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Abstract
Deep learning has been at the core of the autonomous driving field development, due to the neural
networks’ success in finding patterns in raw data and turning them into accurate predictions. Moreover,
recent neuro-symbolic works have shown that incorporating the available background knowledge about
the problem at hand in the loss function via t-norms can further improve the deep learning models’
performance. However, t-norm-based losses may have very high memory requirements and, thus, they
may be impossible to apply in complex application domains like autonomous driving. In this paper, we
show how it is possible to define memory-efficient t-norm-based losses, allowing for exploiting t-norms
for the task of event detection in autonomous driving. We conduct an extensive experimental analysis
on the ROAD-R dataset and show (i) that our proposal can be implemented and run on GPUs with less
than 25 GiB of available memory, while standard t-norm-based losses are estimated to require more than
100 GiB, far exceeding the amount of memory normally available, (ii) that t-norm-based losses improve
performance, especially when limited labelled data are available, and (iii) that t-norm-based losses can
further improve performance when exploited on both labelled and unlabelled data.
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1. Introduction

Deep learning has been at the core of the autonomous driving field development [1, 2], due to
the neural networks’ success in finding patterns in raw data and turning them into accurate
predictions. However, existing self-driving vehicle systems are very limited in their capabilities
[3], with many of the obstacles in reaching a fully autonomous system being rooted in the un-
derlying neural models’ own caveats, such as the inherent data greediness and the impossibility
of incorporating background knowledge about the problem at hand. Recently, neuro-symbolic
methods emerged as a way to integrate background knowledge within the neural networks’
topology (see, e.g., [4, 5, 6]) and/or loss function (see, e.g., [7, 8, 9]), with a large number of
them highlighting a positive impact particularly in scenarios where little annotated data is
available (see, e.g., [10, 11, 12]). A popular method to include background knowledge expressed
as logical constraints into neural networks consists in relaxing the constraints using t-norms
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and incorporating them in the loss function [7, 8, 13]. Such a t-norm-based loss function is
not only intuitive, but it also has been shown to improve neural networks’ performance on
a range of different tasks (including event detection in autonomous driving [14]), especially
when limited data are available. However, t-norm-based losses may have very high memory
requirements, and thus they may be impossible to apply when considering complex application
domains like event detection in autonomous driving.
In this paper, we show how it is possible to define memory-efficient t-norm-based losses,

allowing for exploiting t-norms for the task of event detection in autonomous driving. We
conduct an extensive experimental analysis on the ROAD-R dataset [14] and show that our
proposal can be implemented and run on GPUs with less than 25 GiB of available memory, while
standard t-norm-based losses are estimated to require more than 100 GiB, far exceeding the
amount of memory normally available. Then, we train our state-of-the-art event detection model
using different percentages of labelled training data (i.e., 10%, 20%, 50%, 75%, and 100%), and we
show that while t-norm-based losses can improve the performance of the models in all cases,
they are particularly helpful when data are scarce. Indeed, our models yield an improvement
of up to 1.85% and 3.95% when using, 10% and 20% of the labelled training data, respectively.
Finally, we investigate the behaviour of the t-norm-based loss when only 10% annotated data
are available, along with 10% unlabelled data, and find that applying the t-norm-based loss on
both labelled and unlabelled data after a warm-up training phase leads to further improvements,
i.e., up to 2.75% w.r.t. the fully supervised baseline.

2. Preliminaries

An event detection problem 𝒫 is a pair (𝒜 ,𝒳), where 𝒜 is a finite set of labels, and 𝒳 is set of
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Figure 1: Visual example of a data point.

pairs (𝑋𝑋𝑋,𝒴) where:

1. 𝑋𝑋𝑋 ∈ ℝ3×𝑊×𝐻 is the tensor associated with
each frame in the video. 𝑊 (resp., 𝐻) rep-
resents the width (resp., height) of each
frame, while 3 is the number of channels
used in the RGB encoding,

2. 𝒴 is the ground truth of𝑋𝑋𝑋 comprising a set
of pairs (𝑏𝑏𝑏,ℒ), where 𝑏𝑏𝑏 ∈ ℝ4 represents
the coordinates of a bounding box, i.e., a
rectangle marking the position of an agent
in the frame, while ℒ represents the set
of labels associated with 𝑏𝑏𝑏.

Figure 1 illustrates an example of a data point 𝑋𝑋𝑋 and its ground truth 𝒴. A model 𝑚 for 𝒫
takes as input a sequence of video frames and, for each input frame 𝑋𝑋𝑋, its outputs are the pairs
(�̂̂��̂�𝑏, ̂𝑦̂𝑦̂𝑦), where each �̂̂��̂�𝑏 ∈ ℝ4 represents a predicted bounding box, and ̂𝑦̂𝑦̂𝑦 ∈ [0, 1]|𝒜 | represents the
confidence of the model regarding which labels can be associated with �̂̂��̂�𝑏. Given an output (�̂̂��̂�𝑏, ̂𝑦̂𝑦̂𝑦),
a prediction is then defined as the pair (�̂̂��̂�𝑏, ̂ℒ), where ̂ℒ is the set of labels associated with �̂̂��̂�𝑏;
a label 𝐴 is associated with �̂̂��̂�𝑏 if ̂𝑦̂𝑦̂𝑦 𝐴 ≥ 𝜃, where 𝜃 is a user-defined threshold. To predict the



bounding boxes in each frame, standard off-the-shelf event detection models use anchor boxes,
which are predefined boxes of varying sizes at different locations within the frame. For each
frame, the model defines 𝐷 anchor boxes whose positions are fixed, and then the position of
each predicted bounding box is computed as the offset from one anchor box.

An event detection problem with propositional logic constraints (𝒫 , Π) consists of an event
detection problem 𝒫 and a finite set of constraints Π, expressed over the set 𝒜 of labels in 𝒫.
We assume w.l.o.g. that the constraints are given as a set of clauses, each of the form:

𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛, (1)

where every 𝑙𝑖 is a literal, i.e., is either a label 𝐴 ∈ 𝒜 or its negation, ¬𝐴, for 𝑖 ∈ {1, … , 𝑛}.
Intuitively, (1) expresses the fact that the model should always predict at least one of the literals
in the clause, i.e., in {𝑙1, ..., 𝑙𝑛}. We assume that in any clause, a label occurs either positively or
negatively at most once. We say that a label 𝐴 occurs positively (resp., negatively) in the clause
(1) if there is a literal 𝑙 in (1) such that 𝑙 = 𝐴 (resp., 𝑙 = ¬𝐴), and that 𝐴 occurs in (1) if 𝐴 occurs
either positively or negatively in (1).

3. Memory-efficient t-norm-based loss

Inspired by [13, 7], we added a new regularization term to the localisation and classification
losses to express the degree of the logical constraints satisfaction. Since our constraints are all
of the form (1), we can easily convert each of them into a form containing only negations and
conjunctions (i.e., 𝑙1 ∨ 𝑙2 ∨ ⋯ ∨ 𝑙𝑛 ≡ ¬(¬𝑙1 ∧ ¬𝑙2 ∧ ⋯ ∧ ¬𝑙𝑛)). We can then relax:

1. the conjunction using different t-norms [15]. A t-norm is a function 𝑇 ∶ [0, 1]2 →
[0, 1] such that for every 𝑎, 𝑏, 𝑐 ∈ [0, 1]:

𝑇 (𝑎, 𝑏) = 𝑇 (𝑏, 𝑎), 𝑇 (𝑎, 1) = 𝑎, 𝑇 (𝑎, 0) = 0, 𝑇 (𝑎, 𝑇 (𝑏, 𝑐)) = 𝑇 (𝑇 (𝑎, 𝑏), 𝑐),
𝑎 ≤ 𝑏 → 𝑇(𝑎, 𝑐) ≤ 𝑇 (𝑏, 𝑐).

2. the negation using strong negation, which, given 𝑎 ∈ [0, 1], is defined as 1 − 𝑎.

The above operation is equivalent to directly relaxing the disjunction using the appropriate
t-conorm. In the first two columns of Table 1, we summarise the most used t-norms together
with their respective t-conorms. We now show how to implement t-norm-based loss functions
first in the standard way, and then in a memory-efficient way using sparse tensors.

Let (𝒫 , Π) be an event detection problem with propositional logic constraints. We can then
express Π using two matrices 𝐶𝐶𝐶+ and 𝐶𝐶𝐶−, both of size |Π| × |𝒜 |, such that 𝐶𝐶𝐶+𝑖𝑗 = 1 (resp., 𝐶𝐶𝐶−𝑖𝑗 = 1),
if the 𝑗-th label appears positively (resp., negatively) in the 𝑖th constraint, and 𝐶𝐶𝐶+𝑖𝑗 = 0 (resp.,
𝐶𝐶𝐶−𝑖𝑗 = 0), otherwise. We call 𝐶𝐶𝐶+ (resp., 𝐶𝐶𝐶−) the positive (resp., negative) constraints matrix. Let 𝑚
be an event detection model for Π using 𝐷 anchor boxes for each frame. For each input frame, 𝑚
outputs the prediction matrix 𝑃𝑃𝑃 of size 𝐷 × |𝒜 |. We call 𝑃𝑃𝑃 the prediction matrix. Given 𝑃𝑃𝑃 and 𝐶𝐶𝐶,
our goal is to compute the degree of satisfaction of each constraint for each output, which can
be compactly expressed as a matrix 𝐺𝐺𝐺 of size 𝐷 × |Π|. Ultimately, we want to use 𝐺𝐺𝐺 to compute
the frame-wise logic-based regularisation term in the loss, and we do this by defining:

𝐿𝑙𝑜𝑔𝑖𝑐(𝐺𝐺𝐺) = 1 − 1
𝐷

1
|Π|

∑
𝑖𝑗
𝐺𝐺𝐺𝑖𝑗 . (2)



Standard Approach. Let �̂�𝑃𝑃 be the tensor obtained by stacking |Π| times the matrix 𝑃𝑃𝑃 along
its first dimension. Let �̂�𝐶𝐶

+
and �̂�𝐶𝐶

−
be the tensors obtained by stacking 𝐷 times the matrices 𝐶𝐶𝐶+

and 𝐶𝐶𝐶− along their second dimension. We then obtain three tensors all of size 𝐷 × |Π| × |𝒜 |. We
can then choose the desired t-conorm and compute the matrix goal 𝐺𝐺𝐺 as:

𝐺𝐺𝐺 = t-conorm([(�̂�𝑃𝑃 ⊙ �̂�𝐶𝐶
+
) + (�̂�𝐶𝐶

−
− �̂�𝑃𝑃 ⊙ �̂�𝐶𝐶

−
)], dim = 3),

where⊙ is the Hadamard product, and given a generic tensor𝑄𝑄𝑄 of size 𝑝×𝑞×𝑠, t-conorm(𝑄𝑄𝑄, dim =
3) returns a matrix of size 𝑝 × 𝑞 whose element at position (𝑖, 𝑗) is equal to the value of the
t-conorm computed over the third dimension, e.g., if we choose the Gödel t-conorm, we obtain
t-conorm(𝑄𝑄𝑄, dim = 3) = max (𝑄𝑄𝑄𝑖𝑗1,𝑄𝑄𝑄𝑖𝑗2, … ,𝑄𝑄𝑄𝑖𝑗𝑠).

Example 3.1. Let (𝒫 , Π) be an event detection problem with propositional logic constraints
such that 𝒜 = {Car,Moving, Stopped} and Π = {¬Moving ∨ Car, ¬Moving ∨ ¬Stopped}. Then, our
positive and negative constraints matrices, assuming labels are numbered as listed in 𝒜, would be:

𝐶𝐶𝐶+ = [1 0 0
0 0 0] 𝐶𝐶𝐶− = [0 1 0

0 1 1] .

Let 𝑚 be a model for (𝒫 , Π) using 3 anchor boxes. Given a prediction matrix 𝑃𝑃𝑃 as below, and
supposing we use the Gödel t-conorm, 𝐺𝐺𝐺 is equal to:

𝑃𝑃𝑃 = [
0.1 0.7 0.3
0.9 0.9 0.2
0.4 0.9 0.9

] 𝐺𝐺𝐺 = [
0.3 0.7
0.9 0.8
0.4 0.1

] .

The problemwith this approach is that it requires working with dense 3-dimensional matrices,
inducing a large computational overhead and making the method unfeasible, especially for
application domains like autonomous driving. For example, given |Π| = 200 constraints, |𝒜 | = 50
labels, and a model generating 𝐷 = 55K anchor boxes per frame (a common number for event
detection problems) and taking as input sequences of 10 frames at a time, storing a single matrix
of size 𝐷 × |Π| × |𝒜 | requires about 20 GiB (550000 × 200 × 50 × 4 bytes). Moreover, the standard
approach works with 5 matrices of this size to compute the t-norm loss in the forward pass and
then backpropagate through it. Excluding any other memory allocation needed for storing the
input and intermediate outputs, just computing the loss and backpropagating through it would
take 100 GiB, exceeding the memory space limits of even the largest GPU available today (i.e.,
the NVIDIA A100 Tensor Core GPU having 80 GiB RAM [16]). Notice that this computation is
done for a single frame, however, normally deep learning models for event detection are trained
using batches of 4/8 elements, each comprising 4 to 32 frames in sequence. It is thus impossible
to use the above standard dense representation to train event detection models.

Sparse Matrix Representation Approach. Our solution mostly relies on the intuition that
in practice most of the constraints are written over a subset of the available labels 𝒜, and that
this subset is usually much smaller than 𝒜. For example, in our experimental analysis, we will
see that although there are 41 labels available in ROAD-R, the longest constraint is written over



Table 1
From left to right: (i) t-norm definitions, (ii) respective t-conorm definitions, and (iii-iv) operations to update 𝐺𝐺𝐺 on
the grounds of the chosen t-conorm. Given two matrices, max (resp., min) represent the element-wise operation
taking the maximum (resp., minimum) between two elements at the same position in the two input matrices. To
simplify the notation, in the last two columns, we used 1 to refer to the matrix of ones of appropriate size.

T-norm T-conorm Operation to update 𝐺𝐺𝐺𝑗+𝐴 Operation to update 𝐺𝐺𝐺𝑗−𝐴

Gödel min(𝑎, 𝑏) max(𝑎, 𝑏) max(𝐺𝐺𝐺𝑗+𝐴 , 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗+𝐴|) max(𝐺𝐺𝐺𝑗−𝐴 , 1 − 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗−𝐴|)
Łukasiewicz max(𝑎 + 𝑏 − 1, 0) min(𝑎 + 𝑏, 1) min(𝐺𝐺𝐺𝑗+𝐴 + 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗+𝐴|, 1) min(𝐺𝐺𝐺𝑗−𝐴 + 1 − 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗−𝐴|, 1)
Product 𝑎 ⋅ 𝑏 1 − (1 − 𝑎)(1 − 𝑏) 1 − (1 − 𝐺𝐺𝐺𝑗+𝐴) ⊙ (1 − 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗+𝐴|) 1 − (1 − 𝐺𝐺𝐺𝑗−𝐴) ⊙ (𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗−𝐴|)

just 15 labels. As a result, 𝐶𝐶𝐶+ and 𝐶𝐶𝐶− contain mostly zeros. Hence, we designed a method to
capture the logic-based loss that makes use of this sparsity property and ultimately avoids the
high computational costs induced by the 3D matrices, operating only on 2D matrices.

Given Π, we associate with each constraint an index, and then we define the set of sequences
𝒥 + = {𝑗+𝐴 ∶ 𝐴 ∈ 𝒜}, where 𝑗+𝐴 is the sequence of indices of the constraints in which 𝐴 occurs
positively. Analogously, we define 𝒥 − = {𝑗−𝐴 ∶ 𝐴 ∈ 𝒜}, where 𝑗−𝐴 is the sequence of indexes
of the constraints in which 𝐴 occurs negatively. Once we know which constraints each label
occurs in, we can instantiate the goal matrix 𝐺𝐺𝐺 to the identity element of the disjunction, iterate
through the labels in 𝒜, and for each label 𝐴 ∈ 𝒜 update, according to the values in 𝑃𝑃𝑃, all the
columns of 𝐺𝐺𝐺 associated with constraints where 𝐴 occurs. More specifically, we set 𝐺𝐺𝐺 = 000𝐷×|Π|,
where 000𝐷×|Π| is a matrix of zeros of size 𝐷 × |Π|, and then, for each label 𝐴 ∈ 𝒜, we determine:

𝐺𝐺𝐺𝑗+𝐴 ⟵ t-conorm(𝐺𝐺𝐺𝑗+𝐴 , 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗+𝐴 |) 𝐺𝐺𝐺𝑗−𝐴 ⟵ t-conorm(𝐺𝐺𝐺𝑗−𝐴 , 1 − 𝑃𝑃𝑃𝐴 ⋅ 𝟙⊤|𝑗−𝐴 |),

where (i) 𝐺𝐺𝐺𝑗+𝐴 (resp., 𝐺𝐺𝐺𝑗−𝐴 ) selects the columns of 𝐺𝐺𝐺 associated with constraints where 𝐴 occurs
positively (resp., negatively), (ii) 𝑃𝑃𝑃𝐴 corresponds to the column of 𝑃𝑃𝑃 associated with the label 𝐴,
(iii) 𝟙𝑛 indicates the unit column vector with 𝑛 elements, and (iv) t-conorm returns the pairwise
t-conorm, i.e., given two matrices𝑊𝑊𝑊,𝑍𝑍𝑍 of the same size, t-conorm(𝑊𝑊𝑊,𝑍𝑍𝑍)𝑖𝑗 = t-conorm(𝑊𝑊𝑊𝑖𝑗, 𝑍𝑍𝑍𝑖𝑗).
Finally, given 𝐺𝐺𝐺, we compute 𝐿𝑙𝑜𝑔𝑖𝑐(𝐺𝐺𝐺) as defined in Equation 2.

Example 3.2 (Example 3.1, cont’d). Let (𝒫 , Π) be the problem in Example 3.1 and assume
that we associate with the constraint (¬Moving ∨ Car) index 0, and with (¬Moving ∨ ¬Stopped)
index 1. Let 𝜖 denote the empty sequence. Then, the sequences associated with each label are:

𝑗+Car = (0), 𝑗+Moving = 𝜖, 𝑗+Stopped = 𝜖, 𝑗−Car = 𝜖, 𝑗−Moving = (0, 1), 𝑗−Stopped = (1).

Suppose that we use the Gödel t-conorm, then after having initialized 𝐺 = 0003×2, we start updating
it from the label Car:

𝐺𝐺𝐺𝑗+Car = max([
0
0
0
] , [

0.1
0.9
0.4

]) = [
0.1
0.9
0.4

] and thus 𝐺𝐺𝐺 = [
0.1 0
0.9 0
0.4 0

]

Since 𝑗−Car = 𝜖, we do not need to further update 𝐺𝐺𝐺 for Car. We then consider the label Moving and
update it according to 𝑗−Moving (as 𝑗

+
Moving = 𝜖):

𝐺𝐺𝐺𝑗−Moving
=max([

0.1 0
0.9 0
0.4 0

] , 1 − [
0.7 0.7
0.9 0.9
0.9 0.9

]) = [
0.3 0.3
0.9 0.1
0.4 0.1

] and thus 𝐺𝐺𝐺 = [
0.3 0.3
0.9 0.1
0.4 0.1

] .



Finally, we consider the label Stopped, and perform the last update:

𝐺𝐺𝐺𝑗−Stopped = max([
0.3
0.1
0.1

] , 1 − [
0.3
0.2
0.9

]) = [
0.7
0.8
0.1

] and thus 𝐺𝐺𝐺 = [
0.3 0.7
0.9 0.8
0.4 0.1

] .

4. Experimental Analysis

We tested our t-norm loss on the task of event detection for autonomous driving, where the
goal is to assign to each detected bounding box in each video a subset of labels—including one
agent label, and a subset of the action and location labels. To this end, we used the recently
introduced dataset for autonomous driving, ROAD-R [14], which extends the ROAD dataset
[17] with 243 manually annotated constraints, provided in disjunctive normal form, as shown
in Table 5 from Appendix A. The dataset contains 22 videos, each ∼8 minutes long, annotated
with tubelets/tubes that link a sequence of bounding boxes in time. Each bounding box is
annotated with a subset of the 41 labels available (listed in Table 4 from Appendix A). We used
the available training partition for training the models and, for reproducibility purposes, we
reported our results on the validation dataset, as the test set is not publicly available. For our
experiments, we used the 3D-RetinaNet [17] detector with a ResNet50 [18] backbone combined
with a Random Connectivity Gated Recurrent Unit (RCGRU) [19] for temporal feature learning,
which we chose based on its high performance in [14]. We set a weight of 10 for the t-norm
loss term and use sequences of 8 frames as input.

Figure 2: Comparison between the standard ap-
proach and ours in terms of GPU memory allocated
when using different number of constraints. Each
point on the continuous (resp., dashed) line corre-
sponds to an actual observation (resp., estimate).

Memory assessment. To assess the efficiency
of our method for computing the t-norm loss w.r.t.
how much GPU memory is allocated during train-
ing the models, we compared it to the standard
implementation of the t-norm-based loss. We used
a Titan RTX GPU with 24 GiB of RAM for training
models for 50 iterations on ROAD-R, while using
different numbers of constraints. Note that, while
most of the constraints in ROAD-R contain only two
labels, to allow for a fair comparison with the stan-
dard implementation, we selected constraints with
a different numbers of labels. For reference, in each
iteration, the number of anchors 𝐷 was of about
67K. Figure 2 shows that our method significantly
reduced the memory costs, making it possible to
use t-norm-based losses on our dataset, where the
number of constraints and data points per batch are
both large. Using the standard implementation sup-
ports at most 40 constraints; this is 203 constraints
less than the ones in ROAD-R.



Table 2
Comparison between our models with different t-norm-based losses and the baseline models when varying the
percentage of labelled data, as indicated on top of each column.

10% 20% 50% 75% 100%

Baseline 24.49 26.81 31.56 33.57 33.39
Gödel 26.34 (+1.85) 30.76 (+3.95) 32.71 (+1.15) 34.39 (+0.82) 32.16 (−1.23)
Łukasiewicz 26.24 (+1.75) 29.13 (+2.32) 34.07 (+2.51) 33.89 (+0.32) 34.42 (+1.03)
Product 24.53 (+0.04) 26.96 (+0.15) 31.66 (+0.10) 34.06 (+0.49) 33.34 (−0.05)

Results. We first investigated how our memory-efficient t-norm-based loss performs in a
fully-supervised scenario. To this end, we tested our method with three different t-norm losses
(i.e., Gödel, Łukasiewicz, and Product) using 10%, 20%, 50%, 75% and 100% of the available
annotated ROAD-R data, and training for 110, 70, 45, 30, and 30 epochs, respectively. We used a
learning rate of 0.0041 for all models, but for 100% labelled data, we dropped it at epochs 18 and
25 by a factor of 10, as in [14]. We always computed the t-norm-based losses w.r.t. all of the
243 constraints from ROAD-R. For evaluation, we used the frame-wise mean average precision
(f-mAP) metric, computed by taking the mean average precision at a fixed intersection-over-
union threshold of 0.5 over each frame for each class and then averaging these per-class scores,
and reported the result at the best epoch.

Table 2 summarises the results, from which we first observe that t-norm-based losses always
improve the baseline performance, except when using 100% labelled data, where only the
Łukasiewicz t-norm outperforms the baseline—this being in line with the result on 100% labelled
data from our previous work1 [14]. We also notice that unlike the Gödel and Łukasiewicz
t-norms, in most cases, the Product t-norm brings negligible improvements, if any. Lastly, as
expected, integrating background knowledge (via t-norm loss) in the neural models helps more
when little data are available. Indeed, our models yield an improvement of up to 1.85% and
3.95% when using, 10% and 20% of the labelled training data, respectively.

Table 3: The best- and worst-performing models
across fully-supervised models and models using unla-
belled data, with or without warm-up. All models here
used 10% labelled data for training. The models in the
last two columns used also 10% unlabelled data during
the training phase.

Fully-sup. With unlabelled data

- - Warm-up

Gödel 26.34 26.38 26.76
Łukasiewicz 26.24 25.48 26.75
Product 24.53 25.79 27.24

The last observation led us to investigate
whether in our setting also holds the known re-
sult that background knowledge helps when un-
labelled data are available (see, e.g., [20, 12]). To
this end, we trained models where we applied
the t-norm based losses on 10% labelled and 10%
unlabelled data. As shown in the second column
of Table 3, neither the Gödel nor the Łukasiewicz
t-normwere particularly helpful w.r.t. their fully-
supervised performance. Surprisingly, the Prod-
uct t-norm improved its performance instead,
now surpassing the baseline. Since the added
unlabelled data were not really helpful in two

1These results are in line with those obtained in our work [14], where an early and less optimised version (nevertheless,
still capable of handling all 243 constraints) of this implementation of the t-norm-based loss had been deployed but
not described.



out of three cases, we analysed the losses at the beginning of the training and hypothesised
that it would be beneficial to introduce a warm-up training phase, during which the t-norm
loss would be inactive, and after which the unlabelled data would be added and the t-norm
loss activated. As expected, the results from the last column of Table 3 consistently improve
previous performances of all t-norm based losses, with the Product t-norm giving the highest
result (of 27.24 f-mAP) w.r.t. the baseline (of 24.49 f-mAP).

5. Related Work

Neuro-symbolic works have proposed ways to embed available background knowledge by either
embedding it into the topology and/or into the loss. In the former category, we find works
that build a constrained layer on top of a neural network, such as Coherent-by-Construction
Network (CCN) [5], MultiplexNet [21], and Semantic Probabilistic Layer (SPL) [6], all of these
approaches being able to guarantee the satisfaction of hard constraints under certain conditions.
Having a similar goal, NESTER [22] proposes another end-to-end approach by imposing soft and
hard constraints via a program applied on the outputs. Yet another recent work is Iterative Local
Refinement (ILR) [23], which proposed an analytic way of integrating t-norm-based functions
as neural network layers to refine the predictions in a differentiable manner.
The other main line of work comprises methods that relax the constraints and integrate

them into the neural networks’ loss, directly relating to our method. Early work on semantic
based regularisation (SBR) [24] on kernel machines led to the development of ways to map the
constraints into the neural networks’ loss according to the t-norm operations [7, 12, 25, 26].
However, among other issues highlighted in [27, 28], one problem occurring in these approaches
is that they are syntax-dependent. To address this, Semantic Loss [9] and DL2 [11] introduced
syntax-independent loss functions. Another work, by Ahmed et al. [29], integrates logic into the
standard entropy regularisation [30] term of the loss. While the most recent work, by Li et al.
[31], explores another problem with the previous approaches, namely, that models tend to settle
on the easier solutions that satisfy the constraints, and proposes a way to enforce the model
to fully explore the available knowledge. While many such works proved to be particularly
helpful when little annotated data are available [10, 11, 12, 32, 33, 20], they have been designed
for small and/or synthetic datasets and would not scale to complex scenarios. For a complete
survey on how to incorporate logical constraints in deep learning, see [34].

6. Conclusion

In this paper, we formalise an approach for computing a memory-efficient t-norm-based loss to
equip neural networks with background knowledge logical constraints. We show that, unlike
standard implementations of t-norm-based losses, our method can be applied in resource-
intensive scenarios, such as event detection for autonomous driving. On the ROAD-R dataset,
we test our t-norm-based loss on different amounts of labelled data showing that the t-norms
indeed help in boosting the performance of state-of-the-art models, and we also present an
effective way to use the t-norms in presence of unlabelled data.



For future work, we plan on conducting a study into how the loss can help in a semi-supervised
scenario, with varying amounts of unlabelled data added during the training and using the warm-
up phase that we found helpful here for reducing the runtime strain brought by integrating
background knowledge into neural networks. Another research direction could be a study
on the effect of using different intervals of warm-up, before introducing the t-norm loss and
applying it on the unlabelled data.
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A. Appendix: the ROAD-R dataset

ID Agent ID Action ID Location

0 Pedestrian 10 Move away 29 AV lane
1 Car 11 Move towards 30 Outgoing lane
2 Cyclist 12 Move 31 Outgoing cycle lane
3 Motorbike 13 Brake 32 Incoming lane
4 Medium vehicle 14 Stop 33 Incoming cycle lane
5 Large vehicle 15 Indicating left 34 Pavement
6 Bus 16 Indicating right 35 Left pavement
7 Emergency vehicle 17 Hazard lights on 36 Right pavement
8 AV traffic light 18 Turn left 37 Junction
9 Other traffic light 19 Turn right 38 Crossing location

20 Overtake 39 Bus stop
21 Wait to cross 40 Parking
22 Cross road from left
23 Cross road from right
24 Crossing
25 Push object
26 Red traffic light
27 Amber traffic light
28 Green traffic light

Table 4
The labels (with their ID’s) from the ROAD-R dataset used in our experiments.

Logical constraints Descriptions in natural language

{not Mobike, not Bus} A motorbike cannot be a bus

{not TL, not TurLft} A traffic light cannot turn left

{not Wait2X, not Ovtak} An agent cannot wait to cross and overtake

{Ped, not PushObj} If an agent pushes an object then it is a pedestrian

{PushObj, not Ped, MovAway, MovTow, Mov, Stop, TurLft,
TurRht, Wait2X, XingFmLft, XingFmRht, Xing}

A pedestrian can only push objects, move away, etc.

{VehLane, OutgoLane, OutgoCycLane, IncomLane, Incom-
CycLane, Pav, LftPav, RhtPav, Jun, XingLoc, BusStop, Park-
ing, TL, OthTL}

Every agent but traffic lights must have a position

Table 5
Examples of logical constraints and their natural language explanations from Tables 9-11 of [14].
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