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Abstract
Automatic image colorization is notorious for being an ill-posed problem, i.e., multiple plausible coloriza-
tions exist for any given black-and-white image. Current approaches to this task revolve around deep
neural network-based systems, which do not incorporate knowledge into their colorizations. We present
Knowledge-Guided Colorization as a possible solution to the above-mentioned problems. Knowledge-
Guided Colorization combines a deep learning-based colorization system and a knowledge graph to
inform its colorizations. This is the first time these two techniques have been combined for coloriza-
tion. The prospects of knowledge-guided colorization are promising, with various potential application
scenarios. However, several associated challenges are also highlighted in this research.
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1. Introduction

Image colorization is the process of applying color information to black-and-white images. It is
an exciting task as many black-and-white photos are lost to history and not getting the exposure
to the public that they merit. The modern audience is no longer interested in dull appearing
pictures. Image colorization is an ill-constrained task, as multiple color solutions exist for any
given black-and-white image. This makes the process difficult as much research must be done
to colorize accurately. Automatic image colorization has been proposed to aid in some of this
work. Automated image colorization typically relies on some form of a neural network, which
requires varying amounts of input from the user. This amount of user involvement ranges from
in-depth color hints, like in scribble-based systems [1], to almost no intervention, like in the
case of fully automatic image colorization [2].
Machine learning models use Knowledge Graphs (KGs) to incorporate explicit semantics

and factual knowledge as a common sense knowledge source, leading to improved model
performance and robustness and enhanced reasoning capabilities and interoperability [3].
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Integrating KGs as a common sense knowledge source in neuro-symbolic visual understanding
and reasoning techniques has emerged as a promising research direction [4]. Recent works
[5, 6, 7, 8] have demonstrated that image representation and reasoning techniques can effectively
capture and interpret detailed semantics in images by utilizing related facts and background
knowledge of visual concepts from KGs.

KGs contain valuable information about the colors of objects, the shades in different scenes,
and how they vary with diverse backgrounds and conditions. This structured knowledge about
colors and shades can serve as a guide for deep learning-based colorization techniques. Although
there is no dedicated KG for colorization, general-purpose KGs such as ConceptNet [9], and
CSKG [10] contains basic knowledge about colors and color-related attributes of entities. By
utilizing this subset of existing KGs, colorization models can leverage the available knowledge
to predict the accurate colors of different objects in the image. This approach can significantly
improve the quality and realism of the colorized image by incorporating knowledge from
external sources beyond the image itself. Furthermore, KG-based colorization techniques can be
particularly useful when color information is limited or missing in the original image, enabling
the model to make more informed and accurate color predictions.

2. Related Work

When comparing the related work in image colorization, they can generally be clustered by their
network architecture. Themost common architectures are Convolutional Neural Network (CNN)
[11, 12, 13, 14, 15, 16, 17], Generative Adversarial Network (GAN) [18, 19, 20, 21, 22, 23, 24, 25],
transformer [26, 27, 28], and diffusion-based [29] systems.
”Real-Time User-Guided Image Colorization with Learned Deep Priors” (Real-Time) [14] is

an example of a CNN-based colorization system. It is a fascinating system because it is designed
with a user-in-mind methodology. It takes in sparse ”hints” from the user and colorizes the
image based on these ”hints”. One of the novel pieces of this work is that they trained this
network using randomly simulated user inputs, meaning that the training did not require much
human intervention. DeOldify [30] is an example of a GAN-based colorization system. It is
based on a ”Self-Attention Generative Adversarial Network” [31] with spectral normalization
[32]. It uses a ”Two Time-Scale Update Rule” [33] and NoGAN [34] training. ColTran [26] is an
example of a transformer-based colorization system. It is based on self-attention. Initially, it
uses a conditional autoregressive transformer to produce a low-resolution coarse coloring of
the grayscale image. Then it upsamples the coarse-colored low-resolution image into a finely
colored high-resolution image. Palette [29] is an example of a diffusion-based colorization
system. It is a generalist image-to-image translation system built on conditional diffusion [35].

Visual understanding and reasoning techniques have shown great promise in leveraging KGs
to extract relevant information and embed it within machine learning models [4]. Graph-based
approaches employ message-passing mechanisms to embed structural information from the
KG within the model’s representations. For instance, GB-Net [7] links entities and edges in
a scene graph to corresponding entities and edges in a common sense graph extracted from
Visual Genome [36], WordNet [37], and ConceptNet [9]. The model iteratively refines the
scene graph using GNN-based message passing. Similarly, Guo et al. [38] used an instance



relation transformer to extract relational and common sense knowledge from Visual Genome
and ConceptNet for scene graph generation. Khan et al. [5] employed a multi-modal deep
learning pipeline for scene graph generation, followed by KG-based enrichment to improve the
accuracy and expressiveness of image representations. In a different application, Castellano et al.
[8] presented ArtGraph, an artistic KG based on WikiArt and DBpedia, and ArtGraph-based fine
art classification method for artwork attribute prediction. The technique extracts embeddings
from ArtGraph and injects them as external knowledge into a deep learning model, achieving
state-of-the-art performance.

3. Knowledge-Guided Colorization

The proposition is to guide colorization using color knowledge extracted from KGs. The concept
is that instead of relying on an end-to-end colorizer to learn what color particular objects are, it
can be guided using knowledge. The overall system consists of an image classifier, a knowledge
graph, and a colorizer, see Fig 1. Initially, the black-and-white image is classified using a neural
network. The predicted class is used to query the KG for the given object’s color. From there,
this color embedding is passed along with the initial black-and-white image to the colorizer,
which produces the final colorized image.

Figure 1: Network Diagram of Knowledge-Guided Colorization. It comprises an image classifier, a
knowledge graph, and an image colorizer. This figure shows how the information flows through the
system. Image is taken from Visual Genome [36].

This method works equally well for simple and complex scenes. KGs are extremely good for
modeling relationships. Let us suppose that in a scene, there is a sun in the sky and no clouds;
we can, therefore, deduce that the sky is blue instead of overcast or grey. This would require
multiple ”hops” over the knowledge graph to supply contextual colorization knowledge.

4. Prospects, Challenges, and Scenarios

4.1. Prospects

The main prospects are that Knowledge-Guided Colorization could improve colorization accu-
racy, explainability, consistency, and efficiency. Accuracy: as objects with multiple plausible
colorizations could be colorized faithfully to a KG. Explainability: any given colorization
could be explained by examining the nodes the system used to guide its colorization. Consis-
tency: as the knowledge in the KG would be consistent, unlike the outputs of a neural network.



Efficiency: as fewer training examples would be needed for the system to learn something
implicitly that it can be told explicitly. Furthermore, a novel colorization-specific knowledge
graph could be produced. This could provide more relevant knowledge than traditional KGs,
where only a subset of the information will apply to colorization.

With the semantic understanding of objects, scenes, and their relationships, colorization
models can accurately predict the colors of objects or the color palette of a scene based on
real-world knowledge. KGs can provide knowledge about the most probable colors based on
the object’s type or surrounding elements, which can help resolve ambiguities related to object
colors in complex scenes. For example, in a grayscale beach scene, leveraging ConceptNet can
help assign appropriate colors, i.e., brownish for sand, blue for ocean and sky, and green for
palm leaves, resulting in realistic colorization.

4.2. Challenges

There are several challenges associated with leveraging KGs for image colorization. The
fundamental challenge is effectively bridging the gap between both domains, i.e. the
structured, symbolic representation of KGs and the unstructured pixel-level information required
for colorization. A major challenge is determining the optimal method for infusing KG
embeddings into a deep learning-based colorization network. This entails assessing various
approaches, such as fusing the knowledge embeddings with the visual embeddings during
feature extraction or more advanced techniques like attention mechanisms. The unavailability
of color-specific knowledge graphs is also a challenge. General KGs, such as ConceptNet [9],
contains color information about objects in the world, which can provide basic cues about the
typical colors of objects. However, the contextual correctness of color knowledge extracted
from KGs cannot be guaranteed, as color perception is influenced by factors such as illumination,
shadows, and light interactions. The general KGs capture high-level concepts and relationships
but do not provide sufficient context to resolve ambiguities in object colors. For example, an
object like a car can have various colors, but ConceptNet might not offer specific guidance on
which color to use in a particular setting.

4.3. Scenarios

Knowledge-Guided Colorization could be applicable in several diverse scenarios. One of the
significant interest areas would be in the realm of historical images. Generally, there is little
data available for objects in historical images, such as military uniforms from a particular era.
This typically leads to inaccurate colorizations from traditional end-to-end colorizers. This is
where adding knowledge from a KG can enable more accurate colorizations. Colors can be
essential in historic colorizations as a change in color can change the whole story of an image,
for example, which wars a particular decorated soldier fought based on their medals.
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