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Abstract
Neurosymbolic artificial intelligence is a growing field of research aiming at combining neural networks
with symbolic systems, including their respective learning and reasoning capabilities. This hybridization
can take many shapes which adds to the fragmentation of the field and makes it difficult to compare
the existing approaches. If some efforts have been made in the community to define archetypical
means of hybridization, many elements are still missing to establish principled comparisons. Amongst
those missing elements are formal and broadly accepted definitions of neurosymbolic tasks and their
corresponding benchmarks. In this paper, we start from the specific task of multi-label classification
with the integration of propositional background knowledge to illustrate how such a benchmarking
framework could look like. Based on the benchmarking of one granular task we zoom out and discuss
important elements and characteristics of building a full benchmarking suite for more than just one task.

1. Introduction

Neurosymbolic artificial intelligence (AI) is a trending research topic [1]. In general, neurosym-
bolic AI focuses on bringing together concepts from the logic-focused symbolic world and the
neural or connectionist’s world [2, 3, 4, 5].

The potential of the field is based on the “best of both worlds” perspective, i.e., that by
combining neural and symbolic, the respective strengths are maintained while the weaknesses
are minimized. Thus, the objectives are extensive and include, amongst others, improved
performance [6, 7, 8, 9], explainability [10, 6, 11, 12, 13, 14] and generalization [15, 10, 11, 12,
13, 9, 16].

Contrasting its promise of generalization, the field of neurosymbolic AI exhibits a progress-
hampering level of fragmentation, e.g. in the evaluation and the architectural landscape. There
have been several attempts to structure the architectural approaches in the neurosymbolic AI
field [17, 2, 18, 19, 20, 21]. In this paper, we focus on the fragmented evaluation landscape, i.e.
the tasks, datasets and metrics used to evaluate neurosymbolic systems. Although not the focus
of this paper, we believe that further work on a clear, unified architectural taxonomy is needed
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and that the current ambiguity about the separation of the neural, symbolic, and neurosymbolic
worlds adds to the fragmented evaluation landscape.

Previous researchers have highlighted the fragmentation problem and emphasized the need
for a more systematic approach to evaluating neurosymbolic AI [22, 19, 1]. Although efforts
have been made to tackle this issue [23, 24, 25, 26, 27, 28], they have primarily remained at a
narrow and specific level, i.e. they propose specific tasks and benchmarks, including datasets
and evaluation metrics. Only a few exceptions, such as the panel discussion “The future of
(neuro-symbolic) AI” at the IBM Neuro-Symbolic AI Workshop 2022 [29] and the presentation
by Madhyastha and subsequent open discussion at NeSy2022 conference[22], have addressed
the neurosymbolic benchmark fragmentation issue on a level beyond a specific benchmark.

In this position paper, we seek to complement the prior work tackling the fragmented
neurosymbolic benchmark landscape by facing the challenge on a higher-level, focusing on the
question of how to think about benchmarking neurosymbolic AI. We give an example for the
setup of a specific benchmark on the task of multi-label classification with symbolic background
knowledge. We include the thought process of coming up with a formal definition of the task,
a suitable dataset, and a selection of metrics. Additionally, we discuss the implications for
adding further benchmarks using our proposed thought process and thus contribute to a more
principled benchmarking landscape for neurosymbolic AI.

2. Benchmarking neurosymbolic systems on a specific task

Aneurosymbolic benchmark can be designed to answer twomain questions: “What performance
level can neurosymbolic systems reach on a given task?” and “How does hybridization of neural
and symbolic components help on a given task?”. The first question takes an outside view
focusing on observable behavior while the second question takes an inside view focusing on
the design of agents. The inside and the outside view are two well-known and deeply grounded
perspectives in AI research [30]. We agree with Russell that in general artificial intelligence
should be measured taking an outside view. However, answering the second question with the
inside view can give further insights on how to design AI agents by understanding how and
when to use neurosymbolic architectures. Additionally it might help directing the research
efforts of the neurosymbolic community because advancement in task performance can be
better linked to the architectural setup of the agent.

Hence, in this section, we describe the challenges of benchmarking the task of multi-label
classification with symbolic background knowledge so that the two questions (internal and
external) can be answered. We cover the formal definition of the task, the underlying dataset
and the metrics. Although a task is not per se neurosymbolic, our chosen task covers elements
that are linked to a neural (image classification) and to a symbolic (background knowledge)
domain. This setup makes relatively straight-forward to use agents with a neurosymbolic
architecture, and is suitable for a neurosymbolic benchmark that answers both questions.

2.1. Task formalism

Setting a formal definition of the task is a necessary preliminary step to compare neurosymbolic
systems in a principled way. To be practical, the formalism also has to be comprehensive enough



to incorporate diverse datasets (in terms of modality and background knowledge structure) and
avoid a fragmentation of the field into multiple narrower tasks definitions.
Multi-label classification with background knowledge is mapping inputs 𝑥 ∈ ℝ𝑑 to

binary labels y ∈ {0, 1}𝑘 such that these labels satisfy some background knowledge. This
background knowledge is expressed as a propositional formula 𝛼 using symbols from the
signature 𝒮 ∶= {𝑌𝑗}1≤𝑗≤𝑘 and logical connectors {¬, ∧, ∨} with their standard semantics. For
lighter notations, we identify a label y ∈ {0, 1}𝑘 with the propositional valuation mapping each
𝑌𝑗 to 𝑦𝑗. Therefore, we note y ⊧ 𝛼 if the corresponding valuation models 𝛼. A dataset for that
task is 𝒟 ∶= (𝑥 𝑖,y𝑖)1≤𝑖≤𝑛 with 𝑥 𝑖 ∈ ℝ𝑑, y𝑖 ∈ {0, 1}𝑘 such that all labels in the dataset satisfy the
background knowledge, i.e. ∀1 ≤ 𝑖 ≤ 𝑛,y𝑖 ⊧ 𝛼.

This formalism encompasses standard classification tasks like independent binary classifica-
tion (where 𝛼 = ⊤ since every combination is valid) and multi-category classification (where
𝛼 = (⋁1≤𝑗≤𝑘 𝑌𝑗) ∧ (⋀1≤𝑗<𝑙≤𝑘(¬𝑌𝑗 ∨ ¬𝑌𝑙)) enforces that one and only one atom is true at a time).

Since we formally introduced our task we need to discuss the dataset and the metrics to
complete our benchmark.

2.2. Datasets

Building an appropriate dataset for multi-label classification with background knowledge poses
a substantial challenge. It must contain large amounts of data amenable to neural processing and
whose labels present some significant structure expressible in the language of propositional logic.
Efforts to build such datasets were often led by researchers trying to measure the performance
of their neurosymbolic system, meaning that different systems are rarely evaluated on the same
datasets and that datasets are often custom built to fit the capacity of a given system.

We observed three patterns in how datasets were created: symbolic datasets where a sym-
bolic reasoning task is turned into a learning task (e.g. finding the shortest path in a weighted
graph [31]), compositional datasets where instances are tuples of a base sub-symbolic classifi-
cation dataset constrained to respect a given structure (e.g. the MNIST SUDOKU dataset [26])
and hierarchical datasets where classes of a sub-symbolic classification dataset are chosen in a
hierarchy of concepts (e.g. classes in ImageNet [32] are chosen amongst synsets of the WordNet
hierarchy [33]).

To turn this collection of datasets into an efficient benchmark for multi-label classification
with background knowledge, further aspects need to be considered. On a fundamental level,
we observe an inverse relation between the complexity of the sub-symbolic features and the
complexity of the symbolic structure of the dataset, which means that the zone of complex
sub-symbolic features and complex symbolic structure is not well covered by existing datasets.
[25] is a dataset of traffic videos (complex sub-symbolic features) where labels satisfy a rich set
of constraints (complex symbolic structure). It constitutes a first step to cover that void and
more efforts should be invested in that direction. On the practical side, we need to set up a
standard on how to represent, store and operate neurosymbolic datasets and their corresponding
background knowledge, to allow rapid testing of any system on any dataset.



2.3. Metrics

To evaluate neurosymbolic systems inside our benchmark we use a combination of perfor-
mance metrics (the outside view) and control metrics (the inside view). Examples of standard
performance metrics are cross-entropy loss, individual accuracy, f1-score, collective accuracy,
top-k accuracy. Likewise, for standard control metrics we have number of trainable parameters,
number of hyper-parameters, number of FLOPS.

Besides, new control or performance metrics specific to neurosymbolic tasks might be ben-
eficial. One example for such a performance metric is semantic consistency which tracks
how many predictions of a given system match the constraints expressed by the background
knowledge (see [34] or [25] for instance).

To settle on a limited set of metrics for the multi-label classification with background knowl-
edge task (which also can be used for other tasks), we suggest to use collective accuracy and
semantic consistency as performance metrics and network size (number of trainable parameters)
as a control metric. The semantic consistency metric helps us understand how much the system
integrates background knowledge. Collective accuracy is a very demanding metric that is robust
to imbalanced datasets: we generally observe a strong correlation between collective accuracy
and f1-score for instance. Eventually, network size is a good first order approximation for model
capacity.

3. Broaden the focus on a collection of tasks

To extend the thoughts on the specific task from the previous section to cover more of the
neurosymbolic AI field, a natural next step is to focus on transferring the approach on more
tasks. We draw confidence in the transferability of the proposed thought process from the
observation that benchmarks cited in the preceding sections have already incorporated some
of our suggestions (e.g. implementing control metrics). Furthermore, existing benchmarks
may benefit from our thought process to improve their comparability. For instance, in visual
reasoning, CLEVR [35] and CLEVRER [36] benchmarks do not provide a formal definition of
the task, which makes comparisons between systems and with other datasets hard to establish.
Moreover, both underlying datasets lack sub-symbolic complexity compared to classic computer
vision datasets: the community could greatly benefit from filling that void.

Expanding the focus from a specific task to a collection of tasks, i.e., creating a benchmarking
suite, raises another critical question: Which tasks should be included? The diversity of tasks has
been identified as a key consideration for a benchmarking suite by the discussion panel in [29].
Potential tasks should have ranging difficulties for both the neural and the symbolic architecture.
Also similar to the Glue [37] or GlueCon [38] benchmarking suites, several different capabilities
and skills should be needed to solve the tasks.

4. Conclusion

This position paper contributes an example thought process for designing neurosymbolic AI
benchmarks. Of course a single position paper cannot fully solve all questions around building



a unified benchmarking system, but, in contrast to other papers in the field so far, we refrained
from marketing an individual dataset and focused more on the questions around the design
phase of a benchmark. We also discussed the implications for broadening the approach to
multiple tasks which will be a valuable starting point for future benchmarking discussions
and designs. Next steps could include to validate our approach on more tasks and add further
thoughts to the discussion around important characteristics of a more holistic benchmarking
suite.
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