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Abstract
Multi-hop query answering on knowledge graphs is known to be a challenging computational task.
Neurosymbolic approaches using neural link predictors have shown promising results but are still
outperformed by combinatorial optimization methods on several benchmarks, including the FB15k
dataset. We analyze the task on the FB15k dataset and propose two new gradient-based methods, one
learning simultaneously the representations of several candidate answers and the other learning a
skolem function projecting to candidate answers instead of learning direct candidate representations. We
implement both using Logic Tensor Networks. As part of this investigation we identified two important
factors that limit the ability of differentiable methods to learn correct answers. The first factor is the
(un)reliability of the pre-trained neural link predictors which biases the guesses of the query solver. To
account for this, we suggest new evaluation metrics using satisfiability scores, that better reflect the
true performance of neurosymbolic approaches on multi-hop query answering. The second factor is the
regularization technique proposed in previous works, which limits the exploration of the gradient-based
solver. Our results provide the foundation for future work mitigating these bottlenecks.
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1. Introduction

Knowledge graphs (KGs) are graph-structured knowledge bases which enable representing
knowledge as a set of relationships (binary predicates) between entities (variables), and constitute
an important data structure with many use cases [1, 2, 3, 4]. Deep learning models have
been proposed as neural link predictors to predict missing edges in incomplete KGs [5]. The
predictions are typically based on high-dimensional, continuous embeddings of the entities
and the relationships. A challenging computational problem in incomplete KGs is multi-hop
query answering [6, 7] (see Figure 1). As any pair of nodes is a candidate link, computing all
possible paths has intractable complexity in the number of hops. State-of-the-art results on
several benchmarks generally require learning models that predict answers based on example
sets of positive and negative answers to complex queries[8, 9].
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Figure 1: 2-hop query example ”Which drugs interact with proteins associated with the disease A”.

Instead, recent literature [10] has proposed to rely on pre-trained link predictors to answer
queries without relying on new sets of examples. In particular, they couple link predictors
with continuous relaxations of logical operators using fuzzy logic [11] to represent complex
queries in fully differentiable representations and open the ground for differentiable methods
to optimize for the objective. We focus our study on answering First-Order Logic queries
as formulated by Arakelyan et al. [10]. In the simplest form, such queries have multiple
variable nodes 𝑉1, ..., 𝑉𝑛, one target node 𝑇 and one anchor node 𝐴. They can be written ? 𝑇 ∶
∃ 𝑉1, ..., 𝑉𝑛 𝑅0(𝐴, 𝑉1) ∧ 𝑅1(𝑉1, 𝑉2) ∧ ... ∧ 𝑅𝑛(𝑉𝑛, 𝑇 ). In plain English, the objective is to decide
whether there is an entity 𝑇 which verifies that there exists 𝑛 entities 𝑉1, ..., 𝑉𝑛 such that entities
𝐴 and 𝑉1 are linked by relation 𝑅0, entities 𝑉1 and 𝑉2 are linked by relation 𝑅1, etc and entities
𝑉𝑛 and 𝑇 are linked by relation 𝑅𝑛. Still, the best-performing approach in [10] is a hybrid method
that is making use of neural link predictors but performs the search for candidates using a
beam search heuristic. On 2-hop queries from the FB15K dataset [12], the discrepancy between
the differentiable solution CQD-CO and the heuristic method CQD-Beam proposed by [10] is
large. In this paper, we ask the question: what is holding fully differentiable methods back from
always performing better in multi-hop querying?

As part of our investigation, we propose two new improvements of the fully differentiable
approach. The first idea is to diversify the learned candidates by learning multiple embeddings
simultaneously, which must all verify the query and then pick the one closest to the data. The
second idea is to learn a skolem function [13], approximated by a neural network, which maps
the target node to a corresponding variable node, instead of learning directly variable node
embeddings. We have implemented both approaches using Logic Tensor Networks (LTNs)
[14], a neurosymbolic framework based on fuzzy logic. Although the resulting improvements
upon state-of-the-art turned out to be only marginal, our investigation allows us to identify
two bottlenecks of which researchers and practitioners need to be acutely aware when using
differentiable methods to perform complex querying.

First, even best-performing neural link predictors may hold some biases that make optimiza-
tion in a continuous space difficult. We found, on the FB15k dataset, that the fully differentiable
method CQD-CO is consistently finding candidate answers with high satisfiability—but since
the satisfiability scores are so close to one another, this is not reflected in the Hits@3 score.
1 Computing satisfiability scores is therefore a better way to evaluate the performance of
gradient-based querying, and reveals that the fully differentiable approach may perform better

1By satisfiability, we mean the fuzzy relaxation of the score of a complex query, which is calculated based on neural
link predictors for the atomic queries.
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Figure 2: CQD-CO [10]: (Learning) The system finds embedding candidates (e∗𝑇 , e∗𝑉) (that do not
correspond to real data) maximizing the satisfiability of the query, (Testing) Real target embeddings are
ranked based on their satisfiability scores against the learned intermediary variable node e∗𝑉.

with suitable neural link predictors and datasets. Secondly, in the fully differentiable approach,
regularization has a huge impact on the distance to the data of the learned candidates, by
inducing some constraints on the values taken by the candidate embeddings which counteracts
the need for diversification. We also established that the regularization must be adapted to the
formulation, e.g. existing regularizations are not adapted to the parameterized neural network
in skolemization—thus resulting in learned candidates further from the data.

2. Gradient-based complex querying

2-hop queries from the FB15k dataset consist in a collection of 8000 queries. Each can be seen
as a tuple (𝐴, 𝑅1, 𝑅2), where 𝐴 is an anchor node and 𝑅1, 𝑅2 are two relations to form queries
? 𝑇 ∶ ∃ 𝑉 𝑅1(𝐴, 𝑉 ) ∧ 𝑅2(𝑉 , 𝑇 ). An answer to that query is a target node 𝑇 that satisfies the query.
We can also define a full answer as a tuple (𝑇 , 𝑉 ) that satisfies 𝑅1(𝐴, 𝑉 ) ∧ 𝑅2(𝑉 , 𝑇 ). In the FB15k
dataset, there are 2690 distinct relations and 14,951 distinct entities.

2.1. CQD-CO

A neural link predictor 𝒩Θ is pre-trained together with embeddings e𝑉, e𝑅 ∈ ℝ𝑘 for any entity 𝑉
and any relation R. 𝒩Θ(e𝑅, e𝑉1 , e𝑉2) ∈ [0, 1] provides a truth value for the atom 𝑅(𝑉1, 𝑉2) for any
relation 𝑅 and any two entities 𝑉1, 𝑉2. Using these predictions, the satisfiability score to the full
query is computed using a fuzzy t-norm [14] as a continuous generalization of the conjunction.

The CQD-CO method [10] proceeds in two phases which we denote as learning and testing.

Learning CQD-CO solves the following problem by gradient-based optimization:

(e∗𝑇 , e
∗
𝑉) = argmaxe𝑇,e𝑉∈ℝ𝑘 𝒩Θ(e𝑅1 , e𝐴, e𝑉) ⋅ 𝒩Θ(e𝑅2 , e𝑉, e𝑇) (1)

using the product t-norm ⋅ [14] as the continuous generalization of conjunction in logic. The
idea is to optimize for entity embeddings (e∗𝑇 , e

∗
𝑉) ∈ ℝ𝑘 such that the truth value (or satisfiability)

is maximized. One can see that the expression is indeed fully differentiable. Also, the anchor
node embedding, the relation embeddings and the neural link predictor are all pre-trained and
fixed.
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Figure 3: CQD-CO Multi: (Learning) Multiple answer paths are explored via 𝑃 learned candidates
(e∗𝑇𝑖 , e

∗
𝑉𝑖), 𝑖 ∈ {1… 𝑃} (Testing) Real targets are tested against a path decided based on their nearest

neighbor. The theoretical advantage over CQD-CO is that up to 𝑃 intermediate paths can be found.

Testing Then, CQD-CO fixes the variable node e∗𝑉 and tests all real candidate node embeddings
e𝑇 to find the answer:

eans𝑇 = argmaxe𝑇∈𝐷 𝒩Θ(e𝑅1 , e𝐴, e
∗
𝑉) ⋅ 𝒩Θ(e𝑅2 , e

∗
𝑉, e𝑇) (2)

where 𝐷 denotes the dataset of existing node embeddings. The motivation is that, after optimiza-
tion, there is no guarantee that e∗𝑇 has converged to a real data point. CQD-CO [10] proposes
to query the satisfiability of the 14,951 entities with the fixed intermediate nodes and to rank
their scores. The exhaustive query is acceptable because its complexity does not depend on the
number of hops, and hence is tractable.

2.2. Proposed Improvements

In practical knowledge graphs, it is not uncommon to encounter multiple valid answers for a
given query, as depicted in Figure 1. However, CQD-CO, upon completing its learning phase,
only retains a single candidate path when querying in the testing phase. To address this
limitation, we suggest two approaches that retain more candidate paths after the learning phase.

2.2.1. CQD-CO Multi: Learning multiple candidates

Our first approach learns multiple candidate paths after the learning phase and employs nearest
neighbor strategies to select the optimal querying path during testing.

Learning To learn multiple candidates, we used, similarly to query parallelization, the mean-
squared error MSE as a differentiable aggregator that approximates ∀. Notice however that
other options such as the log-product aggregator are possible. Let 𝑃 denote the number of
candidates. The optimization problem yields (e∗𝑇1 , .., e

∗
𝑇𝑃 , e

∗
𝑉1 , ..., e

∗
𝑉𝑃) values:

argmaxe𝑇1 ,..,e𝑇𝑃 ,e𝑉1 ,...,e𝑉𝑃∈ℝ
𝑘 MSE𝑖∈{1,...,𝑃} (𝒩Θ(e𝑅1 , e𝐴, e𝑉𝑗) ⋅ 𝒩Θ(e𝑅2 , e𝑉𝑗 , e𝑇𝑗)) (3)

Testing Given the embedding of an entity e𝑇, let 𝑗 be the index of its nearest neighbor
within e∗𝑇1 , .., e

∗
𝑇𝑃 (in terms of euclidean norm). Then, let the corresponding e∗𝑉𝑗 variable node be
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Figure 4: CQD-CO Skolem: (a, Learning) A projection from target node to intermediate nodes in the
context of the query is trained via 𝑃 learned candidates (e∗𝑇𝑖 , 𝜙𝜃(e

∗
𝑇𝑖)), 𝑖 ∈ {1… 𝑃} (b, Testing) Real targets

are tested using their own projections. The theoretical advantage over CQD-CO is that intermediate
paths are not fixed.

denoted as proj∗𝑉(e𝑇). For each of the 14,951 entities, use these candidates to compute and rank
satisfiability scores according to:

eans𝑇 = argmaxe𝑇∈𝐷 𝒩Θ(e𝑅1 , e𝐴, proj
∗
𝑉(e𝑇)) ⋅ 𝒩Θ(e𝑅2 , proj

∗
𝑉(e𝑇), e𝑇) (4)

2.2.2. CQD-CO Skolem: Non-fixed Intermediate Paths via Skolemization

Our second approach, which we name CQD-CO Skolem, aims to not fix any variable node
during the testing phase of the candidates. We implement a dependence between the target
node e𝑇 and the variable node e𝑉 in the form of a skolem function, materialized by a neural
network 𝜙𝜃. Doing so, we leave potentially every answer path open (instead of limiting it to at
most 1 path in CQD-CO or 𝑃 paths in CDQ-CO Multi).

Learning We also have to learn multiple candidates at the same time, so that the neural
network captures a data-dependent mapping between target nodes and variable nodes 𝜙𝜃(e𝑇) =
e𝑉 in the context of the given query. The optimization problem thus becomes:

argmaxe𝑇1 ,..,e𝑇𝑃 ,∈ℝ
𝑘,𝜃∈ℝ𝑁 MSE𝑖∈{1,...,𝑃} (𝒩Θ(e𝑅1 , e𝐴, 𝜙𝜃(e𝑇𝑖)) ⋅ 𝒩Θ(e𝑅2 , 𝜙𝜃(e𝑇𝑖), e𝑇𝑖)) (5)

Testing After training, we fix 𝜙𝜃 and use it to generate a variable node embedding for each of
the 14,951 entities, which is then used to compute and rank satisfiability scores according to:

eans𝑇 = argmaxe𝑇∈𝐷 𝒩Θ(e𝑅1 , e𝐴, 𝜙𝜃(e𝑇)) ⋅ 𝒩Θ(e𝑅2 , 𝜙𝜃(e𝑇), e𝑇) (6)

3. Results

We reproduce CQD-CO [10] and our proposed improvements using the LTN framework [14].
For each method, the optimization phase can be parallelized on all 8000 queries using a mean-
squared error aggregator. The number of queries optimized in parallel, which can be viewed as



Table 1
Hits@3 score of different training instances on FB15k. Notice that the number of learned candidates 𝑃
and the query batch size must be balanced to obtain good results.

Method 𝑃 Batch size Hits@3

CQD-CO 1 100 30%
CQD-CO Multi 10 100 24%
CQD-CO Multi 10 10 32%
CQD-CO Multi 50 2 31.5%
CQD-CO Multi 100 1 32%
CQD-CO Skolem 10 100 1%
CQD-CO Skolem 10 10 2%
CQD-CO Skolem 50 2 2%
CQD-CO Skolem 100 1 2%

a batch size, has an influence on the performance. Indeed, too big batch sizes can result in a
deterioration of the satisfiability for some of the queries, whereas a too small batch will favor
the maximization of the satisfiability for each query, which can lead to overfitting.

CQD-CO proposes to include a differentiable regularization term Reg which is computed
through canonical tensor decomposition [15]. The full optimization problem is:

(e∗𝑇 , e
∗
𝑉) = argmaxe𝑇,e𝑉∈ℝ𝑘 𝒩Θ(e𝑅1 , e𝐴, e𝑉) ⋅ 𝒩Θ(e𝑅2 , e𝑉, e𝑇) − Reg(e𝑇, e𝑉) (7)

For our proposed methods, we adapt it by summing over the candidates ∑𝑃
𝑖=1 Reg(e𝑇𝑗 , e𝑉𝑗).

The results in terms of Hits@3 for varying numbers of learned candidates and batch sizes are
reported in Table 1. The Hits@3 is the percentage of queries such that a correct answer is in the
top 3 results of the testing phase in terms of satisfiability score. On FB15k, CQD-CO reaches a
Hits@3 score of 30%. CQD-CO Multi, which diversifies the learned candidates by learning 𝑃
paths at the same time, allows us to push the performance to a 32% Hits@3 score only. Upon
further investigation, we find that the regularization method is largely limiting the diversity
of the 𝑃 paths. We discuss this in the next section. CQD-CO Skolem is rather unsuccessful,
plateauing at a 2% Hits@3 score. While we believe that the idea is promising, since having
a dependency between target and variable node is undoubtedly desirable, the trained neural
network 𝜙𝜃 projects real entity embeddings onto intermediary points that were further from
the data. That is likely due to our decision to train with no more than 100 candidates per query,
as training with too many examples ultimately defeats the purpose of reducing the complexity
of answering multi-hop queries. We leave further exploration of this idea to future work.

4. Challenges and Discussions

4.1. Prominent effects of regularization

We performed an ablation study on the regularization term to understand its impact on the
performance. Also, we performed a qualitative analysis of the L2 norms and euclidean dis-
tances to data of the learned candidates. Our findings were as follows: 1) with CQD-CO and
regularization, learned candidates have L2 norms one order of magnitude smaller than real



Table 2
Hits@3 scores and satisfiability metric with and without canonical tensor decomposition (CTD) or L2
regularization, for different number of learned candidates 𝑃 and batch sizes, on FB15k.

Method Reg. 𝑃 Batch size Hits@3 Sat metric

CQD-CO none 1 100 13% 18%
CQD-CO CTD 1 100 30% 40%
CQD-CO Multi none 10 10 15.5% 20%
CQD-CO Multi none 100 1 16.5%
CQD-CO Multi L2 10 10 32%
CQD-CO Multi CTD 10 10 32% 45%
CQD-CO Skolem none 10 10 2% 2%
CQD-CO Skolem CTD 10 10 2% 2%

entity embeddings. Without regularization, the L2 norms of learned candidates are of the same
order of that of the real entities; 2) with CQD-CO Multi and regularization, the distance of
candidates to one another is several orders of magnitudes smaller than the distance to real
entity embeddings. Without regularization, this effect is less important: learned candidates
are further apart from one another, but distances to data are still much higher; and 3) with
CQD-CO Skolem and regularization, learned candidates are one order of magnitude further
away in euclidean distance from real data points than learned candidates by the previous method.
Without regularization, the distances to data remain similar.

The ablation study reveals important differences in performance when removing regular-
ization for both CQD-CO and our extension to learning multiple candidates. The effect is not
observable with skolemization. Results are reported in Table 2. Noticing that the regularizer
tends to push learned candidates towards points with small norms and close to one another, we
implement a more explicit norm regularization, namely L2-regularization, and interestingly, it
is possible to reproduce state-of-the-art results with the right choice of hyperparameter.

Our interpretation of these empirical observations is that the regularizer constrains the
exploration of the search space onto embeddings with smaller norms, which also limits the
ability to learn correct patterns. This could be one of the glass ceilings of performance by these
methods. Yet, when no constraint is applied, nothing prevents overfitting from happening,
which explains why performance deteriorates although the learned embeddings are closer to real
embeddings. Skolemization is a different story: the search space is different and regularization
fails to mitigate overfitting. The trained neural network 𝜙𝜃 projects real embeddings onto points
far away from the data, and the regularization term is not adapted to its parameterization which
is why it has little to no effect. In our opinion, one would therefore need to come up with an
entirely different regularization technique, adapted to this formulation, in order to harness the
power of skolemization.

4.2. Satisfiability scores reveal biases in neural link predictors

In order to gain a finer understanding of what gradient-based complex querying is actually
learning, we studied directly the satisfiability scores instead of computing only Hits@3. The
idea was to evaluate the satisfiability scores of the candidate answers to 2-hop queries to see by
how much they were off, in comparison with ground truth answers.



For each query (𝐴, 𝑅1, 𝑅2), we consider the target node 𝑇 that was selected by each of the
gradient-based complex querying methods through ranking of satisfiability scores. For each
entity 𝑉 amongst the 14,951 possible entities, we evaluate the satisfiability 𝒩Θ(e𝑅1 , e𝐴, e𝑉) ⋅
𝒩Θ(e𝑅2 , e𝑉, e𝑇), and we pick the entity 𝑉 with the highest satisfiability to form the full answer
(𝑇 , 𝑉 ). Similarly, considering a ground truth answer 𝑇𝑔, we use the same procedure to form a full
answer (𝑇𝑔, 𝑉𝑔). If the satisfiability of a full answer obtained by our gradient-based methods is
higher or equal to the satisfiability of the full answer from ground truth, we classify the answer as
correct; otherwise, we classify it as incorrect. This allows us to compute a percentage of correct
answers that we call satisfiability metric. The results are reported in Table 2 and show that the
performance of gradient-based methods is underestimated by the Hits@3 metric. In other words,
in some cases, it is possible to find an answer (𝑇 , 𝑉 )with a higher satisfiability than that of ground
truth answers (𝑇𝑔, 𝑉𝑔), i.e.𝒩Θ(e𝑅1 , e𝐴, e𝑉)⋅𝒩Θ(e𝑅2 , e𝑉, , e𝑇) > 𝒩Θ(e𝑅1 , e𝐴, e𝑉𝑔)⋅𝒩Θ(e𝑅2 , e𝑉𝑔 , e𝑇𝑔),
which reveals that the neural link predictor 𝒩Θ may be biased.

We computed the typical difference between the highest satisfiability of a learned candidate
answer and the highest satisfiability of a ground truth answer, when the learned answer is
incorrect. For comparison, we computed the same typical difference between a random answer
and a ground truth answer. Suprisingly, the difference with the random answer is already
quite low (10−3). But the difference with our learned candidates is even lower (10−4) for our
best-performing gradient-based method. There are two take-aways from these evaluations: 1)
the neural link predictor creates a bias towards high values of satisfiability. For a given 2-hop
query, for any entity chosen as the target node 𝑇, it is possible to find a corresponding variable
node 𝑉 which would yield a satisfiability close to the highest possible satisfiability, as much as
a difference of 10−3; 2) the answers returned by our best-performing gradient-based complex
querying methods, although they may be incorrect, are not just any answers: they are answers
with a satisfiability very close to that of ground truth answers, as much as a difference of 10−4.

Our analysis sheds light on inherent difficulties that gradient-based complex querying meth-
ods may encounter on some particular datasets. Here, the task is to find, amongst entities with
satisfiability scores close to one another as much as 10−3, the entities with best satisfiability to
a 10−4 precision. In our opinion, this provides an explanation on why it is difficult to solve it
with continuous optimization methods, which are inherently approximative. It comes as no
surprise that a combinatorial optimization method which treats entities as discrete, no matter
the difference between them, would perform better on this instance. Yet, our observations
suggest that the gradient-based methods are learning what they should be learning and that
some signal is definitely captured. We can infer that the performance of gradient-based methods
could be dramatically better in configurations where the neural link predictors and the dataset
are suitable, e.g. if the correct answers stick out in terms of satisfiability.

5. Conclusion

We have investigated the task of complex query answering on incomplete knowledge graphs,
with one question in mind: why don’t gradient-based methods always produce the best per-
formance? Although our attempts to improve on the existing methods have achieved only
marginal improvements on the FB15k dataset, our in-depth analysis of the behavior of these



methods in terms of distance to the data and satisfiability has given us ways to understand
these results. We highlight the role of regularization in driving the learned candidates away or
closer to the data and advocate that this should be carefully taken into account when using and
designing these methods. Furthermore, we see that the Hits@3 metric may underestimate the
performance of gradient-based complex querying in its inherent task, which is to generalize in
terms of satisfiability. We also pinpoint a bottleneck that would perhaps need to be mitigated
independently from the complex querying task: proximities in terms of satisfiability induced by
the neural link predictor and the data. By demistifying in part the behavior of gradient-based
complex querying, we hope that our work will serve as foundation for developing new solutions.
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