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Abstract

Knowledge Graphs (KGs) are an essential component of neuro-symbolic AI. KG Embedding Models

(KGEMs) are used to represent elements of a KG (its entities and relations) in a vector space, to enable

efficient processing and reasoning over knowledge. Most KGEMs are evaluated against datasets derived

from the Freebase KG: FB15k and FB15k-237. In this paper, we identify limitations in these datasets

with respect to Compound Value Types (CVTs), which are nodes introduced in Freebase as a substitute

for 𝑛-ary relations. In FB15k and FB51k-237, CVTs have been removed, thereby eliminating valuable

information. To evaluate whether KGEMs can learn semantically accurate representations of entities

and relations in Freebase, we introduce here a new dataset named FB15k-CVT, which reintroduces the

deleted CVT nodes. In a preliminary evaluation, we assess the limitations of baseline KGEMs (TransE,

DistMult) in the presence of CVTs. The evaluation suggests that KGEMs based on tensor decomposition

are more promising than translational models but, most of all, it calls for further experiments with

KGEMs that can answer conjunctive queries or that preserve logical entailment.
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1. Introduction

Knowledge graphs (KGs) have become an essential component of neuro-symbolic AI research.

A KG is a uniform source of information in which physical-world entities are represented as

vertices of a directed edge-labeled graph. In the context of representation learning, edge labels

of a KG are called relations, and its edges are called facts or triples [1].

KGs can be leveraged in a great variety of AI applications. Over the past decade, many KG

Embedding Models (KGEMs) have been developed for that purpose [1, Sec. 4.2]. By representing

entities and relations as numeric structures in a vector space, KGEMs provide a way to integrate

both symbolic and sub-symbolic knowledge, enabling efficient processing and reasoning over

complex and heterogeneous data. Most KGEMs are evaluated against datasets that are derived

from Freebase
1
, a (now archived) public KG containing millions of entities and billions of facts.

In KGEM research, the most notable datasets derived from Freebase are FB15k and FB15k-237.

FB15k is a subset of Freebase that includes 15k entities selected among the most frequent entities
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(wrt the number of facts they are associated with) [2]. It was later noticed that FB15k was flawed

wrt link prediction (LP), the main learning task for which KGEMs are trained. Many facts used

for testing could trivially be reconstructed from other facts exposed to models during training

(test leakage) [3]. Among the 1,000+ relations of FB15k, 237 relations were kept in FB15k-237.

Both FB15k and FB15k-237 were designed to be representative subsets of Freebase. Yet, they

hide significant details of Freebase that are rarely discussed in KGEM research. Most of the

relations in these datasets are actually not in Freebase. 144 relations, out of the 237 of FB15k-237,

are not atomic relations but two-hops paths that have been created by composing two Freebase

relations. In this paper, we motivate the (re)introduction of atomic relations in FB15k, to be

more representative of Freebase—and, in fact, of most large KGs—and describe the resulting

dataset.

Our dataset, which we call FB15k-CVT, gets its name from a particular type of entity in

Freebase: Compound Value Types (CVTs). We introduce CVTs in Sec. 2 and show the limitations

that pertain to removing CVTs from Freebase. Fatemi et al. already observed that CVTs

represented most of Freebase [4]. However, in this paper, we draw different conclusions as to

what KGEM research should focus on. While Fatemi et al. consider that CVTs should be hidden

behind 𝑛-ary relations, we argue that the numerous CVTs in Freebase are an ideal benchmark

for emerging KGEMs targeting conjunctive query evaluation (such as Query2Box [5]) and

logical entailment (such as ELEm [6]). We describe FB15k-CVT in Sec. 3. We give preliminary

results with baseline KGEMs for an extension of the link prediction task to two-hops paths in

Sec. 4, showing that FB15k-CVT is more challenging than FB15k-237.

2. Compound Value Types in Freebase

Most facts in Freebase are to be interpreted as 𝑛-ary statements. Because a typical KG can only

capture binary statements, relations with higher arity are represented in Freebase via CVTs [7].

A CVT is an entity whose existence depends upon (at least two) other entities. At a theoretical

level, it can be interpreted as the reification of a fact over 𝑛 entities (𝑛 ≥ 2) and possibly literal

values. Examples of CVTs include: a position held by a person over a certain period; a monetary

amount; an award nomination relating one or more nominees, an award and a film. The first

two examples are given in Fig. 1. Two examples of award nomination CVTs are given in more

details in Fig. 1. In Freebase, CVTs may only be defined with respect to non-CVT entities, which

are referred to as topics. In the examples of Fig 1, ‘Dominique de Villepin’, ‘Minister of Foreign

Affairs’, ‘STM’ and ‘US dollar’ are all topics.

Dealing with 𝑛-ary relations has been a long-standing issue on the Semantic Web. Other

KGs, including Wikidata [8] and YAGO [9] also include 𝑛-ary relations, mostly in the form

of spatial-temporal annotations. In fact, the three examples of CVTs we give here also hold

temporal annotations. The modeling choice of Freebase, YAGO and Wikidata slightly differ as to

how to represent these 𝑛-ary annotations but all three KGs use a form of reification that follows

documented best practices [10]. CVTs are thus representative of how large KGs represent

annotated facts.
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Figure 1: Examples of CVTs in Freebase (circle-shaped green nodes) and the relations created in FB15k
and FB15k-237 (dashed orange lines)

2.1. Removing Compound Value Types

The original FB15k dataset was designed for link prediction experiments in a transductive
setting. That is, a fact ⟨𝑒ℎ, 𝑟, 𝑒𝑡⟩ may only be predicted for head and tail entities that are known

beforehand. In large open KGs, it is reasonable to assume that the majority of entities has a

known identifier (for instance, a Wikipedia page title). It is however less obvious that identifiers

for CVTs should be known in advance, given the potentially large number of CVTs in a KG. To

train the first KGEMs on Freebase in a transductive setting, Bordes et al. chose to collapse CVTs

found in Freebase in order to learn embeddings for topics only. As a result, KGEMs are built

from a simplification of Freebase that considers only simple relations or paths (of length 2) that

bypass CVTs. The simplification process comes with a number of issues.

First, not all paths have been preserved in FB15k. For example, consider the ternary relation

award_nomination that relates a nominee, a type of award and a creative work. Freebase

includes the statement that Fran Walsh was nominated for an Academy Award for Best Original

Song in The Return of the King, the last film in the Lord of the Rings trilogy (see Fig. 1 on the

right). There are three possible paths for this statement: (i) between Fran Walsh and the film,

(ii) between Fran Walsh and the award type and (iii) between the film and the award type. FB15k

only captures the first two paths. There is no relation between The Return of the King and the

Academy Award in the dataset. It is unclear what criteria were chosen to decide what paths are

preserved and what paths are deliberately lost in the simplification.

To overcome this problem of information loss, Fatemi et al. [4] proposed to get rid of CVTs and

see FB15k as a hypergraph instead. They created the 𝑚-FB15k dataset
2
, which includes binary,

ternary and quaternary relations. 𝑚-FB15k does not include the award_nomination relation,

though, which is likely due to the incompleteness of Freebase with respect to nominations.

For instance, Freebase does not say for what film Peter Gabriel and Thomas Newman were

nominated. Turning the CVT into an award_nomination statement would generate an empty

assignment for nominated_for. 𝑚-FB15k only includes fully instantiated statements. If KGEMs

learn representations of CVTs instead of 𝑛-ary statements, they may still be able to correctly

predict the missing link pointing to WALL-E. A hypergraph representation of CVTs thus remains

limited.

Some CVTs also hold information not present in 𝑚-FB15k because they relate to literal values

and not to topics. Literal values can e.g. be temporal annotations (time instants or intervals).

2
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For instance, award nominations are associated with a date in Freebase. A dedicated class of

KGEMs target temporal KGs, seen as collections of quads. It is possible to generate a temporal

KG from CVTs found in FB15k-237. Such a dataset significantly differs from the classical

ICEWS benchmark for temporal KGEMs [11]. Quads inherit the limitations of arbitrary 𝑛-ary

statements in the presence of incomplete knowledge, though. Generic KGEMs that would learn

representations of CVTs may also capture temporal information. Temporal relations between

CVTs may be materialized in the dataset for KGEMs, in order to turn temporal reasoning tasks

into classical link prediction. The nomination of Fran Walsh (in 2003) e.g. preceded that of

Peter Gabriel and Thomas Newman (2009). A temporal link prediction task would consist in

predicting events 𝑒′ such that ⟨𝑒, precedes, 𝑒′⟩ holds, knowing event 𝑒 occurred.

2.2. Reintroducing Compound Value Types

As already mentioned, the main reason why CVTs were not taken into account in FB15k is the

restriction of transductive link prediction to well-known entities (i.e. topics). If the point was

valid in 2013, it may not hold anymore, after ten years of KGEM research. Indeed, in recent

years, KGEMs have started being evaluated on other tasks beyond link prediction. In particular,

several KGEMs target conjunctive query evaluation and logical entailment, such that it is not

necessary anymore to maintain an exhaustive list of embeddings for all possible entities.

The first KGEM to focus on conjunctive queries is the Graph Query Embedding (GQE)

model [12]. It was then followed by Query2Box [13], BetaE [14] and, more recently, Gam-

maE [15]. All these models can emulate link prediction by answering path queries that bypass

CVTs: they would learn against Freebase (without simplification) and only have embeddings

for topics and binary relations that are optimized for answering complex queries instead of

predicting single facts.

Another class of KGEMs, designed to preserve logical consistency wrt a logic (e.g. a description

logic), has recently emerged. They are primarily targeting the ℰℒ++
logic, one that is well

used in Semantic Web ontologies. These include EL Embeddings (ELEm) [6], BoxEL [16] and

the more recent Box
2
EL [17], all based on the idea of representing classes of entities as convex

polytopes in the embedding space. In KGEMs that preserve the semantics of ℰℒ++
, logical

axioms involving compositions of relations can be formulated a priori and guide training. As

for query evaluation, no embedding for CVTs would then be required.

Despite their increased expressivity, these two classes of models are still evaluated on FB15k

and FB15k-237. Given that these datasets are not faithful to the original KG, the performance of

KGEMs on these datasets may not necessarily reflect their performance in real-world applica-

tions. We thus introduce FB15k-CVT in the next section and compare it to other datasets often

used to evaluate KGEMs.

3. The FB15k-CVT dataset

The FB15k-CVT dataset is a KG that we created by expanding FB15k-237 with additional types

of entities and relations that were not present in it. In this section, we describe how we extracted

the triples from Freebase, filtered the relations, and split the dataset into train/validation/test



subsets. We also discuss the size of the dataset and how it compares to other datasets derived

from FB15k.

3.1. Creation of the set of triples

First, to create FB15k-CVT, we downloaded the Freebase large reified knowledge graph that

contains millions of entities and relations. We took the latest version available, which was last

updated in August 2015.
3

Entity Filtering. Next, we filtered the Freebase KG triples to extract only those involving

entities that appear in the FB15k-237 dataset (referred to as FB15k-237’s “topics”), whether

as subjects or objects. We further restricted the selection to triples where the entities are

identified by Machine IDentifier (MID) consisting of /m/ followed by a base-32 unique identifier,

such as /m/026t6. This resulted in triples from Freebase KG where the "topics" of FB15k-

237 are connected to new entities labeled as "CVT". Consequently, the current set of triples

contains additional entities and not yet filtred set of relations, which includes many new

triples. Among these are the one-hop relations already present in the FB15k-237 KG, such as

(/m/01lxd4, /music/genre/artists, /m/0f0y8).
Relation Filtering. Next, to determine which triples to retain, we compile a set of relation

filters that includes both the decomposition of two-hop relations and the one-hop relations

present in FB15k-237. This set contains a total of 302 relation types. Note that FB15k-237

consists of 237 relations, of which 93 are direct relations and the remaining 144 are composed

relations. After, we apply this filter, we obtain a smaller dataset size, with only 14,468 topics,

which represents represents 99% of FB15k-237’s entities, and 292 types of relations, which

corresponds to 96% of the total types of relations found in FB15k-237.

Introduction of CVTs. By filtering the extracted set of triples this way, we introduce

“CVT” entities back, where it constitutes the intermediate nodes between topics. CVTs

were mainly hidden within the composed relations in FB15k-237, e.g., the entities and

relations in following two triples : (i) (/m/04ljl_l, /award/award_category/nominees,

/CVT/1234); (ii) (/CVT/1234, /𝑎𝑤𝑎𝑟𝑑/𝑎𝑤𝑎𝑟𝑑_𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛/𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑_𝑓𝑜𝑟,/m/03qcfvw)
are originated from the following triple with a composed two-hop relation (/m/04ljl_l,

/award/award_category/nominees./award/award_nomination/nominated_for,

/m/03qcfvw) in FB15k-237 KG.

3.2. Train/validation/test split

Next, we want to ensure that the train/validation/test split of FB15k-CVT gets the same distribu-

tion of topics and relations as in FB15k-237. This will help us lay the groundwork for training,

evaluating KGEMs and carrying experiments on the new dataset. First, for each subset, we keep

triples with direct relations. Then, for triples with composed relations, we look for intermediate

nodes of types CVT, in the previously built set of triples, to split the relation into two new triples

that formulate a path. Each path consists of two triples that include 3 entities and 2 relations.

Only one of the entities is of type CVT. We note them as follow: 𝑒1, 𝑒2 for the topics, 𝑛cvt for

the intermediate node and 𝑟1, 𝑟2 for the relations. Depending on the direction of the relations,

3
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Dataset #Statements |ℰtopic| |ℰCVT| |ℛ| #Train #Valid #Test
FB15k 592,213 14,951 / 1,345 483,142 50,000 59,071

Fb15k-237 310,079 14,505 / 237 272,115 17,526 20,438
𝑚-FB15k 493,520* 10,314 / 71 415,375* 39,348* 38,797*

YAGO15k 138,056 15,403 / 34 110,441 13,815 13,800

FB15k-CVT 1,501,110 14,468 454,070 292 1,421,877 34,479 44,754

Table 1
Datasets characteristics after preprocessing. (*) statements in 𝑚-FB15k are represented with 𝑛-ary
relations

we distinguished 3 types of paths in our dataset: (i) direct path: (𝑒1, 𝑟1, 𝑛cvt)/(𝑛cvt, 𝑟2, 𝑒2);
(ii) splitting path: (𝑒1, 𝑟1, 𝑛cvt)/(𝑒2, 𝑟2, 𝑛cvt); (iii) joining path: (𝑛cvt, 𝑟1, 𝑒1)/(𝑛cvt, 𝑟2, 𝑒2).
By following this filtering and splitting process, we ensure that the built dataset remains closely

aligned with the original FB15k-237 dataset. The resulting dataset has the characteristics given

in Table 1, compared with other reference datasets. It is available online
4
.

4. Experiments and preliminary results

In this section, we present the details of the conducted experiments and the preliminary re-

sults. We run our evaluation of KGEMs on two datasets: FB15k-237 and our built FB15k-CVT

datatset. We focus on two widely used baseline models, TransE and DistMult, and analyze their

performance in the presence of CVTs in KGs. The later is assessed on the path prediction (PP)

tasks.

4.1. From link prediction to path prediction

Generally, researchers assess the performance of their developed KGMEs on a link prediction

(LP) task, which consists of predicting the presence or absence of a relation between two entities

in the knowledge graph. In practice, they first train their models using a subset of triples 𝒯𝑡𝑟𝑎𝑖𝑛
from the knowledge graph 𝒦𝒢 dataset i.e., 𝒯𝑡𝑟𝑎𝑖𝑛 ⊂ ℰ ×ℛ × ℰ ⊂ 𝒦𝒢. The goal of this step

is to learn vector representations for the set of entities ℰ and relations ℛ. After training, a set

of unseen evaluation triples is provided 𝒯𝑒𝑣𝑎𝑙, with entities and relations known beforehand.

For each triple (ℎ, 𝑟, 𝑡) ∈ 𝒯𝑒𝑣𝑎𝑙, they evaluate their models on two different tasks: (i) head
prediction (?, 𝑟, 𝑡) and (ii) tail prediction (ℎ, 𝑟, ?). Technically, a relation 𝑟 and a tail 𝑡 (Resp.

head ℎ) entity are provided, and the model aims to rank correctly the head ℎ (resp. tail ℎ) ground-
truth entity, such that (ℎ, 𝑟, 𝑡) ∈ 𝒯𝑒𝑣𝑎𝑙. This, after scoring each possible (ℎ′, 𝑟, 𝑡), ∀ℎ′ ∈ ℰ (resp.

(ℎ, 𝑟, 𝑡′), ∀𝑡′ ∈ ℰ) with the same scoring method as in the training phase.

However, in our case, LP task is not proper for evaluating KGEMs on capturing the complex

relations in FB15k-CVT, which involve two-hops paths along with intermediate CVT entities to

represent 𝑛-ary relations. Therefore, we propose to evaluate KGEMs on a path prediction task,

where the goal is to predict a complete path between two topic entities in a knowledge graph.

Differently from LP task, a set of unseen evaluation quads, representing paths, is created 𝒬𝑒𝑣𝑎𝑙 ⊂

4
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ℰ𝑡𝑜𝑝𝑖𝑐𝑠×ℛ×ℛ×ℰ𝑡𝑜𝑝𝑖𝑐𝑠. For each quadruple (𝑒1, 𝑟1, 𝑟2, 𝑒2), we evaluate the models on four possi-

ble PP tasks: (i) chain backward prediction i.e., (?, 𝑟1, 𝑛cvt)/(𝑛cvt, 𝑟2, 𝑒2), (ii) chain forward
prediction i.e., (𝑒1, 𝑟1, 𝑛cvt)/(𝑛cvt, 𝑟2, ?), (iii) join prediction i.e., (𝑒1, 𝑟1, 𝑛cvt)/(?, 𝑟2, 𝑛cvt)
and (iv) split prediction i.e., (𝑛cvt, 𝑟1, 𝑒1)/(𝑛cvt, 𝑟2, ?). In other terms, we are given an entity

of type topic 𝑒1 (resp. 𝑒2) and two relations 𝑟1 and 𝑟2, and then evaluated on ranking correctly

the ground-truth 𝑒2 (resp. 𝑒1). This evaluation task aims at assessing the ability of KGEMs

to learn the embedding space of CVTs depending on the relations they are involved in. This

provides a more comprehensive and challenging benchmark for evaluating the effectiveness of

KGEMs on real-world KGs.

4.2. Experiments Settings

Datasets. In the following experiments, we consider, for now, only the two datasets: FB15k-237

(for reproduction) and our newly built dataset FB15k-CVT (for evaluation). For FB15k-237, we

closely reproduced the results in the original papers of the models (TransE [2] and DistMult [18]),

assessed on LP tasks. On the other hand, for FB15k-CVT, we evaluated the same KGEMs on

path prediction (PP) tasks.

Preprocessing of FB15k-CVT. Now that the split of FB15k-CVT dataset is done, we need

to look up and prevent any flaws in it. First, we adapt the dataset for transductive settings; by

deleting from validation and test sets the triples with topics, that don’t appear not appearing in

the training set. This resulted in deleting 4 triples from validation set and 3 others from test

set. Secondly, we follow the same stratregy as in [3] to prevent inverse relation leakage . The

latter was between triples that contain at least on entity of type CVT, i.e., {(?𝑒1, ?𝑟1, ?𝑒2)train ∩
(?𝑒2, ?𝑟2, ?𝑒1)eval}, where 𝑟1 ̸= 𝑟2. Finally, we wrap up by deleting any duplicate triples

remaining between evaluation sets (i.e., validation and test sets) and training set. The goal of

this preprocessing step is to create a more challenging dataset that requires models to generalize

better to new relation between entities.

Creating paths (quadruples) for validation and test sets As stated in subsection.4.1, we

recall that our PP task requires a set of quadruples, noted 𝒬Eval,in order evaluate of the models.

Therefore, we generate all possible path in our subsets and delete the intermediate CVT nodes.

As a result, we got |𝒬test| = 8,667 quadruples. Also, it’s worth noting that along this process,

we make certain there is no paths with a reflexive relation, i.e., (𝑒, 𝑟, 𝑛cvt), (𝑛cvt, 𝑟, 𝑒) as this

will bias the results of the evaluation.

Model training. We choose two KGE models, TransE [2] and DistMult [18], which be-

longs respectively to different sub-categories of tensor-based models: translational and tensor

decomposition models, to train on 𝒯train of the chosen datasets. For this, we used the best

configurations we found, as provided in the PyKEEN framework
5
, designed for FB15k-237 and

reused them for FB15k-CVT.

Model Evaluation. In our evaluation setting for PP task, we restrict the models to only to

use the learned embeddings for topic ℰ𝑡𝑜𝑝𝑖𝑐 and ℛ. As we consider that not all CVTs are seen by

the model in training set. To this end, in this phase, we slightly modified the scoring functions

of the evaluated models, i.e., TransE and DistMult, to suit the evaluation task (see eq. 1 and

5

PyKEEN (Python KnowlEdge EmbeddiNgs) https://pykeen.github.io/

https://pykeen.github.io/


Model TransE DistMult
Dataset Task MR Hit@1 Hit@5 Hit@10 MR Hit@1 Hit@5 Hit@10

FB15k-237 LP (Both) 192.52 0.1640 0.3641 0.4626 777.79 0.1811 0.3102 0.3708
FB15k-CVT PP (All) 237.18 0.0709 0.0994 0.1142 139.81 0.0933 0.1442 0.1646

Table 2
Evaluation’s results of TransE and DistMult model on FB15k-237 (Reproduction) and FB15k-CVT
datasets.All

eq. 2). Note that the function sign(𝑟) returns the direction of the relation 𝑟, in order to calculate

accurately the projection of the pair (𝑒, 𝑟) to the region, in the latent space, representing the

CVTs embeddings.

𝑓𝑇𝑟𝑎𝑛𝑠𝐸(𝑒1, 𝑟1, 𝑟2, 𝑒2) = ‖(𝑒1⃗ + sign(𝑟1).𝑟1⃗)− (𝑒2⃗ − sign(𝑟2).𝑟2⃗)‖ (1)

𝑓𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡(𝑒1, 𝑟1, 𝑟2, 𝑒2) = ‖(𝑒1⃗ ⊙ sign(𝑟1).𝑟1⃗
𝐷)− (𝑒2⃗ ⊙ sign(𝑟2).𝑟2⃗

𝐷)‖ (2)

Evaluation Metrics. As we evaluated the models on link-like prediction tasks. There are

two type of metric in the literature: ranking and classification metrics, to quantify the models’

performance. For our experiments, among various available metrics we focus on rank-based

ones to measure different aspects of ranking performance. Precisely, we choose: (1) Mean Rank
(MR) metric, which is a base metric that summarizes the central tendency of ranks by computing

the arithmetic mean over all individual ranks, and (2) The Hits at K metric, noted Hit@𝑘, which

measures the fraction of times when the correct result is in the top-𝑘 ranked triples. We set 𝑘
for our experiments to be 𝑘 ∈ {1, 5, 10}.

4.3. Experiments Results

Table 2 summarizes the performance of TransE and DistMult models on FB15k-237 and FB15k-

CVT, respectively, for the link prediction (LP) and path prediction (PP) tasks. We report the

average results for the models’ performance on sub-prediction tasks, including head and tail

prediction for LP, as well as the four subtasks mentioned in subsection 4.1 for PP. In the first

line, both models exhibit, relatively to stat-of-the-art link prediction KGEMS, high Hits@𝑘.

In second line, for istance, one could observe that TransE gets high mean rank (MR) and low

Hit@𝑘. This indicates that the model is not well suited for path prediction in the presence of

CVTs. Detailed results show that it is especially the case for the “chain forward” and “chain

backward” predictions (see Table 3 in Appendix for more details). Results for DistMult are

slightly more contrasted. We observe the same pattern but the decrease in performance is much

lower. MR even significantly improves for DistMult.

However, the evaluation confirms that both models got challenged in path prediction task, as

they couldn’t succeed at learning the underlying vector representation of CVTs. Furthermore,

the evaluation calls for further experiements with KGEMs with our proposed FB15k-CVT dataset

to explore new avenues of existing models or improving or developing new ones.



5. Conclusion

The FB15k-CVT dataset that we have described was generated from FB15k and its successor,

FB15k-237. Its main distinctive characteristic is that it is an exact subset of Freebase, which FB15k

and FB15k-237 aren’t. We argued in the paper that the reintroduction of CVTs in the dataset

offers new challenges for emerging KGEMs, including Query2Box, ELEm and their competitors.

Our preliminary evaluation of TransE and DistMult shows that the overall performances of the

two models significantly decrease in the presence of CVTs but the change benefits DistMult,

suggesting that tensor decomposition is better suited for handling CVTs than translational

models.
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TransE
Dataset Task MR Hit@1 Hit@3 Hit@5 Hit@10

FB15k-237
Head 257.29 0.1025 0.2123 0.2724 0.3654
Tail 127.75 0.2256 0.3800 0.4558 0.5597

Both 192.52 0.1640 0.2961 0.3641 0.4626

FB15k-CVT

Chain forward 235.80 0.0472 0.0635 0.0714 0.0826
Chain Backward 248.86 0.0396 0.0570 0.0690 0.0857

Join 148.20 0.4302 0.4613 0.4823 0.5082
Split 196.12 0.3902 0.4188 0.4381 0.4619
All 237.18 0.0709 0.0887 0.0994 0.1142

DistMult
Dataset Task MR Hit@1 Hit@3 Hit@5 Hit@10

FB15k-237
Head 1047.92 0.0858 0.1469 0.1820 0.2348
Tail 507.66 0.2763 0.3867 0.4383 0.5068

Both 777.79 0.1811 0.2668 0.3102 0.3708

FB15k-CVT

Chain forward 148.04 0.0447 0.0611 0.0696 0.0852
Chain Backward 143.19 0.0863 0.1391 0.1554 0.1775

Join 74.21 0.4573 0.5085 0.5376 0.5664
Split 63.65 0.4154 0.4711 0.5296 0.5793
All 139.81 0.0933 0.1293 0.1442 0.1646

Table 3
Evaluation’s results of TransE and DistMult model on FB15k-237 (Reproduction) and FB15k-CVT datasets

A. Extended results of the experiment

We provide detailed results in Table 3.

B. Related Work

As argued in Sec. 2, our dataset brings new challenges to KGEMs that intend to capture either

𝑛-ary statements or rules. We now review existing approaches for these two cases and the

datasets on which they were evaluated.

HypE was the first model to target 𝑛-ary statements via hypergraph embeddings [4]. It was

then followed by several models, including extensions of TransE [2] and DistMult [18], BoxE [19,

p. 67] and more recent approaches based on graph neural networks (such as Att-ImpGCN [20]).

These models are evaluated against 𝑚-FB15k, which is derived from FB15k and not FB15k-237.

The separation between training, validation and testing in FB15k is known to lead to data

leakage, hence the creation of FB15k-237 [3]. The problem, which is due to inverse relations not

being taken into account, persists in the 𝑛-ary variant. The results of some models, including

SimplE, are artificially high. HypE is derived from SimplE and should be reevaluated against

our dataset. The same applies to similar methods based on tensor decomposition.

As already mentioned, temporal relations are a special case of 𝑛-ary relations. Temporally

aware TransE and DistMult (referred to as TA-TranE and TA-DistMult), are among the early



KGEMs designed for temporal relations [11]. They were tested on YAGO15k
6
, a temporal KG

derived from FB15k, by aligning entities with YAGO and retrieving YAGO facts that included

‘occurs since’ and ‘occurs until’ annotations. TA-TransE and TA-DistMult were also evaluated on

a much larger dataset derived from Wikidata. This dataset was originally constructed to evaluate

TTransE, a temporal extension of TransE [21]. Temporal annotations in the Wikidata dataset

(and most of the YAGO15k dataset) are only at coarse granularity: statements are annotated

with years. A larger temporal KG, also derived from Wikidata, was used to evaluate temporal

extensions of ComplEx (TComplEx and TNTComplEx) [22]. The authors of these extensions

considerd YAGO15k was too small for temporal link prediction. More recent temporally aware

KGEMs, such as BoxTE [23], tend to favor other benchmarks over YAGO15k.

At another end of the spectrum, some KGEMs focus on rule induction. For instance, RotatE,

one of the best performing KGEMs on FB15k-237
7
, was in fact motivated by the ability to

capture composition rules, as well as symmetry, antisymmetry and inversion [25]. Before that,

the Knowledge and Logic Embedding method (KALE), integrated rules to TransE using fuzzy

logic expressions [26]. For evaluation, 47 rules were defined for a subset of FB15k. These rules

have a restricted form, though: they are limited to subsumption and (basic) composition. KALE

assumes rules are provided. In contrast, the IterE model is designed to learn rules jointly with

entity and relation representations [27]. Rules correspond to linear algebraic expressions in the

embedding space, such that the plausibility of a rule can be calculated as a distance between

matrices. IterE can learn the same rules as those targeted by RotatE but it can e.g. not learn

subsumption.

KALE, IterE and other rule learning models generally focus on restricted rule forms, so that

the space of possible inductions is of reasonable size. In fact, if one specifically looks for Horn

rules, exploration may be performed directly in the syntactic space: rules may be mined without

leverage any latent embedding space. It is the approach taken e.g. by the latest Association

Rule Mining under Incomplete Evidence (AMIE 3) [28] and Anytime Bottom-up Rule Learning

(AnyBURL) [29] algorithms. On link prediction, AnyBURL tends to have comparable results

with standard KGEMs over FB15k-237 [29, 30]. It may in fact outperform them on our dataset,

given the high support rules involving CVT values have.

6

training, validation, and test splits are available at available at https://github.com/mniepert/mmkb/tree/master/TemporalKGs/yago15k

7

as reported in a large-scale experiment by Ali et al. [24].
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