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Abstract  

Deep neural networks (DNNs) have good overall performance in medical imaging, but they are susceptible 
to obvious mistakes that violate common sense concepts. Unexplained errors have reduced trust and 
prevented widespread adoption in real-world clinical practice. We introduce SimpleMind, an open-source 
Cognitive AI software environment for medical image understanding. It uses a hybrid Neurosymbolic AI 
approach that integrates both DNNs and machine reasoning from a knowledge base. We demonstrate its use 
in building trustworthy AI for checking endotracheal tube (ETT) placement on chest X-rays (CXRs). The 
AI was integrated into clinical practice and the correctness of the ETT misplacement alerts were compared 
with radiology reports as the reference. 214 CXRs were ordered by ICU physicians to check ETT placement 
with AI assistance. ETT alert messages had a positive predictive value (PPV) of 42% and a negative 
predictive value (NPV) of 98%. Physicians indicated that they agreed with the AI outputs, had increased 
confidence in their decisions, and were more effective with AI assistance.  
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1. Introduction 

Deep neural networks (DNNs) detect patterns in data and have shown versatility and strong 
performance in many computer vision applications. However, despite many research publications there 
has not been broad adoption of artificial intelligence (AI) in crucial tasks such as medical imaging. 
While DNNs have good overall performance metrics in medical imaging, they are susceptible to 
obvious mistakes that violate simple, common sense concepts and are limited in their ability to use 
explicit knowledge to guide their search and decision making. Obvious, unexplained errors have 
reduced trust and prevented widespread adoption in real-world clinical practice [1] and motivated 
research into trustworthy AI [2, 3]. 

To improve computer vision accuracy and reliability we embed deep neural networks within a 
Cognitive AI environment. Cognitive AI includes not only the learning of patterns in data, but also 
learning through teaching and concepts (declared knowledge) as well as reasoning to apply this 
knowledge to guide the interpretation of a specific image. It uses a hybrid Neurosymbolic AI approach 
that integrates both DNNs and machine reasoning from a knowledge base. We demonstrate its use and 
benefits in building reliable, trustworthy AI for checking endotracheal tube (ETT) placement on chest 
X- rays (CXRs) that has been adopted and evaluated in clinical practice. 

Chest radiographs (CXRs) are used in the intensive care unit (ICU) to examine and monitor critically 
ill patients on life-supporting devices.  Endotracheal tubes (ETTs) are used to maintain airway patency 
and lung ventilation. The desired ETT tip position is within the mid trachea, approximately 5±2 cm 
above the carina [4]. There is a risk of inefficient ventilation and vocal cord injury if the ETT is too 
high, and lung collapse, pneumothorax, and even death if the ETT tip is too low. Given the urgent need 
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for intervention if the ETT is misplaced, ICU physicians often take a preliminary look at the CXR at 
the bedside and immediately adjust a misplaced tube.  However, assessment of tube placement can be 
challenging, especially for non-radiologists. 

In this paper we introduce SimpleMind, an open-source Cognitive AI software environment for 
medical image understanding [5]. We demonstrate its use to build trustworthy AI to assist in checking 
ETT placement on CXRs in clinical practice and evaluate its real-world performance and physician 
acceptance. 

2. Methods 

A SimpleMind application was developed to automatically identify the ETT, trachea, and carina in 
CXRs. In SimpleMind, an application is built by specifying a knowledge base that describes expected 
characteristics and relationships between image objects. To check the ETT tip placement, a “safe zone” 

is defined in the knowledge base as the region inside the trachea and 3 - 7 cm above the carina. 
SimpleMind computes this region using spatial inferencing for explainable decisions regarding ETT 
placement. During image understanding, SimpleMind uses the knowledge base to guide DNN 
segmentation agents and machine reasoning agents that evaluate the results. It enables reasoning on 
multiple detected objects to ensure consistency, providing cross-checking between DNN outputs. This 
machine reasoning improves the reliability and trustworthiness of DNNs through an interpretable model 
and explainable decisions. The CXR application was integrated and evaluated in the clinical imaging 
workflow at our institution. 

2.1. Knowledge Representation 

The knowledge base for a SimpleMind application is created as a semantic network (SN) [6] where 
each node represents an object, object component, or object state. The SimpleMind environment 
provides a human-readable intuitive language to specify a semantic network. Each node contains 
attributes that describe expected object characteristics relating to size, shape, pixel intensity, and 
relative position. Spatial relationships that can be described between objects, include part of, right of, 
left of, above, below, inside, etc. Attributes are derived from a vocabulary that defines the name of the 
attribute and its associated parameters. Relational attributes form the links between nodes in the 
semantic network. For example, the vocabulary defines “RightOf”, which includes two parameters: (1) 

the related node (forming a relational link between nodes), and (2) the expected distance to the right. 
Fuzzy sets are used to represent prior expectations for object characteristics using a confidence function 
over the range of possible parameter values [7], so the expected distance to the right is represented in 
the knowledge base as a fuzzy membership function. The fuzzy functions can be set initially by a human 
expert and refined by learning from data. 

The semantic network attributes can also represent procedural knowledge used by processing agents, 
including DNN architectures (e.g., U-Net, ResNet, or any user-defined architectures), learning hyper 
parameters, and image pre and post processing parameters. Crucially, all attribute parameters in the 
semantic network are exposed (separate from the processing code) and human readable, so they can be 
both specified by a human and auto optimized by SimpleMind. The SimpleMind environment allows a 
DNN agent to train weights using the above attribute parameters from a given SN node. The DNN 
weights are then stored with the node, embedding the DNN within the semantic network. Thus, a 
SimpleMind knowledge base can include both declared knowledge (that it is “taught”) and learned 

knowledge from examples (acquired through machine learning), i.e., we can actively teach the 
Cognitive AI as well as have it learn passively from data.  

 
 
 
 
 
 



The CXR knowledge base is derived from the medical literature that states that the tip of the 
endotracheal tube should be 5 ± 2 cm above the carina, where the trachea bifurcates into the two main 
stem bronchi. The semantic network shown in Fig 1 includes DNNs for the trachea (trachea_cnn), 
carina (carina_cnn), and ETT (et_tube_1_cnn and et_tube_2_cnn). It defines a “safe zone” for the ETT 

tip using spatial concepts: 
 part of the trachea: Line 3 of the et_zone_1 node (Fig 1B) 
 3 - 7 cm above the carina: Line 4 of the et_zone_1 node - based on the y-coordinate of the 

centroid (Fig 1B) 
 ETT tip must be inside the safe zone: et_tip_correct node describes this relative to the et_zone 

node and represents the state of the ETT tip (Fig 1C) 
 the ETT path must be within the trachea (and thus not going into the esophagus): 

et_path_incorrect node describes this relative to the trachea node and represents the state of 
the ETT path 

 for the ETT position to be correct the two criteria above must be met - this requirement is 
defined in the et_tube_correct node which represents the final decision of the system based on 
its machine reasoning (Fig 1D) 

The knowledge base also demonstrates checking of DNN outputs for consistency. The carina_cnn 
outputs a coordinate for the position of the carina, represented by the carina_1 node. The carina location 
can also be derived from the inferior portion of the trachea where it branches into the two main stem 
bronchi, represented by the carina_2 node. The carina_3 node indicates that these two should 
correspond and refines the final result. Accurate detection the carina is necessary for ETT position 
checking. Crucially, if the alternate carina locations do not correspond, then the system will report that 
it is unable to reliably identify the carina rather than outputting an incorrect result. Using knowledge to 
identify interpretation errors is an important benefit of machine reasoning that allows the system to 
determine when it is likely to be wrong rather than failing silently. 
 

 
Figure 1: The SimpleMind semantic network (SN) for the ETT with selected node details.  

 
 



2.2. Multi-Agent Thinking 

SimpleMind provides a Think Module for computer vision, i.e., recognizing objects (nodes) from 
the knowledge base in a given image. Multiple software agents work together to segment the image into 
candidate regions, then select the best candidate based on object attributes described in the knowledge 
base. Software agents collaborate to solve the vision problem by reading from, and writing to, a global 
Blackboard data structure [8]. The Blackboard is the working space of SimpleMind during the 
“thinking” process, i.e., during comparison and matching of the image to a knowledge base for image 

understanding. An agent can read information from the Blackboard generated by other agents and add 
or update information. Agents operate independently and collaborate only via the Blackboard, giving 
them a degree of autonomy and making the system more flexible and scalable. Agent types provided in 
SimpleMind are shown in Fig 2. 

 

 
Figure 2: SimpleMind multi-agent thinking architecture. Schematic showing agent types and the 
Blackboard for sharing of results during image understanding. 
 

For each node in the semantic network, a data structure called a Solution Element is created on the 
Blackboard, corresponding to an object to be recognized in the image. The Solution Element stores all 
agent contributions while recognizing the object. Knowledge base attributes and candidate image 
regions are transformed into a common feature space for selection of the best candidate. A Knowledge 
Agent accesses the knowledge base and creates each Solution Element, initializing it with prior 
expectations for object feature values. Thus, the objects and their relationships represented in the 
semantic network are transformed into a directed graph of Solution Elements on the Blackboard, with 
the direction of the link reflecting the dependency of an object’s attribute upon another object. 

Solution Elements are processed sequentially by agents. Objects are recognized in order based on 
the directed links between their Solution Elements. When a particular Solution Element is scheduled 
for processing (by a Scheduling Agent), a Reasoning Agent computes an image search area using spatial 
inferencing from the relationships to previously recognized objects. This search area is provided as a 
mask to guide a Segmentation Agent that generates candidate image regions for the object. 
Segmentation is typically performed by a DNN agent that generates multiple connected components as 



candidate regions. Feature values are computed for each candidate region and compared against the 
expected values by a Reasoning Agent. Feature values are computed for each candidate according to 
the attributes provided in the knowledge base and the corresponding fuzzy membership function yields 
a confidence value for that attribute. The overall confidence for a candidate region is then computed as 
the minimum confidence of any attribute. Thus, by pattern classification, the candidate that best matches 
these expectations from the knowledge base is selected. 

Agents are activated iteratively, one at a time. At each iteration an activation score is computed for 
each registered agent. The agent with the highest score is activated and can contribute to the solution 
on the Blackboard. Each agent provides a function to compute its activation score based on the contents 
of the Blackboard, in particular whether the Solution Element being processed has the relevant attributes 
and necessary data required by the agent. The process repeats until all activation scores are zero and no 
further agents activate. The system control is simple, yet highly flexible, with agent priorities 
determined through their activation functions. 

The contents of the Blackboard reflect what SimpleMind is thinking at any point in time and its 
current understanding of the image. Once all Solution Elements have been processed, the Blackboard 
contains an instantiation of the general knowledge base to a particular image. The object attributes from 
the general knowledge base are now instantiated with actual numerical feature values from the image, 
enabling further high-level reasoning. 

2.3. Machine Learning 

SimpleMind provides a Learn Module for machine learning within a knowledge base, in particular 
for training the weights of embedded DNNs. For the CXR AI, we used 2000 images collected 
retrospectively from ICU patients between April 2018 and September 2019. All of the DNN nodes are 
trained with 1488 images, and the application was initially tested experimentally on 512 images [9]. 

Although not used in this application, the SimpleMind environment also includes a Knowledge 
Network Learning and Optimization (KNoLO) method. It comprehensively co-optimizes all attribute 
parameters from all nodes simultaneously, including: object expected characteristics, DNN input 
channels and image preprocessing options, and DNN learning hyper parameters. The parameter 
optimization is performed using a genetic algorithm and details can be found in [5]. 

2.4. Implementation and Evaluation in Clinical Practice 

The CXR AI is currently deployed within our institution’s clinical workflow for investigational use 

only as a quality improvement (QI) tool. A new cloud-based computing infrastructure was designed to 
integrate the CXR AI system with the clinical Picture Archiving and Communications System (PACS). 
An image router was configured to push CXRs to an on-premise Azure AI/ML platform where the AI 
system is deployed. The CXR AI processes the image, detects tubes and anatomic landmarks on the 
image, and generates an enhanced CXR image with overlays and an alert/informational message that is 
pushed back to the PACS. Both the original and AI CXR images are available in PACS viewers for the 
radiologist or ICU physician.  The total turnaround time from CXRs reaching PACS to the AI output 
being available in PACS is within 3 to 4 minutes, ensuring that AI outputs are available to ICU 
physicians at the point of care during their CXR review. A specific order code was set up for CXR with 
AI processing, providing a limited deployment on identifiable cases to be reviewed by a selected pool 
of ICU physicians and radiologists. From June 11, 2021 to November 3, 2022, 214 CXRs were ordered 
by ICU physicians through this specific order code for checking ETT placement with AI assistance. 

The AI displays one of the three possible ETT messages: (1) “Found” (ETT tip was determined to 

be in the safe zone), (2) “Position Alert” (ETT tip was not in the safe zone or the AI could not determine 
the safe zone), (3) “Not Found” (no ETT was detected by the AI). The AI alerts were evaluated against 
the findings in the radiology report in which the radiologists were asked to include the following 
statement: “An investigational endotracheal tube AI overlay was available and was/was not consistent 

with my interpretation”. We evaluated the AI performance by defining a positive output (alert) as 
messages (2) and (3), and a negative output (no alert) as message (1).  When the AI output was positive, 
a true positive (TP) required that the ETT be misplaced per the radiology report or that the ETT was 



missing (since cases being routed to AI were expected to have an ETT), otherwise it was a false positive 
(FP).  When the output was negative, a false negative (FN) required the ETT to be misplaced, otherwise 
it was a true negative (TN).  When alerts were issued, follow-up CXRs were reviewed and radiology 
reports checked to confirm repositioning of the tube. Positive predictive value (PPV = TP/(TP+FP)) 
and negative predictive value (NPV=TN/(TN+FN)) metrics were computed to give a sense of 
trustworthiness of the AI from a physician perspective. In previous experimental testing, the PPV, NPV, 
and sensitivity to misplaced tubes were 42%, 99%, and 95%, respectively [8]. The AI system was 
designed to be highly sensitive to avoid missed alerts when ETTs were misplaced, thus higher NPV and 
lower PPV were considered sufficient for the system to be deployed in clinical practice and further 
evaluated as described in this paper. 

A survey was conducted to qualitatively evaluate the ICU physicians and radiologists experience in 
using the CXR AI in their clinical workflow.  They were asked to provide ratings for usefulness and 
satisfaction with the AI clinical application. 

3. Results 

For the 214 CXR images ordered to check ETT placement with AI assistance by ICU physicians, a 
confusion matrix is shown in Table 1. The AI alert messages had a positive predictive value (PPV) of 
42% (21 / (21 + 29)) and a negative predictive value NPV of 98% (161 / (161 + 3)) based on the 
radiology reports. These performance metrics were consistent with clinical requirements and previous 
experimental testing.  

 
Table 1: Confusion matrix of AI alert vs. actual ETT placement 

 AI Alert 
Actual ETT placement Yes No 
Incorrect 21 3 
Correct 29 161 

 
The AI generates CXR overlays, showing the ETT path and distance from the ETT tip to the carina 

as shown in Figs 3 and 4. Fig 3 is a case with correct ETT position showing the internal results of 
SimpleMind (Fig 3b,c) that explain why it thinks the position is correct (tip inside the safe zone) and 
the final output of the system as presented to the ICU physician (Fig 3D). Fig 4 shows an example of 
incorrect ETT placement, with the tip too low relative to the carina (outside of the safe zone). 

Seven clinicians completed the user survey: three were radiologists with 9 - 26 years of experience, 
four were physicians with 1 - 10 years of experience in critical care medicine. Five of the seven 
clinicians had reviewed over 20 CXRs with AI, and two had reviewed over 50. Table 2 summarizes the 
frequency and median ratings.  Users indicated that they agreed with the AI outputs, had increased 
confidence in their decisions, and were more effective with AI assistance. The trust and willingness to 
adopt the system was further confirmed in weekly user group meetings. 

 
Table 2: Frequency of user ratings for survey questions: 1 = “Strongly disagree”; 5 = “Strongly agree”. 

System Outputs 1 2 3 4 5 Median 
The system output agrees with my assessment 0 0 1 4 2 4 
Tube annotations are helpful/appropriate 0 0 2 3 2 4 
Informational/alert messages are helpful/appropriate 0 0 3 2 2 4 
The system output increases my confidence 0 0 2 3 2 4 

   
Usefulness and Satisfaction 1 2 3 4 5 Median 

It helps me be more effective 0 0 3 4 0 4 
It helps me be more productive 0 1 4 2 0 3 
It works the way I want it to work 0 0 3 4 0 4 
I am satisfied with it 0 0 2 4 0 4 
 



 
Figure 3: Visualization of SimpleMind nodes for correct ETT placement. (A) Original CXR; (B) trachea 
region on an enhanced image; (C) ETT safe zone (et_zone) and tube tip location (et_tip) showing the 
tip within the safe zone; (D) output of the system as presented to the physician with the green overlay 
indicating correct tube placement. 

 
 

 
Figure 4: Visualization of SimpleMind nodes for incorrect ETT placement. (A) Original CXR; (B) trachea 
region on an enhanced image; (C) ETT safe zone (et_zone) and tube tip location (et_tip) showing the 
tip outside the safe zone; (D) output of the system as presented to the physician with the red overlay 
indicating incorrect tube placement (tip too low relative to the carina). 
 



4. Discussion 

SimpleMind brings explainability and trustworthiness to ETT placement checking on CXRs using a 
knowledge base that describes not only the ETT but also relevant anatomic landmarks and includes 
relational attributes to cross-check multiple DNNs and ensure consistency and overall reliability of the 
system. Rather than attempting to learn misplacement of the ETT indirectly from examples, the 
SimpleMind knowledge base can directly describe when an alert should be given based on the tip 
location relative to the carina.  

SimpleMind is a Cognitive AI software environment that enables users to build applications for 
image understanding by specifying a knowledge base in the human-readable language of SimpleMind 
and then tuning its parameters. Developing a SimpleMind application is like teaching or instructing a 
human at a cognitive level, it allows non-programmers to build a medical application directly and 
completely using their domain knowledge without knowing the details of the processing code. At 
runtime, the knowledge base is applied to recognize objects. SimpleMind is open source 
(https://gitlab.com/sm-ai-team/simplemind) and the environment can be extended through application 
programming interfaces (APIs) whereby developers can expand the vocabulary and implement new 
processing algorithms as agents. SimpleMind automatically handles the aggregation and chaining of 
many processing agents, enabling a multi-DNN Cognitive AI system. It has also been applied to 
segmentation of the kidney on CT [10, 11] and the prostate on MRI [12]. 

SimpleMind can be considered a “hybrid learning system” that brings together features from 

connectionism and symbolic AI. Four key advantages have been suggested as arising from this 
combined approach [13]: (1) interpretability, (2) error recovery, (3) out of distribution (OOD) handling, 
and (4) learning from small data; and SimpleMind supports DNNs accordingly: 
 It allows explicit knowledge to be applied systematically to improve performance and reliability. 

 Computing a search area in which to apply DNN segmentation using spatial relationships in 
the semantic network. 

 Selection of the best candidate image region outputted by the DNN based on expected 
characteristics defined in the knowledge base, or conversely, rejection of the output if it does 
not meet expectations. It enables reasoning on multiple detected objects, providing cross-
checking between DNN outputs for more robust the image interpretation. Rejecting 
candidates for an object does not preclude recognition of subsequent objects based on other 
knowledge and avoids propagating errors. This gives SimpleMind applications more 
resilience in handling OOD cases and error recovery. 

 It provides a high degree of interpretability and explainability. 
 The knowledge base makes explicit the knowledge that was previously implicit in pre and 

post processing code and makes it easier to apply more knowledge intuitively. 
 The thinking of SimpleMind as it processes an image is captured in the Blackboard. A human 

can know what it was thinking by reviewing the Blackboard contents. 
 Using a human-provided knowledge base, SimpleMind can perform object recognition with little 

or no training data. 
 When there is insufficient data to train a DNN, other segmentation agents (e.g., intensity 

thresholding or edge detection) can use the knowledge base to generate initial segmentation 
results. Little or no training data is needed since the initial semantic network can be 
constructed using declarative knowledge rather than machine learning. These initial results 
can be used with manual editing to generate training sets for DNN learning. When an OOD 
situation arises it can be added to the knowledge base and handled without training data being 
initially available. 

These benefits are also consistent with goals of trustworthy AI according to the High-Level Expert 
Group on AI from the European Commission [14], in particular the following guidelines:  

 Transparency: AI systems and their decisions should be explained. 
 Technical Robustness and safety: AI systems need to be resilient with a fall back plan in case 

something goes wrong. 
 Human agency and oversight: AI systems should empower human beings, allowing them to 

make informed decisions with proper oversight mechanisms. 



5. Conclusion 

SimpleMind is a Neurosymbolic AI environment for medical imaging that supports DNNs with a 
knowledge base and machine reasoning. It was used to build an AI for checking ETT placement on 
CXR that was adopted and evaluated as trustworthy in real-world clinical practice. We believe that 
there is strong potential utility for broader research and commercial applications in building trustworthy 
AI. The open source software allows for knowledge base expansion and agent aggregation by a 
community of developers.  
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