this paper,
we follow the setup from [13]: the latent space of embeddings has a dimension of 10, there are
16 neurons in the hidden layer of the reasoner head, and the training takes 15 epochs.

2.4. Synthetic knowledge bases generator

To generate a random KB, we start by defining an approach to generate a random axiom in
the context of a KB 𝐾𝐵. First, we select with uniform probability one of the following forms
for the axiom: 𝐴 ⊑ 𝐶 , 𝐴 ⊓ 𝐵 ⊑ 𝐶 , 𝐷 ⊑ ∃𝑟.𝐸, ∃𝑟.𝐷 ⊑ 𝐸. Then, we populate the form with
concrete values by selecting uniformly at random: 𝐴,𝐵,𝐶 from 𝑁𝐶 , 𝑟 from 𝑁𝑅, 𝐷,𝐸 from
𝑁𝐶 ∪ {⊥,⊤}.

To construct difficult KBs, i.e., KBs such that some of the atomic subsumptions following
from them have long proofs, we have devised the following algorithm. First, an empty KB is
initialized with 𝑛𝑐 concepts and 𝑛𝑟 roles. Then, we repeat at most 𝑛𝑟𝑒𝑝 times: an axiom not yet
present in the KB is randomly generated and added to the KB, then the logical consequences
with the proof length of at least 𝑙𝑚𝑖𝑛 are counted, and if there are at least 𝑛𝑚𝑖𝑛, we terminate
and return the KB. If we exceed 𝑛𝑟𝑒𝑝 without reaching 𝑛𝑚𝑖𝑛, the process is restarted from an
empty KB.

Table 3
Statistics on the generated synthetic KBs. Two dimensions are considered: dataset (training/test set),
and minimal proof length (≥ 0 denotes the set of all logical consequences, incl. those explicitly asserted
in the KB; ≥ 2 denotes the set of non-asserted logical consequences, i.e., those with the proof length at
least 2; ≥ 1 - not present in the table - is essentially equal to ≥ 0, except for those consequences that
are starting points for the reasoning algorithm, i.e., 𝐶 ⊑ 𝐶 and 𝐶 ⊑ ⊤ for any 𝐶 ∈ 𝑁𝐶 ∪ {⊤,⊥}). Two
measures are computed: the number of logical consequences, denoted count, and their proof lengths,
denoted proof length and reported as mean± standard deviation[min,max]. The measures are averaged
in two ways: macro-average meaning we first compute the average for each KB separately and report
the average of averages; and micro-average meaning we directly average over the logical consequences.

macro-average micro-average
count proof length count proof length

training ≥ 0 1124± 1430[498, 7930] 9.32± 9.14[2.56, 37.22] 44, 951 17.78± 17.97[0, 87]
training ≥ 2 971± 1427[246, 7670] 12.71± 9.54[4.17, 42.04] 34, 821 22.89± 17.34[2, 87]
test ≥ 0 1423± 1861[520, 7461] 9.99± 9.76[3.45, 37.44] 28, 458 18.69± 16.94[0, 83]
test ≥ 2 1167± 1860[261, 7196] 13.50± 9.80[6.07, 43.24] 23, 348 22.73± 16.09[2, 83]

In the paper we fixed 𝑛𝑐 = 100, 𝑛𝑟 = 4, 𝑛𝑟𝑒𝑝 = 300, 𝑙𝑚𝑖𝑛 = 4 and 𝑛𝑚𝑖𝑛 = 200. The choice
of 𝑛𝑐 and 𝑛𝑟 was guided by the original work on reason-able embeddings [13], the others were
chosen arbitrarily, as they seemed to represent a good trade-off between the generation time
and the complexity of the final KBs. We use two sets of synthetic KBs: a training set of 40 KBs
𝑇𝑟1, . . . , 𝑇 𝑟40, and a test set of 20 KBs 𝑇𝑒1, . . . , 𝑇 𝑒20. We report detailed statistics on them in
Table 3.

2.5. Training and test set split

For each KB, we generate several training – test splits using the following procedure. Let 𝐼≤𝑗

be the set of all atomic subsumptions following from a KB 𝐾𝐵 such that their proofs are no
longer than 𝑗. Conversely, let 𝐼>𝑗 be the set of all atomic subsumptions following from the KB
with the proof length greater than 𝑗. Let 𝐼 be the set of all atomic subsumptions 𝐴 ⊑ 𝐵 that
uses the vocabulary of the KB, do not follow from the KB nor the atomic subsumption 𝐵 ⊑ 𝐴
follow from the KB:

𝐼 = {𝐴 ⊑ 𝐵 : 𝐴,𝐵 ∈ 𝑁𝐶 ∪ {⊥,⊤} ∧𝐾𝐵 ̸|= 𝐴 ⊑ 𝐵 ∧𝐾𝐵 ̸|= 𝐵 ⊑ 𝐴}

This final requirement on 𝐼 is introduced to ensure that knowledge from 𝐼 cannot be trivially
exploited for information about 𝐼>𝑗 . Since both 𝐼 and 𝐼 consist of atomic subsumptions, they
cannot be separated syntactically and some semantic information from the labels must be
exploited by the neural reasoner.

The 𝑗-th training set for 𝐾𝐵 consists of the whole set 𝐼≤𝑗 , labeled with the positive label,
and a random subset of 𝐼 counting

⃒⃒
𝐼≤𝑗

⃒⃒
to achieve a balanced training set and labeled with the

negative label. The 𝑗-th test set for 𝐾𝐵 is equal to 𝐼>𝑗 labeled with the positive label. There are
no negative examples in the test set, as we have no complexity measure for subsumptions that do
not follow from a KB, and thus the answers of a neural reasoner would offer no insight into the
RQs. We thus use recall, i.e., the number of examples labeled as positive by the neural reasoner
to the number of positive examples in the test set, as the measure to assess the performance.

Since we have two levels of training-test splits, there is a tremendous possibility for confusion.
We thus introduce the following symbols and names: 𝑇𝑟≤𝑗

𝑖 (resp. 𝑇𝑒≤𝑗
𝑖) denotes the 𝑗-th

training set for the KB 𝑇𝑟𝑖 (resp. 𝑇𝑒𝑖), and 𝑇𝑟>𝑗
𝑖 (resp. 𝑇𝑒>𝑗

𝑖) denotes the 𝑗-th test set for the
KB 𝑇𝑟𝑖 (resp. 𝑇𝑒𝑖). The 𝑗-th joint training set is 𝑇𝑟≤𝑗 =

⋃︀40
𝑖=1 𝑇𝑟

≤𝑗
𝑖 , and the 𝑗-th embeddings

training set is 𝑇𝑒≤𝑗 =
⋃︀20

𝑖=1 𝑇𝑒
≤𝑗
𝑖 . We use the name joint to underline that both embeddings

and the neural reasoner are trained jointly using these training sets; conversely, the embeddings
training sets are used to train embeddings while the neural reasoner is already trained and frozen.
The 𝑗-th internal test set is 𝑇𝑟>𝑗 =

⋃︀40
𝑖=1 𝑇𝑟

>𝑗
𝑖 , and the 𝑗-th external test set 𝑇𝑒>𝑗 =

⋃︀20
𝑖=1 𝑇𝑒

>𝑗
𝑖 .

Here, internal underlines that the neural reasoner was trained with these KBs, whereas external
denotes KBs that did not participate in the training of the neural reasoner.

3. Experimental results

3.1. The influence of complexity of the joint training set on the performance
on the internal test set

To answer RQ1, we employed the joint training sets 𝑇𝑟≤𝑗 and their respective internal test
sets 𝑇𝑟>𝑗 for 𝑗 ∈ {2, 3, . . . , 20}. For each 𝑇𝑟≤𝑗 , we trained a neural reasoner using the
training procedure described earlier, and tested it using 𝑇𝑟>𝑗 , arriving at the average recall
0.701± 0.044 [0.587, 0.764]. We then computed the Pearson correlation coefficient 𝜌 between
𝑗 and the recall, arriving at 𝜌 = 0.931 and the 𝑝-value < 10−5 (𝐻0 : 𝜌 = 0, using the exact
probability distribution as computed by SciPy2).

To ensure this is not due to using different test sets for each neural reasoner (since 𝑇𝑟>𝑗 ⊇
𝑇𝑟>𝑗+1), we also tested all the neural reasoners on the common test set 𝑇𝑟>20, arriving at
𝜌 = 0.920 and the 𝑝-value < 10−5.

We have decided not to use more complicated approaches for measuring the influence since
the Pearson correlation coefficients are high enough (and the p-values low enough) to give us
reasonable confidence that the answer to RQ1 is positive and the complexity of the training set
is an indicator of the performance on the test set even when transfer learning is not used.

3.2. The influence of complexity of the embeddings training set on the
performance on the external test set

To answer RQ2, we used the neural reasoner trained with 𝑇𝑟≤20, i.e., presumably the best
one. We froze it and used it to train embeddings using the embeddings test sets 𝑇𝑒≤𝑘

for 𝑘 ∈ {2, 3, . . . , 20}. Then, we tested the neural reasoner and the newly trained em-
beddings on the respective external test sets 𝑇𝑒>𝑘. Averaging the recall, we arrived at
0.610 ± 0.094 [0.387, 0.699]. The Pearson correlation coefficient between 𝑘 and recall is
𝜌 = 0.913, with the 𝑝-value < 10−5 (the same test as for RQ1). Similarly to the previous experi-
ment, we also tested all the embeddings on the common subset 𝑇𝑒>20, arriving at 𝜌 = 0.982
with the 𝑝-value < 10−5.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
j

0.47 0.52 0.55 0.56 0.57 0.62 0.63 0.65 0.64 0.64 0.67 0.70 0.69 0.70 0.72 0.72 0.74 0.74 0.76
0.48 0.53 0.56 0.57 0.59 0.62 0.64 0.66 0.66 0.66 0.69 0.71 0.70 0.72 0.74 0.73 0.76 0.77 0.77
0.48 0.54 0.56 0.57 0.59 0.62 0.64 0.67 0.66 0.68 0.70 0.72 0.71 0.73 0.75 0.74 0.76 0.77 0.77
0.47 0.52 0.55 0.56 0.58 0.61 0.63 0.65 0.64 0.66 0.67 0.70 0.69 0.70 0.73 0.71 0.74 0.75 0.75
0.42 0.47 0.49 0.51 0.53 0.56 0.58 0.60 0.60 0.60 0.63 0.66 0.64 0.66 0.69 0.67 0.70 0.71 0.72
0.40 0.45 0.47 0.50 0.51 0.54 0.56 0.59 0.58 0.59 0.61 0.63 0.62 0.64 0.66 0.65 0.68 0.69 0.70
0.42 0.45 0.48 0.51 0.51 0.55 0.57 0.59 0.58 0.60 0.61 0.65 0.64 0.66 0.68 0.66 0.69 0.70 0.71
0.39 0.43 0.45 0.47 0.49 0.52 0.54 0.56 0.56 0.57 0.59 0.62 0.61 0.62 0.65 0.64 0.66 0.68 0.68
0.38 0.43 0.46 0.48 0.49 0.52 0.54 0.57 0.56 0.58 0.60 0.63 0.62 0.63 0.66 0.64 0.67 0.68 0.68
0.38 0.43 0.45 0.47 0.49 0.51 0.53 0.56 0.55 0.56 0.58 0.62 0.60 0.62 0.65 0.63 0.66 0.67 0.68
0.38 0.43 0.46 0.48 0.49 0.52 0.54 0.57 0.56 0.58 0.59 0.62 0.61 0.63 0.65 0.63 0.66 0.68 0.68
0.39 0.43 0.46 0.47 0.49 0.52 0.54 0.57 0.56 0.58 0.60 0.63 0.62 0.63 0.66 0.64 0.67 0.69 0.69
0.37 0.42 0.45 0.47 0.49 0.51 0.53 0.56 0.55 0.57 0.59 0.62 0.61 0.63 0.65 0.63 0.66 0.68 0.68
0.38 0.43 0.45 0.47 0.49 0.52 0.53 0.56 0.56 0.57 0.59 0.62 0.61 0.63 0.66 0.64 0.67 0.68 0.68
0.37 0.42 0.45 0.47 0.49 0.51 0.53 0.56 0.55 0.57 0.59 0.62 0.61 0.63 0.66 0.64 0.67 0.68 0.68
0.37 0.42 0.45 0.47 0.49 0.52 0.53 0.56 0.55 0.57 0.59 0.62 0.61 0.63 0.66 0.64 0.67 0.68 0.69
0.37 0.42 0.45 0.47 0.49 0.52 0.53 0.56 0.56 0.58 0.59 0.62 0.62 0.63 0.66 0.64 0.67 0.68 0.69
0.36 0.41 0.44 0.46 0.48 0.50 0.52 0.55 0.54 0.56 0.58 0.61 0.60 0.62 0.65 0.62 0.66 0.67 0.68
0.37 0.42 0.44 0.46 0.48 0.51 0.53 0.56 0.55 0.57 0.59 0.62 0.61 0.63 0.66 0.64 0.67 0.68 0.68

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Figure 1: Recall for different combinations of the complexity of the joint training set 𝑗 and the complexity
of the embeddings training set 𝑘.

These results strongly indicate that the answer to RQ2 is positive, and the complexity of the
embeddings training set is a good indicator of the reasoning performance on the test set when
transfer learning is employed.

3.3. The interplay between the complexity of the joint training set, the
complexity of the embeddings training set, and the performance on the
external test set

After seeing RQ1 and RQ2, a natural question about the interplay of the complexity 𝑗 of the
joint training set and the complexity 𝑘 of the embeddings training set arises. To answer RQ3,
we have computed recall for all combinations of 𝑗 ∈ {2, 3, . . . , 20} and 𝑘 ∈ {2, 3, . . . , 20}, by
first training the neural reasoner using 𝑇𝑟≤𝑗 , then training embeddings on 𝑇𝑒≤𝑘, and finally
testing them using 𝑇𝑒>𝑘 . We report the results in Figure 1 and observe that they are somewhat
counterintuitive. It turns out that for fixed 𝑘, the higher 𝑗 the worse the recall. Conversely, for
fixed 𝑗, the higher 𝑘 the better the recall.

We hypothesize that, while using only atomic subsumptions, the reasoning capabilities of
the neural reasoner are not necessary and the most important part is the interplay of different
dimensions in the latent space of embeddings. Thus, on the one hand, higher values of 𝑘 cause
the embeddings to be more attuned to the properties of the latent space, whereas the lower
values of 𝑗 cause the reasoner to shape the latent space less strictly.

We note in passing that, following [18], we have conducted the Friedman test assuming
every KB is a separate dataset, and every pair (𝑗, 𝑘) constitutes a separate classifier. The test
indicated there are differences between classifiers (the 𝑝-value < 10−5). However, deciding
which pair-wise differences are significant would require making

(︀
192

2

)︀
= 64, 980 comparisons

and thus it would be extremely hard to achieve reliable results.

4. Discussion and conclusions

In the paper, we have presented an approach to generate non-trivial KBs in the ℰℒ DL and to
measure the complexity of their logical conclusions. We then used these results to evaluate the
influence of the complexity on the performance of reason-able embeddings, a recently proposed
framework offering a transferable neural reasoner for deciding the subsumption problem in the
𝒜ℒ𝒞 DL.

We have shown that within the assumed framework the complexity of the training set is a
good performance indicator in scenarios both employing and not employing transfer learning.
Moreover, the experimental results indicate that the complexity of the embeddings training set
is much more important than the complexity of the joint training set, and the latter can even
influence the performance negatively, possibly because it constrains the latent space too tightly.

The study has numerous limitations: we have concentrated on a very simple DL ℰℒ, we
considered only atomic subsumptions in the training and test sets, and measured the complexity
of only subsumptions following from the KBs. The first assumption limits the generalizability
of this study, but since ℰℒ is a proper subset of 𝒜ℒ𝒞, one can suspect that the results on 𝒜ℒ𝒞
KBs will be no better than on ℰℒ KBs. Concentrating on atomic subsumptions only effectively
means we have ignored neural operators, one of the most interesting parts of the reason-able
embeddings. The third assumption means we were only able to assess the incompleteness of the
neural reasoner, i.e., its tendency to reject subsumptions that in fact follow from the KB. Due to
these assumptions, this is only the first step to properly evaluating the scope of usefulness and
applicability of the reason-able embeddings.

Acknowledgments

This research was partially supported by 0311/SBAD/0726 and by TAILOR, a project funded by
EU Horizon 2020 research and innovation programme under GA No 952215.

References

[1] S. Choudhary, T. Luthra, A. Mittal, R. Singh, A survey of knowledge graph embedding
and their applications, CoRR abs/2107.07842 (2021). URL: https://arxiv.org/abs/2107.07842.
arXiv:2107.07842.

[2] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches
and applications, IEEE Trans. Knowl. Data Eng. 29 (2017) 2724–2743. URL: https://doi.org/
10.1109/TKDE.2017.2754499. doi:10.1109/TKDE.2017.2754499.

[3] Y. Dai, S. Wang, N. N. Xiong, W. Guo, A survey on knowledge graph embedding: Ap-
proaches, applications and benchmarks, Electronics 9 (2020) 750. URL: https://doi.org/10.
3390/electronics9050750. doi:10.3390/electronics9050750.

[4] H. Cai, V. W. Zheng, K. C. Chang, A comprehensive survey of graph embedding: Problems,
techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (2018) 1616–1637. URL:
https://doi.org/10.1109/TKDE.2018.2807452. doi:10.1109/TKDE.2018.2807452.

https://arxiv.org/abs/2107.07842
http://arxiv.org/abs/2107.07842
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750
http://dx.doi.org/10.3390/electronics9050750
https://doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.1109/TKDE.2018.2807452

[5] M. Wang, L. Qiu, X. Wang, A survey on knowledge graph embeddings for link predic-
tion, Symmetry 13 (2021). URL: https://www.mdpi.com/2073-8994/13/3/485. doi:10.3390/
sym13030485.

[6] P. Ristoski, J. Rosati, T. D. Noia, R. D. Leone, H. Paulheim, Rdf2vec: RDF graph embeddings
and their applications, Semantic Web 10 (2019) 721–752. URL: https://doi.org/10.3233/
SW-180317. doi:10.3233/SW-180317.

[7] J. Chen, P. Hu, E. Jiménez-Ruiz, O. M. Holter, D. Antonyrajah, I. Horrocks, Owl2vec*:
embedding of OWL ontologies, Mach. Learn. 110 (2021) 1813–1845. URL: https://doi.org/
10.1007/s10994-021-05997-6. doi:10.1007/s10994-021-05997-6.

[8] C. d’Amato, N. F. Quatraro, N. Fanizzi, Injecting background knowledge into embedding
models for predictive tasks on knowledge graphs, in: R. Verborgh, et al. (Eds.), ESWC 2021,
volume 12731 of Lecture Notes in Computer Science, Springer, 2021, pp. 441–457. URL: https:
//doi.org/10.1007/978-3-030-77385-4_26. doi:10.1007/978-3-030-77385-4_26.

[9] B. Makni, J. A. Hendler, Deep learning for noise-tolerant RDFS reasoning, Semantic Web
10 (2019) 823–862. URL: https://doi.org/10.3233/SW-190363. doi:10.3233/SW-190363.

[10] P. Hohenecker, T. Lukasiewicz, Ontology reasoning with deep neural networks, J. Artif.
Intell. Res. 68 (2020) 503–540. URL: https://doi.org/10.1613/jair.1.11661. doi:10.1613/
jair.1.11661.

[11] F. Bianchi, P. Hitzler, On the capabilities of logic tensor networks for deductive reasoning,
in: A. Martin, et al. (Eds.), AAAI-MAKE 2019, volume 2350 of CEUR Workshop Proc., 2019.
URL: http://ceur-ws.org/Vol-2350/paper22.pdf.

[12] M. Ebrahimi, M. K. Sarker, F. Bianchi, N. Xie, A. Eberhart, D. Doran, H. Kim, P. Hitzler,
Neuro-symbolic deductive reasoning for cross-knowledge graph entailment, in: A. Martin,
et al. (Eds.), AAAI-MAKE 2021, volume 2846 of CEUR Workshop Proc., 2021. URL: http:
//ceur-ws.org/Vol-2846/paper8.pdf.

[13] D. M. Adamski, J. Potoniec, Reason-able embeddings: Learning
concept embeddings with a transferable neural reasoner, Seman-
tic Web (2023). URL: https://www.semantic-web-journal.net/content/
reason-able-embeddings-learning-concept-embeddings-transferable-neural-reasoner,
under review.

[14] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: L. P. Kaelbling, A. Saffiotti (Eds.),
IJCAI-05, Professional Book Center, 2005, pp. 364–369. URL: http://ijcai.org/Proceedings/
05/Papers/0372.pdf.

[15] M. Horridge, B. Parsia, From justifications towards proofs for ontology engineering,
in: F. Lin, U. Sattler, M. Truszczynski (Eds.), Principles of Knowledge Representation
and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto,
Ontario, Canada, May 9-13, 2010, AAAI Press, 2010. URL: http://aaai.org/ocs/index.php/
KR/KR2010/paper/view/1263.

[16] J. Potoniec, Finding unexplainable triples in an RDF graph, in: A. Gangemi, A. L. Gentile,
A. G. Nuzzolese, S. Rudolph, M. Maleshkova, H. Paulheim, J. Z. Pan, M. Alam (Eds.), The
Semantic Web: ESWC 2018 Satellite Events - ESWC 2018 Satellite Events, Heraklion, Crete,
Greece, June 3-7, 2018, Revised Selected Papers, volume 11155 of Lecture Notes in Computer
Science, Springer, 2018, pp. 3–7. URL: https://doi.org/10.1007/978-3-319-98192-5_1. doi:10.
1007/978-3-319-98192-5_1.

https://www.mdpi.com/2073-8994/13/3/485
http://dx.doi.org/10.3390/sym13030485
http://dx.doi.org/10.3390/sym13030485
https://doi.org/10.3233/SW-180317
https://doi.org/10.3233/SW-180317
http://dx.doi.org/10.3233/SW-180317
https://doi.org/10.1007/s10994-021-05997-6
https://doi.org/10.1007/s10994-021-05997-6
http://dx.doi.org/10.1007/s10994-021-05997-6
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.1007/978-3-030-77385-4_26
http://dx.doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.3233/SW-190363
http://dx.doi.org/10.3233/SW-190363
https://doi.org/10.1613/jair.1.11661
http://dx.doi.org/10.1613/jair.1.11661
http://dx.doi.org/10.1613/jair.1.11661
http://ceur-ws.org/Vol-2350/paper22.pdf
http://ceur-ws.org/Vol-2846/paper8.pdf
http://ceur-ws.org/Vol-2846/paper8.pdf
https://www.semantic-web-journal.net/content/reason-able-embeddings-learning-concept-embeddings-transferable-neural-reasoner
https://www.semantic-web-journal.net/content/reason-able-embeddings-learning-concept-embeddings-transferable-neural-reasoner
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1263
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1263
https://doi.org/10.1007/978-3-319-98192-5_1
http://dx.doi.org/10.1007/978-3-319-98192-5_1
http://dx.doi.org/10.1007/978-3-319-98192-5_1

[17] M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler, Towards bridging the neuro-symbolic gap:
deep deductive reasoners, Appl. Intell. 51 (2021) 6326–6348. URL: https://doi.org/10.1007/
s10489-020-02165-6. doi:10.1007/s10489-020-02165-6.

[18] J. Demsar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn.
Res. 7 (2006) 1–30. URL: http://jmlr.org/papers/v7/demsar06a.html.

https://doi.org/10.1007/s10489-020-02165-6
https://doi.org/10.1007/s10489-020-02165-6
http://dx.doi.org/10.1007/s10489-020-02165-6
http://jmlr.org/papers/v7/demsar06a.html

	1 Introduction
	2 Materials and methods
	2.1 The description logic EL
	2.2 Measuring the proof length
	2.3 Reason-able embeddings
	2.4 Synthetic knowledge bases generator
	2.5 Training and test set split

	3 Experimental results
	3.1 The influence of complexity of the joint training set on the performance on the internal test set
	3.2 The influence of complexity of the embeddings training set on the performance on the external test set
	3.3 The interplay between the complexity of the joint training set, the complexity of the embeddings training set, and the performance on the external test set

	4 Discussion and conclusions

