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Abstract
Vector-symbolic architectures (VSAs) express data structures with an arbitrary complexity and per-
form symbolic computations on them by exploiting high-dimensional distributed representations and
associated key operations. VSAs typically use dense random vectors, aka hypervectors, to represent
atomic symbols that can be combined into compound symbols by multiplicative binding and additive
superposition operators. For instance, a VSA-based neural encoder can bind two atomic symbols, and
further superpose a set of such bound symbols—all by distributed vectors that have the same dimension.
Nevertheless, decoding such an additive-multiplicative vector, to the atomic symbols from which it is
built, is not a trivial task. Recently, a solution based on resonator networks was proposed to iteratively
factorize one of the bound symbols. After finding the factorization, it is explained away by subtracting
it from the superposition. This explaining away, however, causes noise amplification that limits the
number of symbols that can be reliably decoded in large problem sizes. Here, we present novel methods
that efficiently decode VSA-based data structures consisting of multiplicative binding and additive super-
position of symbols. We expand the pure sequential explaining away approach by performing multiple
decodings in parallel using a dedicated query sampler. Compared to the baseline resonator network,
this mix of sequential and parallel decoding retrieves up to 8× more additive components from larger
problems in synthetic and real-world experiments.
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1. Introduction

Vector-symbolic architectures (VSAs) [1, 2, 3, 4, 5] are a family of computational models that
create an elegant formalism to encode, manipulate, and importantly bind symbols while keeping
the size of the distributed representation fixed, regardless of whether they represent one single
entity or a nested structure of multiple entities. VSAs achieve it by encoding base codewords
as high-dimensional random vectors, aka hypervectors. As such, they represent data in a
distributed manner and often serve as a mediator between the rule-based symbolic reasoning
and connectionist models that include neural networks. Recent work [6] has shown how VSA,
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Figure 1: (a) We encode multiple objects as the superposition of the individual high-dimensional symbol
binding. (b) Commonly used pure sequential explaining away decoding with resonator networks results
in noise amplification (indicated with grey arrows). (c) Our mixed decoding performs multiple decodings
in parallel which allows finding the correct solution.

as a common language between neural networks and symbolic AI, can overcome the neural
network binding problem and exhaustive symbolic search.

While VSAs efficiently encode single or multiple objects into complex structures, decoding is
often challenging. Let us focus on two core operations used by VSAs. Additive superposition
(⊕), to which we will refer in short as a superposition, creates a sum vector similar to all of the
input vectors. In contrast, multiplicative binding (⊙), or simply binding, produces a product
vector dissimilar to its factors. To check whether a given query vector is available in the sum
vector, we can calculate the similarity between the sum vector and the query. For binding,
however, we would need to check all the possible combinations of factors. This makes the
decoding of bound symbols a hard combinatorial problem [7].

An elegant solution is resonator networks [7, 8] which iteratively decode the binding by
exploring only a fragment of the exponential search space. The resonator network also demon-
strated to decode the superposition of more than one bound symbol by repeatedly invoking
the resonator network decoding and applying an explaining away operation (subtraction) of
the result from the query. There were, however, two limitations with the resonator network.
First, its dynamical system suffers from a relatively low operational capacity (i.e., the low ratio
between the exponential search space and the required vector dimensionality to represent bound
symbols). This is mainly due to limit cycles, deterministic computation, and lack of nonlinearity
during each iteration. A stochastic sparsely-activated resonator [9] recently addressed this
limitation by exploiting the stochasticity of memristive devices and by proposing nonlinear
sparse activations. These new dynamics enhance the operational capacity by five orders of
magnitude and reduce the spatial and time complexity associated with the factorization task.

The second limitation of the resonator network is the explanation away decoding, which we
address in this work (see Fig. 1). More precisely, when decoding the superposition by explaining
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away the resonator’s product estimates, a mistake is probable with more added bound symbols.
It is because a query that contains several superposed vectors can be seen as noisy—each added
term can be interpreted as noise from the standpoint of decoding the other. After decoding
the wrong bound symbols, the resonator network runs into a noise amplification problem:
subtracting bound symbols that were not present adds more noise to the query, making it even
harder to decode the remaining bound symbols.

In this work, we present a configurable decoding method to efficiently extract a set of bound
symbols—each represented by a Hadamard product distributed vector—from their fixed-width
superposition. As such, we detail how naive sequential decoding can be enhanced by generating
multiple queries in parallel by means of a sampling mechanism (see Fig. 1c). By combining
sequential and parallel decoding methods, our mixed decoding approach mitigates the risk
of noise amplification and increases the number of bound symbols that can be successfully
decoded by up to 8× at the same vector dimensionality.

2. Background

2.1. Vector Symbolic Architectures (VSAs)

Vector symbolic architectures (VSAs) represent base entities as random high-dimensional
vectors. There are different VSA variants (see [10, 11] for a review). This work focuses on the
Multiply-Add-Permute (MAP) coding scheme [2] where vectors are bipolar: x ∈ {−1, 1}𝐷 . The
similarity of two vectors is defined as their cosine similarity. Usually, we assume that the code
vectors are generated randomly and stored in a lookup memory, often called codebook. The
algebra on such vectors is defined using three basic operations. Multiplicative binding (⊙) is
the elementwise multiplication (i.e., the Hadamard product) of vectors. The resulting vector
is dissimilar to the bound factors. The inverse operation is the unbinding, which is also the
elementwise multiplication in the MAP architecture. Bundling (⊕) is the additive superposition
of a set of vectors. Optionally, the result can be biploarized by setting positive values to “+1”
and negative ones to “-1”; zero values (ties) are randomly set to “+1” or “-1.” The resulting vector
is similar to all the superposed terms. Finally, permutation (Π) shuffles the elements in a vector
according to the given permutation. It is suitable for encoding sequences.

2.2. Encoding Nested Structures with VSAs

Here, we formalize the representation of nested data structures using VSAs. Let us first focus
on the VSA-based symbol binding with 𝐹 symbols. The encoding starts with defining 𝐹

separate codebooks (X1,X2, ...,X𝐹 ). The codebooks are defined as X𝑓 := {x𝑓
𝑖 }

𝑀𝑓

𝑖=1, where
each x𝑓

𝑖 ∈ {−1, 1}𝐷, 𝑓 ∈ {1, 2, ..., 𝐹} is a randomly drawn bipolar vector. Each codebook
contains as many codewords (𝑀𝑓 ) as the number of values the corresponding symbol can have1.
For example, we could have one color codebook to store three random vectors representing red,
blue, and green colors. In a second codebook, we could store the possible shapes with three

1In most cases, we assume that all codebooks contain the same number of codewords, i.e., 𝑀𝑖 = 𝑀𝑗 ∀𝑖, 𝑗 ∈
{1, 2, ..., 𝐹}.
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code vectors for square, triangle, and circle. A product vector p =⊙𝐹
𝑓=1 x

𝑓
𝑐𝑓 is then formed by

binding the selected symbols from the codebooks.
As a next step, the combination of binding and superposition can describe more complex

structures:

q =

𝑁∑︁
𝑖=1

p𝑖 =

𝑁∑︁
𝑖=1

𝐹

⊙
𝑓=1

x𝑓
𝑐𝑖,𝑓

. (1)

Overall, we superpose 𝑁 different products (i.e., p𝑖 ̸= p𝑗 ,∀𝑖 ̸= 𝑗). In most applications, it is
assumed that the number of superposed terms is known. The goal of the decoding is to find all
indices �̂�𝑖,𝑓 , ∀𝑖 ∈ {1, ..., 𝑁}, 𝑓 ∈ {1, ..., 𝐹}.

2.3. Resonator networks

To decompose a single symbol bound representation (p), we aim to find the estimated factors
x̂𝑓 ∈ X𝑓 , ∀𝑓 ∈ {1, 2, ..., 𝐹} that satisfy

p =

𝐹

⊙
𝑓=1

x̂𝑓 . (2)

A naive brute-force approach would compare the product vector (p) to all possible combinations
spanned by the product space

P =

𝐹

⊙
𝑓=1

X𝑓 :=
{︀
x1
1 ⊙ x2

1 ⊙ ...⊙ x𝐹
1 ,x

1
2 ⊙ x2

1 ⊙ ...⊙ x𝐹
1 , ...,x

1
𝑀1

⊙ x2
𝑀2

⊙ ...⊙ x𝐹
𝑀𝐹

}︀
. (3)

This results in a combinatorial search problem requiring
(︁∏︀𝐹

𝑓=1𝑀𝑓

)︁
similarity computations.

Alternatively, resonator networks [7, 8] reduce the decoding complexity by iteratively search-
ing in superposition through all possible solutions. Recently, a nondeterministic and nonlinear
variant [9] introduced nonlinear activations and stochastic behavior, notably improving the
factorization convergence and the solvable problem size.

The decoding begins with initializing the estimate factors (x̂1(0), ..., x̂𝐹 (0)) by bundling all
vectors from the corresponding codebooks. Then, each estimate factor (x̂𝑓 (𝑡)) at iteration 𝑡 is
updated through the following steps.

The estimate factors from the previous iteration are unbound from the product vector using
the Hadamard product:

x̃𝑓 (𝑡) = p⊙

⎛⎝ 𝐹

⊙
𝑖=1,𝑖 ̸=𝑓

x̂𝑖(𝑡)

⎞⎠ (4)

Next, we query the associative memory, which contains the codebook X𝑓 for the factor 𝑓 ,
with the unbound factor estimates. At iteration 𝑡, this yields an 𝑀𝑓 -dimensional vector of
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similarity scores (a𝑓 (𝑡)) for each factor 𝑓 . The 𝑖-th element in a𝑓 (𝑡) is computed using the
cosine similarity (cos):

a𝑓 (𝑡)[𝑖] = cos(x̃𝑓 (𝑡),x𝑓
𝑖 ). (5)

The nondeterministic and nonlinear resonator network variant [9] processes the similarity
vector by adding additive random noise and passing it through a threshold function:

a′𝑓 (𝑡)[𝑖] = thresh
(︁
a𝑓 (𝑡)[𝑖] + 𝑛;𝑇

)︁
(6)

where 𝑛 is an i.i.d. Gaussian random variable with zero mean an standart deviation 𝜎, and
thresh (·;𝑇 ) propagates similarity values that are larger than the threshold 𝑇 , whereas lower
ones get zeroed out.

Finally, we generate the next factor estimate x̂𝑓 (𝑡+1) as the weighted bundling of the factor’s
codevectors together with an elementwise sign activation (sign):

x̂𝑓 (𝑡+ 1) = sign
(︁
(X𝑓 )𝑇a′𝑓 (𝑡)

)︁
(7)

The iterative decoding is repeated until the resonator converges or a predefined maximum
number of iterations (𝑁 ) is reached. The convergence detection mechanism is based on an
additional, fixed threshold. Decoding is stopped as soon as all similarity vectors contain an
element that exceeds a predefined detection threshold value [9].

3. Related Works

The decoding of the nested structures in Eq. (1) can be posed as a pure superposition decoding
task when unrolling the entire product space. A simple approach is to compute the similarity
between the superposition (q) and each vector in the product space (P). Instead of the bipolar
product matrix, an alternative readout matrix can be optimized to minimize the mean-squared
error (MMSE) between the estimated and ground-truth indices, which enables the retrieval
of more vectors from the superposition [12]. Another approach is to do iterative decoding
using explaining away steps, where the current estimate is subtracted from the superposition,
effectively reducing the interference. The iterative decoder is beneficial in robust short-package
communication [13], and has been improved with a soft-feedback alignment and an MMSE
readout for better retrieval, reaching to the state-of-the-art capacity of 1.2 bits/dimension [14].

The approaches above are able to retrieve many elements from a superposition; however,
they cannot leverage the implicit factor structure that the product space provides. As a result,
they need to search through all possible combinations in each decoding step, which requires
maintaining explicitly all product vectors in the memory and computing the similarity between
each product vector and the query. To this end, resonator networks have not only demonstrated
to factorize single bound symbols, but also the superposition of multiple bound symbols. In
an experiment [7], the colored MNIST digits were positioned at nine different positions (three
vertical and three horizontal). Each colored digit was then described as the binding of four
symbols: vertical position with three values, horizontal position with three values, color with
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Figure 2: Configurable mixed decoding of superpositions of bound symbols. The variable width (𝑊 )
describes the number of parallel decodings per step using query sampling and resonator-based decoding.
The explaining away procedure is repeated for 𝐿 steps.

seven values, and digits with ten values. This yielded a product space with 630 combinations.
A vector dimension of 𝐷 = 500 was sufficient to distinguish between all combinations. The
resonator network was queried in multiple sequential steps to retrieve multiple bound symbols.
In each step, the resonator network’s estimation was subtracted from the input query. This
explaining away approach reduced the interference from all the elements in the initial query.
Despite limited problem size (630), the resonator network faced challenges to reliably retrieve
more than one bound symbol from the superposition. The main problem is the noise amplifica-
tion in the pure sequential decoding: an additional vector is added to the superposition if the
prediction is wrong (see Fig. 1b). This additional vector can be interpreted as noise.

In this work, we enhance the sequential decoding by performing multiple decodings in
parallel in each step. We generate multiple queries for the resonator network by performing a
dedicated sampling. Our mixed decoding approach can retrieve up to 8× more bound symbols
from a larger problem space (12,100) and a smaller dimensionality (𝐷=256).

4. Mixed Approach to Superposition Decoding

This section presents the main contribution of the paper: we propose a mixed decoding approach
to retrieve superpositions of bound symbols. Fig. 2 depicts the architecture of our mixed decoding.
It relies on sequential decoding by explaining away steps, and extends it with parallel decodings
in each step. The number of parallel decodings (denoted as the width 𝑊 ) and the number of
sequential steps (depth 𝐿) can be configured depending on the problem at hand, as we will
show in the experimental results (see Table 1).

4.1. Parallel Decoding

The parallel decoding makes 𝑊 predictions per step by decoding 𝑊 different sub-queries.
The sub-queries can be generated by random sampling. For example, if the input query is
a superposition of an even number of bound bipolar symbols, the zeros (ties) in the query
vector can be randomly replaced with either a “+1” or a “-1”. Suppose no ties are present in the
superposition (e.g., due to an odd number of superpositions). In that case, we use an alternative
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sampling strategy that samples each element based on its magnitude:

q𝑤[𝑖] =

{︃
+1, w. p. (𝑁 + q[𝑖])/(2𝑁)

−1, otherwise,
(8)

where 𝑁 is the number of superpositions and 𝑤 is the index of the sub-query. At step 𝑙, the
parallel decoding yields 𝑊 possible solutions. Finally, we select the most promising solution
based on the highest similarity between the predicted bound symbol (r̂𝑤𝑙 ) and the original query.
The selected predicted bound symbol (r̂𝑙) is then passed to the next step for the explaining away.

4.2. Sequential Explaining Away

As the next step, the selected predicted bound symbol is subtracted from the input query,
yielding

q𝑙+1 = q𝑙 − sim(q, r̂𝑙) · r̂𝑙, (9)

where sim(·, ·) is the cosine similarity. We scale the subtraction with the similarity between
the selected estimate and the original query, which serves as a confidence indicator [14]. The
explaining away step attenuates predictions with low confidence, whereas highly confident
predictions are fully subtracted.

4.3. Final Result Selection

After performing 𝐿 decoding steps, we select the 𝑁 distinct predictions with the highest
confidence based on the cosine similarity between their bound symbol representation and the
input query.

5. Experimental Results

We evaluate the proposed mixed decoding on the synthetic superposition of bound symbols
and query examples generated by a neural network. We use the state-of-the-art stochastic
sparsely-activated resonator [9] for optimal factorization performance. Following the practice
by [8], the number of iterations is limited to 1/1000 of the product space and at least 2000.

Retrieval Capacity on Synthetic Queries. We start with the evaluation of our approach to
synthetically generated data. We choose a problem with 𝐹=2 factors, an equal codebook size of
𝑀1=𝑀2=110, and a dimension 𝐷=256. This yields a total problem size of 𝑀1 ·𝑀2=12,100 which,
e.g., could be encountered in the extreme-label text classification task of Amazon-12K [15].
Compared to [7], our proposed synthetic problem is notably larger (12,100 vs. 630) while the
dimension is reduced (256 vs. 500). To evaluate the performance, we conduct 1000 experiments.
We randomly select 𝑁 symbol pairs in each experiment, bind them, and superpose all the
bound symbol pairs. The average decoding accuracy is determined as the average ratio between
correctly factorized symbol pairs and the total number of superposed pairs (𝑁 ). Finally, we
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Table 1
Retrieval capacity from synthetic examples. The stochastic sparsely-activated resonator is configured
with 𝐹=2 factors, codebook size of 𝑀1=𝑀2=110, dimension 𝐷=256, and maximum of 2000 iterations.
𝑁 is the number of superposed bound symbols.

Method Width Depth Total decodings Retrieval capacity

Explaining away [7] 1 𝑁 𝑁 1

Sequential decoding 1 2𝑁 2𝑁 5
1 4𝑁 4𝑁 5

Parallel decoding 2𝑁 1 2𝑁 1

Mixed decoding 2 𝑁 2𝑁 5
4 𝑁 4𝑁 8

define the retrieval capacity as the highest number of superposed symbol pairs that can be
successfully decoded with >99% accuracy.

Table 1 compares the retrieval capacity of the stochastic sparsely-activated resonator with
different decoding approaches. Each approach can be described by its width and depth, which
yields the resonator’s total queries to be decoded. The standard explaining away [7] can only
retrieve one bound symbol pair, i.e., it cannot decode any superposition. Increasing the depth
to twice the number of superpositions (2𝑁 ) improves the retrieval capacity to 5 superpositions.
However, the benefit of the depth-increasing approach rapidly saturates: the retrieval capacity
stays the same for a depth of 2𝑁 and 4𝑁 . Even though the parallel decoding is not effective
in isolation, it notably improves the retrieval capacity when applied with sequential decoding
(hence we name it, mixed decoding). Increasing the width to 2 improves the retrieval capacity to
5. Moreover, further increasing the width to 4 yields the highest retrieval capacity (8). Compared
to pure sequential decoding with a depth of 4𝑁 , our mixed decoding can retrieve more bound
symbol pairs (8 vs. 5) while requiring the same number of queries (4𝑁 ).

RAVEN. The RAVEN dataset [16] contains Raven’s progressive matrices tests with gray-scale
images with a resolution of 160 × 160. A test provides 8 context and 8 answer panels, each
containing objects with the following attributes: position, type, size, and color. The objects can
be aligned in 7 different constellations containing a variable maximum number of objects (see
𝑁max in Table 2). Following [6], we combine the positions from the different constellations,
yielding 22 unique positions. Overall, the dataset contains 𝐶=6600 attribute combinations (22
positions × 5 types × 6 sizes ×10 colors). For every constellation, the dataset provides 6000
examples for training, 2000 for validation, and 2000 for testing.

This work focuses on recognizing all the objects in a given panel. We define the four codebooks
for position, type, size, and color. We then train a ResNet-18 to map an input image to a 𝐷-
dimensional query (q), which resembles the superposition of all the bound symbols present in
the image. This is achieved by maximizing the similarity between the query and each bound
symbol using an additive cross-entropy loss [6]. Note that only the trainable weights of the
ResNet-18 are updated during training while the codebooks are frozen. We train the architecture
for 100 epochs using stochastic gradient descent (SGD) with a batch size of 256.
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Table 2
Average object recognition accuracy on the RAVEN dataset. We set the decoding depth to 𝑁max+1
and the width to 1. The number of objects in each panel is either known (oracle) or not (threshold).
C=Center; L-R=Left-right; U-D=Up-down; OI-C=Out-in center; 2x2=2x2 grid, OI-G=out-in grid; 3x3=3x3
grid; Avg.=Average accuracy.

C L-R U-D OI-C 2x2 OI-G 3x3 Avg.

Max. number of objects (𝑁max) 1 2 2 2 4 5 9

Brute force [6] threshold 100% 99.9% 100% 99.9% 99.5% 99.0% 83.6% 97.4%
oracle 100% 100% 100% 100% 100% 99.6% 95.3% 99.3%

Resonator (ours) threshold 100% 100% 100% 100% 100% 99.0% 83.6% 97.5%
oracle 100% 100% 100% 100% 100% 99.9% 99.3% 99.9%

As a decoding baseline, the brute force approach computes the similarity between the query
and each possible bound symbol in the product space. It selects the top-𝑘 bound symbols
with the highest similarity if an oracle provides the number of objects. Otherwise, it detects
the bound symbols whose similarity exceeds a threshold. Our resonator-based approach can
distinguish the same between oracle and threshold.

Table 2 compares the classification accuracy of the brute force and our resonator-based
decoding. Both approaches can recognize up to five objects with high accuracy (≥ 99%) using
only the threshold. The main challenge, however, appears in the 3x3 grid constellation with up
to nine objects. If the exact number of objects is unknown, the brute force and resonator are on
par (83.6%). However, the resonator outperforms the brute force in the oracle case by a margin
of 4% (99.3% vs. 95.3%). At the same time, it reduces the computational cost by performing
searching in superposition without explicitly searching through the entire product space.

6. Conclusions

We present a new decoding approach for efficient retrieval of hyperdimensional bound symbols
from additived superpositions using the stochastic sparsely-activated resonator networks. Our
novel mixed decoding includes both sequential and parallel decoding with configurable width
and depth. When combined with a query sampling mechanism, our mixed approach retrieves up
to 8× more additive components, compared to pure sequential decoding. In future work, we plan
to investigate real-world applications with larger problems such as extreme-label classification
containing up to 670,000 combinations [15].
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