
Visual Reward Machines
Elena Umili1, Francesco Argenziano1, Aymeric Barbin1 and Roberto Capobianco1,2

1Sapienza University of Rome
2Sony AI

Abstract
Non-markovian Reinforcement Learning (RL) tasks are extremely hard to solve, because intelligent
agents must consider the entire history of state-action pairs to act rationally in the environment. Most
works use Linear Temporal Logic (LTL) to specify temporally-extended tasks. This approach applies
only in finite and discrete state environments or continuous problems for which a mapping between
the continuous state and a symbolic interpretation is known as a symbol grounding function. In this
work, we define Visual Reward Machines (VRM), an automata-based neurosymbolic framework that can
be used for both reasoning and learning in non-symbolic non-markovian RL domains. VRM is a fully
neural but interpretable system, that is based on the probabilistic relaxation of Moore Machines. Results
show that VRMs can exploit ungrounded symbolic temporal knowledge to outperform baseline methods
based on Recurrent Neural Networks (RNN) in non-markovian visual domains.

Keywords
Non-Markovian Reinforcement Learning, Neurosymbolic AI, Symbol Grounding, Deep Reinforcement
Learning

1. Introduction

Non-Markovian Reinforcement Learning (RL) tasks [1] are extremely difficult to solve because
intelligent agents must consider the entire history of state-action pairs to act rationally in
the environment. However, the current line of research in this area involves bypassing non-
Markovianity by augmenting the state space with a set of features that encode the environment
history and solving the augmented-state MDP with known RL algorithms.

Therefore, the main challenge is how to construct these features. In the case of non-symbolic-
state MDPs, the most popular approach is to combine RL algorithms with the use of Recurrent
Neural Networks [2][3][4], which automatically extract features from data sequences.

For problems with a symbolic finite state space, most works use LTL [5] or LTLf [6] to specify
the temporally-extended task. This specification is then compiled into an automaton, and the
automaton state is combinedwith the environment state tomake the decision processMarkovian.
An example of this approach is the so-called Reward Machines [7]. Reward machines (RM) can
also be applied to non-symbolic-state environments for which a symbol grounding function
is known [8]. The latter maps the environment’s raw state into a boolean interpretation over
the symbols used by the specifications in LTL and makes the symbols observable. Therefore,

NeSy 2023, 17th International Workshop on Neural-Symbolic Learning and Reasoning, Certosa di Pontignano, Siena,
Italy
Envelope-Open umili@diag.uniroma1.it (E. Umili); argenziano@diag.uniroma1.it (F. Argenziano); aymeric.barbin@uniroma1.it
(A. Barbin); capobianco@diag.uniroma1.it (R. Capobianco)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:umili@diag.uniroma1.it
mailto:argenziano@diag.uniroma1.it
mailto:aymeric.barbin@uniroma1.it
mailto:capobianco@diag.uniroma1.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

summarizing RMs assumes prior knowledge of: (i) the symbol grounding function, (ii) the LTL
or the Deterministic Finite Automaton (DFA) specification. Despite prior work that discards
the assumption of knowing the temporal specification [9][10][11][12], no work assumes not
knowing the symbol grounding function. We emphasize that learning this function for realistic
environments with raw and/or high-dimensional states can be challenging and requires a large
amount of labeled data.

In our previous work [13], we showed that we can exploit LTLf specifications in image
sequence classification to speed up the learning process, even if the symbols in the specific
alphabet are not grounded in the images. In another previous work [14], we exploited a
particular recurrent neural network design inspired by Probabilistic Finite Automata (PFA)
to perform DFA induction with gradient descent. In this work, we combine [13] and [14] to
implement a neurosymbolic version of reward machines that we call Visual Reward Machines
(VRM). The contribution of this paper is a novel formulation of reward machines that considers
the symbol grounding function as a part of the specification. We show that we can relax the
assumption of knowing the symbol grounding function and that the LTLf specifications can be
exploited to increase the performance of RL algorithms in visual non-Markovian tasks, even if
the specification is not grounded in the environment states.

The remainder of this paper is organized as follows: In Section 2, we review related works;
in Section 3, we provide some preliminary knowledge on Reward Machines and Probabilistic
Finite Automata; we define Visual Reward Machines and describe their implementation using
neural networks in Section 4; we report preliminary experiments validating our method in
Section 5; finally, we discuss final considerations and directions for future work in Section 6.

2. Related works

LTL formulas are widely used in Reinforcement Learning (RL) to specify non-markovian tasks
[15]. Some work assumes prior knowledge of the LTL task specification [7][16], which is
compiled into an automaton andmonitored during the task execution to produce non-markovian
rewards for the task. Some other works focus on learning the task machine from traces of
symbolic observations and rewards received by the environment, by using known methods
for automata induction [9][10][11] [12]. All these works, however, use symbolic data and do
not consider the problem of discovering latent symbols in the data. For this reason, they are
applicable only in symbolic-state environments or continuous problems for which a mapping
between the continuous state and a symbolic interpretation is known, also called labeled MDP
[8].

Manyworks assume to know an imperfect symbol grounding function for the task [17][18][19].
Namely, a function that sometimes makes mistakes in predicting symbols from states or predicts
a set of probabilistic beliefs over the symbol set instead of a boolean interpretation. These works
can be considered a preliminary step towards integration with non-symbolic domains. However,
they do not assess the problem of learning the symbol grounding function, but only how to
use a pre-trained imperfect symbol grounder. One work [20] uses the LTLf specification of the
task without assuming any knowledge of the symbol grounding function. This work employs a
neural network architecture that is shaped as the LTL formula to learn a representation of states,

that can be easily transferred to different LTL tasks in the same environment. The capability
to transfer the representation to new tasks suggests that the representation can capture the
semantics of symbols in some ways. However, the representation does not exactly ground the
symbols in the environment observations.

3. Background

Reward Machines Reward machines (RM) [7] are an automata-based representation of
non-Markovian reward functions. RMs provide a normal-form representation for reward
specification in a diversity of formal languages. Given a finite set of propositions 𝑃 representing
abstract properties or events observable in the environment, RMs specify temporally extended
rewards over these propositions while exposing the compositional reward structure to the
learning agent. Formally, a simple Reward Machine is a tuple 𝑅𝑀 = (2𝑃, 𝑄, 𝑞0, 𝛿𝑡, 𝛿𝑟), where 2𝑃
is the automaton alphabet, 𝑄 is the set of states, 𝑞0 is the initial state, 𝛿𝑡 ∶ 𝑄 × 2𝑃 → 𝑄 is the
transition function and 𝛿𝑟 ∶ 𝑄 × 2𝑃 → ℝ is the reward function.

Probabilistic Finite Automaton A Probabilistic Finite Automaton (PFA) 𝐴𝑝 is a tuple
(𝑃, 𝑄, 𝑖𝑝, 𝛿𝑡𝑝, 𝑓𝑝), where 𝑃 is the alphabet, 𝑄 is the finite set of states, 𝑖𝑝 ∶ 𝑄 → [0, 1] is the
probability for a state to be an initial state, 𝛿𝑡𝑝 ∶ 𝑄 × 𝑃 × 𝑄 → [0, 1] is the transition probabil-
ity function, and 𝑓𝑝 ∶ 𝑄 → [0, 1] is the probability of a state to be final. We have therefore
∑
𝑞′∈𝑄

𝛿𝑡𝑝(𝑞, 𝑝, 𝑞′) = 1, and ∑
𝑞∈𝑄

𝑖(𝑞) = 1 ∀𝑞 ∈ 𝑄, ∀𝑎 ∈ 𝑃. We can also represent the PFA in matrix

form as a transition matrix 𝑀𝑡, an input vector 𝑣𝑖 and an output vector 𝑣𝑜. Matrix 𝑀𝑡 ∈ ℝ|𝑃 |×|𝑄|×|𝑄|
contains at index (𝑝, 𝑞, 𝑞′) the value of 𝛿𝑡𝑝(𝑞, 𝑝, 𝑞′). We denote as 𝑀𝑡[𝑝] ∈ ℝ|𝑄|×|𝑄| the 2D transi-
tion matrix for symbol 𝑝. The input vector 𝑣𝑖 ∈ ℝ1×|𝑄| contains at index 𝑘 the probability of state
𝑞𝑘 to be an initial state. The output vector 𝑣𝑜 ∈ ℝ|𝑄|×1 has in position 𝑘 the probability of state 𝑞𝑘
to be accepting. Given a string 𝑥 = 𝑥[0]𝑥[1]...𝑥[𝑙 − 1], we denote as 𝑞𝑝,0, 𝑞𝑝,1...𝑞𝑝,𝑙 the sequence
of probabilities to visit a certain state, where 𝑞𝑝,𝑡 ∈ ℝ1×|𝑄| is a row vector containing at position
𝑘 the probability to stay in state 𝑘 at time 𝑡.

𝑞𝑝,0 = 𝑣𝑖
𝑞𝑝,𝑡 = 𝑞𝑝,𝑡−1 × 𝑀𝑡[𝑥[𝑡]] ∀𝑡 > 0 (1)

The probability of being in a final state at time 𝑡 is the inner product 𝑞𝑝,𝑡 × 𝑣𝑜. Therefore the
probability of a string to be accepted is the probability to be in a final state in the last computed
state 𝑞𝑝,𝑙, and it is calculated as follows

𝑣𝑖 × 𝑀𝑡[𝑥[0]] × 𝑀𝑡[𝑥[1]] × ... × 𝑀𝑡[𝑥[𝑙 − 1]] × 𝑣𝑜 (2)

4. Method

4.1. Visual Reward Machine definition

We define a Visual Reward Machine as a tuple 𝑉𝑅𝑀 = (𝑆, 𝑃, 𝑄, 𝑅, 𝑞0, 𝛿𝑡𝑝, 𝛿𝑟𝑝, 𝑠𝑔), where 𝑆 is
the set of input data, possibly infinite and continuous, the machine can process; 𝑃 is a finite

(a) (b) (c)

Figure 1: a) Visual Minecraft environment. b) non-markovian task specification for the Minecraft
agent: the agent has to collect the pickaxe and the gem (in any order) and then go to door, while always
avoiding the lava. c) Implementation of a Visual Reward Machine with convolutional and recurrent
neural modules

set of symbols; 𝑄 is a finite set of states, 𝑅 is a finite set of rewards; 𝑞0 is the initial state;
𝛿𝑡𝑝 ∶ 𝑄 × 𝑃 × 𝑄 → [0, 1] is the transition probability function; 𝛿𝑟𝑝 ∶ 𝑄 × 𝑅 → [0, 1] is the reward
probability function and 𝑠𝑔 ∶ 𝑆 × 𝑃 → [0, 1] is the symbol grounding probability function.

Similarly to a RM, a VRM produces a reward sequence by processing a data sequence. Unlike
RM, however, the input data do not need to be symbolic but can be of any type. The symbol
grounding function maintains the link with a symbolic representation, assigning to a data
instance 𝑠 ∈ 𝑆 a probability value for each symbol in the alphabet 𝑃. In our setting, the Reward
Machine is a probabilistic Moore Machine taking as input probabilistic symbols. Let us assume
that all the information in the definition is known. We represent the Moore machine in matrix
representation, as described in Section 3, as an input vector 𝑣𝑖 encoding the initial state, a
transition matrix 𝑀𝑡 encoding the transition function, and an output matrix 𝑀𝑜 representing
the reward function. Given an input sequence of data 𝑠1, 𝑠2, ..., 𝑠𝑙, the VRM outputs a sequence of
𝑙 probability vectors over the machine states ℎ1, ℎ2, ..., ℎ𝑙 and a sequence of 𝑙 probability vectors
over the machine outputs (which correspond to reward values) 𝑟1, 𝑟2, ..., 𝑟𝑙 as follows.

ℎ0 = 𝑣𝑖
𝑥𝑡 = 𝑠𝑔(𝑠𝑖)

ℎ𝑡 =
𝑝=|𝑃|
∑
𝑝=0

𝑥𝑡[𝑝](ℎ𝑡−1 × 𝑀𝑇[𝑝])

𝑟𝑡 = ℎ𝑡 × 𝑀𝑂

(3)

Where we denote with 𝑉 [𝑖] (or v[i]), the component 𝑖 of matrix (vector) 𝑉 (𝑣).

4.2. VRM implementation with neural networks

This section describes a neural network architecture implementing Visual Reward Machines.
We define the VRM implementation as a neural network composed of two parts: a convo-

lutional module and a recurrent module. The convolutional module implements the symbol

grounding function. This module handles the perception of symbols from non-symbolic states.
It is implemented as a softmax-activated Convolutional Neural Network (CNN), having the
output layer size equal to the number of symbols. The recurrent module corresponds to a
parametric probabilistic Moore Machine. This module implements the reward machine with a
Recurrent Neural Network (RNN) of a specific structure that allows extracting from the network
parameters an equivalent Moore Machine. This network is based on an extension of [14].

In the VRM definition, we use a probabilistic relaxation of both the symbol grounding function
and the Reward Machine. These probabilistic relaxations are fundamental for implementing the
whole system with neural networks (NN). NNs, in fact, are intrinsically continuous since they
learn through a gradient-based optimization process, and they can struggle in learning a ‘crispy’
symbolic logical model. In our case, the logical model we want to induce from data is the Moore
Machine (MM), representing the non-markovian reward. The intuition behind our work is that
Probabilistic Moore Machines (PMM) are closely related to Recurrent Neural Networks, since
they calculate the next state and output using multiplications between continuous vectors and
matrices, in the same way as RNNs do. However, (boolean) machines can also be represented
in matrix form, considering their matrix representation comprises only one-hot row vectors.
Following this idea, we define the recurrent module as a parametric PMM in which we can drive
the representation to be close to one-hot during training, allowing logical induction through
backpropagation. We obtain this effect using an activation function that smoothly approximates
discrete output, as in prior work [21] [22] [23]. In particular, we use a modified version of
the classical softmax activation functions: 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥𝜏(𝑥, 𝜏) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑥/𝜏); where 0 < 𝜏 ≤ 1 is
a temperature value controlling the activation steepness: when 𝜏 is close to 0, the 𝜏-softmax
returns outputs close to one-hot vectors; when 𝜏 is 1, the function is the softmax.

Following the VRM implementation with parametric models.

ℎ0 = 𝑣𝑖
𝑥𝑡 = 𝐶𝑁𝑁(𝑠𝑡; 𝜃𝑠𝑔)

ℎ𝑡 =
𝑝=|𝑃|
∑
𝑝=0

𝑥𝑡[𝑝](ℎ𝑡−1 × 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥𝜏(𝜃𝑀𝑇 , 𝜏)[𝑝])

𝑟𝑡 = ℎ𝑡 × 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥𝜏(𝜃𝑀𝑂 , 𝜏)

(4)

where 𝜃𝑠𝑔, 𝜃𝑀𝑇 and 𝜃𝑀𝑂 are the model trainable parameters. 𝜃𝑠𝑔 are the symbol grounder param-
eters, while 𝜃𝑀𝑇 and 𝜃𝑀𝑂 are the parameters of the recurrent module. In particular, 𝜃𝑀𝑇 and 𝜃𝑀𝑂

are two matrices having the same dimensions of matrices 𝑀𝑇 and 𝑀𝑂 (namely 𝜃𝑀𝑇 ∈ ℝ|𝑃 |×|𝑄|×|𝑄|

and 𝜃𝑀𝑂 ∈ ℝ|𝑄|×|𝑅|) and the 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥𝜏 activation is applied to the last matrix dimension. A scheme
of the proposed implementation is shown in Figure 1(c).

5. Preliminary experiments

In this section, we report some preliminary experiments that validate the proposed framework.
The implementation code can be found at https://github.com/whitemech/VisualRewardMachine.

In particular, we explore several learning procedures. In the first experiment, we test offline
symbol grounding, which refers to the capability to learn the symbol grounding function by
leveraging the Moore Machine structure and sequences of states-rewards of a hand-crafted

https://github.com/whitemech/VisualRewardMachine

dataset. For this test, we initialize the Moore Machine parameters 𝜃𝑀𝑇 and 𝜃𝑀𝑂 with the given
task specification and train only the CNN weights by minimizing the cross-entropy between
the network predictions and the reward labels.

In the second experiment, we test a combination of RL and online symbol grounding. In
this test, we ground the symbols of the task specifics on the fly, meaning we use sequences of
image states and rewards collected by the agent while learning to perform the task. We use the
learned symbol grounding to proceed on the automaton at each step and estimate the current
automaton state. The latter is combined with the environment visual state to form a Markovian
state representation, which is used by the RL algorithm to estimate the optimal policy.

While this paper mainly focuses on learning the grounding function, the framework is very
versatile, and many other learning-reasoning combinations are possible. For instance, we test
learning the DFA structure from traces of imperfectly grounded symbols, which are symbols
for which we have only a probabilistic prediction instead of a strictly boolean interpretation.
Although many techniques for DFA induction exist in the literature [24][25][26], and few
extensions can handle noise in the output label [27] [28], to the best of our knowledge, there are
no extensions to handle noise in the input symbols. In our experiments, we simulate the use of
an imperfect pretrained classifier for symbol grounding by corrupting the input symbols with
Gaussian noise, and we train the recurrent part of the VRM on this noisy dataset. We conduct our
preliminary experiments in this direction on Tomita Languages, which are a popular benchmark
for DFA induction. We leave the integration of DFA induction with RL in non-Markovian
environments for future research.

5.1. Visual Minecraft Environment

In this section, we introduce the Visual Minecraft environment that we used to conduct our
preliminary experiments, as shown in Figure 1(a). This environment is an example of a non-
Markovian task with non-symbolic states, similar to the one considered by [29] and [19], but
with image states.

A robotic agent can navigate through a grid world environment using four movement actions:
𝑙𝑒𝑓 𝑡 , 𝑟 𝑖𝑔ℎ𝑡, 𝑢𝑝, 𝑑𝑜𝑤𝑛. Each cell of the grid can either be empty or contain one of the following
items: pickaxe, gem, lava, or door. The task requires the agent to collect a pickaxe and a gem (in
any order), and then proceed to the door, while always avoiding the lava. The task specification
is represented by the deterministic finite automaton (DFA) shown in Figure 1(b), which is
expressed in terms of five symbols, 𝑃 = 𝑝𝑖𝑐𝑘𝑎𝑥𝑒, 𝑔𝑒𝑚, 𝑙𝑎𝑣𝑎, 𝑑𝑜𝑜𝑟 , 𝑒𝑚𝑝𝑡𝑦. Each symbol indicates
whether the corresponding item is present in the cell occupied by the agent.

To express the non-markovian reward function, we transformed the DFA into a Moore
machine by assigning a reward function to its states. The reward function is maximum for the
final states and decreases as the distance from the final state increases. The values of the reward
function are indicated in red on the automaton states in Figure 1(b).

The environment state is an image similar to the one depicted in Figure 1(a), and it does not
provide any information about the items collected by the agent up to that point in time, such as
the gem or pickaxe. This makes the environment non-Markovian because it is impossible to
obtain a comprehensive inventory of all the elements collected by the agent from the current
state alone. Previous actions and observations must be considered. Furthermore, an additional

(a) (b)

Figure 2: Results obtained by exploiting the reward machine structure to learn the symbol ground-
ing function offline for the Visual Minecraft environment. a) Visual Reward Machine accuracy over
sequences. b) Symbol grounding accuracy over single images

challenge is introduced by the fact that the specifics of the task are not directly usable since the
symbols are not observable. We do not know how to recognize them in the image.

5.2. Offline symbol grounding

Dataset To apply offline symbol grounding to the Minecraft environment, we created a
dataset simulating 40 episodes in the environment and collecting the images rendered by the
environment. Each episode lasts for 30 steps, producing a sequence of 30 images that correspond
to the environment states and a sequence of 30 reward values that are used to label the image
sequence at each step. Episodes are balanced between positive and negative examples, with 20
episodes where the agent correctly collects all the items and goes to the door while avoiding
the lava, and 20 episodes where it fails. We split the dataset into 80% for training and 20% for
testing.

Results Figure 2 shows the train and test sequence classification accuracy in Figure (a) and the
symbol grounding accuracy on single images in Figure (b). Let us note that the task specification
has two ungroundable symbols: 𝑔𝑒𝑚 and 𝑝𝑖𝑐𝑘𝑎𝑥𝑒. Since the agent can collect these two items
in any order, the framework does not receive enough supervision to distinguish between
them, resulting in the image classification not achieving 100% accuracy. However, sequence
classification can still achieve top accuracy even if the symbol grounder confuses the gem for the
pickaxe and vice versa. We compared our approach with a purely deep-learning-based approach
that learns to classify sequences end-to-end using a CNN and an LSTM, which performed poorly
in the task, obtaining only 40% sequence accuracy. Investigating the reason for these poor
performances, we found that it almost never predicts rewards of -1 and -2, corresponding to the
scarcest reward labels in the dataset. In fact, even if we balanced the dataset between positive
(reward = 0 in the last step) and negative (reward < 0 in the last step) episodes, the reward
labels are not balanced within the episodes. Learning classification tasks from highly biased
data with neural networks can be very challenging, as shown in this experiment. However,

(a) (b) (c)

Figure 3: Results obtained by exploiting the reward machine structure to learn the symbol grounding
function for the Visual Minecraft environment. a) Training rewards b) Reward prediction accuracy
during training. c) Symbol grounding accuracy during training

our approach is unaffected by the label imbalance. Additionally, we note that the environment
highly biases the distribution of symbols and reward labels in sequences. For example, the
‘empty’ symbol is much more frequent than the others (because the agent cannot jump from one
item to the other, but it has to walk and observe many empty cells in between). Additionally,
most possible symbolic traces are unfeasible in the environment and, therefore, never observed.
This can complicate the image classification task in case it would be approached with supervised
learning.

5.3. Reinforcement Learning and online grounding

In this second experiment, we perform online symbol grounding and use it to estimate the
machine state, which we exploit to speed up policy learning. Unlike in the previous experiments,
the dataset is not required to be balanced, as it is collected by the agent while exploring the
environment. We construct a Markov state by concatenating features extracted by a CNN
from the image with the estimated automaton state. We use Advantage Actor-Critic (A2C) [30]
to learn a policy on this state representation. We compare this approach, which exploits the
ungrounded DFA specification, with A2C using the state of an LSTM trained end-to-end as the
state representation.

Training settings We ran three experiments with three random seeds for each approach and
report the mean and standard deviation. We allowed each approach to train for 1000 episodes
before stopping the training. We used a learning rate of 0.0007 and an entropy coefficient of
0.0001 as hyperparameters for A2C.

The symbol grounder was trained in the same way described in the previous section, with the
newly acquired data, every 40 episodes. The baseline method used a one-layer LSTM of hidden
size 256. We tested different hidden sizes for the LSTM (50 and 256) and two layers instead of
one, and found that the one-layer LSTM with a hidden size of 256 was the best configuration.

(a) Tomita1 (b) Tomita2 (c) Tomita3 (d) Tomita4

(e) Tomita5 (f) Tomita6 (g) Tomita7

Figure 4: Learning DFA from traces composed of imperfectly grounded symbols: results on the 7 Tomita
languages

Results Figure 3 shows the results obtained in the experiment. Figure 3(a) shows the training
rewards for our method (A2C+grounding) and the baseline (A2C+RNN). The figure shows that
our method outperforms the baseline. Figure 3(b) and (c) show the sequence classification and
the symbol grounding classification accuracy of the Visual Reward Machine obtained during
the training of the RL agent. The sequence classification accuracy tends to be quite high from
the beginning of training, while the symbol grounding classification accuracy achieves top
results only after 800 episodes. This is reasonable since the VRM needs to observe some positive
episodes to correctly ground all the symbols (e.g., the symbol 𝑑𝑜𝑜𝑟 can be grounded only from a
trajectory completing the task), and positive episodes are observable only when the RL module
has learned a good policy. Training rewards increase coherently with the improvement in
the VRM’s performance. Despite these being only preliminary experiments, the results are
encouraging. In particular, they confirm our intuition that symbolic temporal specifications can
also be exploited in visual tasks for which we do not know the symbol grounding function.

5.4. Learning the machine from imperfectly grounded symbols

In this experiment, we test the capability of our framework to learn DFA specifications from
sequences of imperfectly grounded symbols. Specifically, we only trained the recurrent module
with traces of symbols and accepted-rejected labels generated by the Tomita languages [31]. We
corrupted the one-hot representation of symbols in the training traces by adding Gaussian noise
with a mean of zero and variable variance. Figure 4 compares our approach (Deep) with the
SAT-based DFA-inductor (SAT) [32]. Since boolean logic induction methods like DFA-inductor

cannot handle probabilistic truth values, we discretize the corrupted inputs to the nearest
one-hot vector before passing them to DFA-inductor. The figures show how the two methods’
test accuracy (on the y-axis) is affected by different values of noise variance (on the x-axis).
In particular, we observe that our method’s test accuracy degrades less with increasing noise
variance, making it more robust to noise in the symbol grounding compared to DFA-inductor.

6. Conclusion

In conclusion, this paper presents Visual Reward Machines, a neurosymbolic framework that
provides non-Markovian rewards for visual tasks. VRMs can be used for both learning and
reasoning and are based on the probabilistic relaxation of the symbol grounding function
and the logical temporal specification. We have demonstrated that VRMs can leverage the
machine’s prior knowledge and agent experience to learn the grounding function both offline
and during RL training. Specifically, we have shown that we can use the ungrounded specifics
to outperform baseline methods based on RNNs. Additionally, we have demonstrated that our
model can estimate the finite state machine from noisy input symbol sequences, which can
occur when we can only evaluate an imperfect pretrained symbol classifier. In future research,
we aim to provide further experimental evaluation to support our method and integrate DFA-
induction with Reinforcement Learning in non-Markovian environments to handle partially
known symbol-grounding functions and unknown temporal specifications.

Acknowledgments

This work is partially supported by the ERC Advanced Grant WhiteMech (No. 834228), by the
EU ICT-48 2020 project TAILOR (No. 952215), by the PRIN project RIPER (No. 20203FFYLK)
and by the PNRR MUR project PE0000013-FAIR.
This work has been carried out while Francesco Argenziano and Aymeric Barbin were enrolled
in the Italian National Doctorate on Artificial Intelligence run by Sapienza University of Rome.

References

[1] F. Bacchus, C. Boutilier, A. Grove, Rewarding behaviors, Portland, OR, 1996, pp. 1160–1167.
URL: behaviors.pdf.

[2] N. Heess, J. J. Hunt, T. P. Lillicrap, D. Silver, Memory-based control with recurrent
neural networks, CoRR abs/1512.04455 (2015). URL: http://arxiv.org/abs/1512.04455.
arXiv:1512.04455 .

[3] D. Ha, J. Schmidhuber, Recurrent world models facilitate policy evolution, in: S. Bengio,
H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neu-
ral Information Processing Systems, volume 31, Curran Associates, Inc., 2018. URL: https:
//proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf.

[4] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, R. Munos, Recurrent experience
replay in distributed reinforcement learning, in: International Conference on Learning
Representations, 2019. URL: https://openreview.net/forum?id=r1lyTjAqYX.

behaviors.pdf
http://arxiv.org/abs/1512.04455
http://arxiv.org/abs/1512.04455
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://openreview.net/forum?id=r1lyTjAqYX

[5] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, IEEE
Computer Society, 1977, pp. 46–57. URL: https://doi.org/10.1109/SFCS.1977.32. doi:10.1109/
SFCS.1977.32 .

[6] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite
traces, in: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’13, AAAI Press, 2013, p. 854–860.

[7] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, S. A. McIlraith, Ltl and beyond:
Formal languages for reward function specification in reinforcement learning, in: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, International Joint Conferences on Artificial Intelligence Organization, 2019, pp.
6065–6073. URL: https://doi.org/10.24963/ijcai.2019/840. doi:10.24963/ijcai.2019/840 .

[8] C. Wang, Y. Li, S. L. Smith, J. Liu, Continuous motion planning with temporal logic
specifications using deep neural networks, 2020. URL: https://arxiv.org/abs/2004.02610.
doi:10.48550/ARXIV.2004.02610 .

[9] M. Gaon, R. Brafman, Reinforcement learning with non-markovian rewards, Proceedings
of the AAAI Conference on Artificial Intelligence 34 (2020) 3980–3987. URL: https://ojs.
aaai.org/index.php/AAAI/article/view/5814. doi:10.1609/aaai.v34i04.5814 .

[10] Z. Xu, B. Wu, A. Ojha, D. Neider, U. Topcu, Active finite reward automaton inference
and reinforcement learning using queries and counterexamples, in: Machine Learn-
ing and Knowledge Extraction - 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 In-
ternational Cross-Domain Conference, CD-MAKE 2021, Virtual Event, August 17-20,
2021, Proceedings, 2021, pp. 115–135. URL: https://doi.org/10.1007/978-3-030-84060-0_8.
doi:10.1007/978- 3- 030- 84060- 0_8 .

[11] A. Ronca, G. P. Licks, G. D. Giacomo, Markov abstractions for PAC reinforcement learning
in non-markov decision processes, in: Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, 2022,
pp. 3408–3415. URL: https://doi.org/10.24963/ijcai.2022/473. doi:10.24963/ijcai.2022/473 .

[12] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, A. Russo, Induction and exploitation of
subgoal automata for reinforcement learning, J. Artif. Int. Res. 70 (2021) 1031–1116. URL:
https://doi.org/10.1613/jair.1.12372. doi:10.1613/jair.1.12372 .

[13] E. Umili, R. Capobianco, G. D. Giacomo, Grounding ltlf specifications in images, in: Pro-
ceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning
as part of the 2nd International Joint Conference on Learning & Reasoning (IJCLR 2022),
Cumberland Lodge, Windsor Great Park, UK, September 28-30, 2022, 2022, pp. 45–63. URL:
http://ceur-ws.org/Vol-3212/paper4.pdf.

[14] E. Umili, R. Capobianco, Deepdfa: a transparent neural network design for dfa induction,
2023. doi:10.13140/RG.2.2.25449.98401 .

[15] M. L. Littman, U. Topcu, J. Fu, C. L. I. Jr., M. Wen, J. MacGlashan, Environment-independent
task specifications via GLTL, CoRR abs/1704.04341 (2017). URL: http://arxiv.org/abs/1704.
04341. arXiv:1704.04341 .

[16] G. De Giacomo, L. Iocchi, M. Favorito, F. Patrizi, Foundations for restraining bolts: Re-
inforcement learning with ltlf/ldlf restraining specifications, Proceedings of the Inter-
national Conference on Automated Planning and Scheduling 29 (2021) 128–136. URL:

https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.24963/ijcai.2019/840
http://dx.doi.org/10.24963/ijcai.2019/840
https://arxiv.org/abs/2004.02610
http://dx.doi.org/10.48550/ARXIV.2004.02610
https://ojs.aaai.org/index.php/AAAI/article/view/5814
https://ojs.aaai.org/index.php/AAAI/article/view/5814
http://dx.doi.org/10.1609/aaai.v34i04.5814
https://doi.org/10.1007/978-3-030-84060-0_8
http://dx.doi.org/10.1007/978-3-030-84060-0_8
https://doi.org/10.24963/ijcai.2022/473
http://dx.doi.org/10.24963/ijcai.2022/473
https://doi.org/10.1613/jair.1.12372
http://dx.doi.org/10.1613/jair.1.12372
http://ceur-ws.org/Vol-3212/paper4.pdf
http://dx.doi.org/10.13140/RG.2.2.25449.98401
http://arxiv.org/abs/1704.04341
http://arxiv.org/abs/1704.04341
http://arxiv.org/abs/1704.04341

https://ojs.aaai.org/index.php/ICAPS/article/view/3549.
[17] M. Cai, S. Xiao, B. Li, Z. Li, Z. Kan, Reinforcement learning based temporal logic control

with maximum probabilistic satisfaction, 2021 IEEE International Conference on Robotics
and Automation (ICRA) (2020) 806–812.

[18] C. K. Verginis, C. Köprülü, S. Chinchali, U. Topcu, Joint learning of reward machines
and policies in environments with partially known semantics, CoRR abs/2204.11833
(2022). URL: https://doi.org/10.48550/arXiv.2204.11833. doi:10.48550/arXiv.2204.11833 .
arXiv:2204.11833 .

[19] A. C. Li, Z. Chen, P. Vaezipoor, T. Q. Klassen, R. T. Icarte, S. A. McIlraith, Noisy symbolic
abstractions for deep RL: A case study with reward machines, CoRR abs/2211.10902
(2022). URL: https://doi.org/10.48550/arXiv.2211.10902. doi:10.48550/arXiv.2211.10902 .
arXiv:2211.10902 .

[20] Y. Kuo, B. Katz, A. Barbu, Encoding formulas as deep networks: Reinforcement learning for
zero-shot execution of LTL formulas, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2020, Las Vegas, NV, USA, October 24, 2020 - January 24, 2021,
2020, pp. 5604–5610. URL: https://doi.org/10.1109/IROS45743.2020.9341325. doi:10.1109/
IROS45743.2020.9341325 .

[21] E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax, in: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, OpenReview.net, 2017. URL: https://openreview.
net/forum?id=rkE3y85ee.

[22] H. Walke, D. Ritter, C. Trimbach, M. Littman, Learning finite linear temporal logic speci-
fications with a specialized neural operator, 2021. URL: https://arxiv.org/abs/2111.04147.
doi:10.48550/ARXIV.2111.04147 .

[23] R. Kusters, Y. Kim, M. Collery, C. de Sainte Marie, S. Gupta, Differentiable rule induction
with learned relational features, in: A. d’Avila Garcez, E. Jiménez-Ruiz (Eds.), Proceedings
of the 16th International Workshop on Neural-Symbolic Learning and Reasoning as part of
the 2nd International Joint Conference on Learning & Reasoning (IJCLR 2022), Cumberland
Lodge, Windsor Great Park, UK, September 28-30, 2022, volume 3212 of CEUR Workshop
Proceedings, CEUR-WS.org, 2022, pp. 30–44. URL: http://ceur-ws.org/Vol-3212/paper3.pdf.

[24] D. Angluin, Learning regular sets from queries and counterexamples, Information and
Computation 75 (1987) 87–106. URL: https://www.sciencedirect.com/science/article/pii/
0890540187900526. doi:https://doi.org/10.1016/0890- 5401(87)90052- 6 .

[25] M. J. H. Heule, S. Verwer, Exact dfa identification using sat solvers, in: Proceedings of the
10th International Colloquium Conference on Grammatical Inference: Theoretical Results
and Applications, ICGI’10, Springer-Verlag, Berlin, Heidelberg, 2010, p. 66–79.

[26] K. J. Lang, B. A. Pearlmutter, R. Price, Results of the abbadingo one dfa learning competition
and a new evidence-driven state merging algorithm, in: ICGI 1998: Grammatical Inference,
number 1433 in Lecture Notes in Computer Science book series (LNCS), Springer, 1998,
pp. 1–12. URL: https://mural.maynoothuniversity.ie/10250/, cite as: Lang K.J., Pearlmutter
B.A., Price R.A. (1998) Results of the Abbadingo one DFA learning competition and a new
evidence-driven state merging algorithm. In: Honavar V., Slutzki G. (eds) Grammatical
Inference. ICGI 1998. Lecture Notes in Computer Science, vol 1433. Springer, Berlin,
Heidelberg.

https://ojs.aaai.org/index.php/ICAPS/article/view/3549
https://doi.org/10.48550/arXiv.2204.11833
http://dx.doi.org/10.48550/arXiv.2204.11833
http://arxiv.org/abs/2204.11833
https://doi.org/10.48550/arXiv.2211.10902
http://dx.doi.org/10.48550/arXiv.2211.10902
http://arxiv.org/abs/2211.10902
https://doi.org/10.1109/IROS45743.2020.9341325
http://dx.doi.org/10.1109/IROS45743.2020.9341325
http://dx.doi.org/10.1109/IROS45743.2020.9341325
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://arxiv.org/abs/2111.04147
http://dx.doi.org/10.48550/ARXIV.2111.04147
http://ceur-ws.org/Vol-3212/paper3.pdf
https://www.sciencedirect.com/science/article/pii/0890540187900526
https://www.sciencedirect.com/science/article/pii/0890540187900526
http://dx.doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
https://mural.maynoothuniversity.ie/10250/

[27] S. Lucas, T. Reynolds, Learning deterministic finite automata with a smart state labeling
evolutionary algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence
27 (2005) 1063–1074. doi:10.1109/TPAMI.2005.143 .

[28] V. I. Ulyantsev, I. Zakirzyanov, A. A. Shalyto, Bfs-based symmetry breaking predicates for
dfa identification, in: Language and Automata Theory and Applications, 2015.

[29] J. Corazza, I. Gavran, D. Neider, Reinforcement learning with stochastic reward machines,
Proceedings of the AAAI Conference on Artificial Intelligence 36 (2022) 6429–6436. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/20594. doi:10.1609/aaai.v36i6.20594 .

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu,
Asynchronous methods for deep reinforcement learning, in: International conference on
machine learning, PMLR, 2016, pp. 1928–1937.

[31] M. Tomita, Dynamic construction of finite automata from examples using hill-climbing,
in: Proceedings of the Fourth Annual Conference of the Cognitive Science Society, Ann
Arbor, Michigan, 1982, pp. 105–108.

[32] I. Zakirzyanov, A. Morgado, A. Ignatiev, V. I. Ulyantsev, J. Marques-Silva, Efficient symme-
try breaking for sat-based minimum dfa inference, in: LATA, 2019.

http://dx.doi.org/10.1109/TPAMI.2005.143
https://ojs.aaai.org/index.php/AAAI/article/view/20594
http://dx.doi.org/10.1609/aaai.v36i6.20594

	1 Introduction
	2 Related works
	3 Background
	4 Method
	4.1 Visual Reward Machine definition
	4.2 VRM implementation with neural networks

	5 Preliminary experiments
	5.1 Visual Minecraft Environment
	5.2 Offline symbol grounding
	5.3 Reinforcement Learning and online grounding
	5.4 Learning the machine from imperfectly grounded symbols

	6 Conclusion

