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1. Extended abstract

In  this  contribution  [1],  we  analyze  different  methods  for  integrating  large  language  models
(LLMs) and knowledge graphs (KGs), presenting a quantitative and qualitative evaluation of these
neuro-symbolic strategies on a broad spectrum of question answering benchmark datasets focused on
common sense reasoning. 

We illustrate how the combination of data-driven algorithms and symbolic knowledge is necessary
to enable domain generalizability and robustness in downstream tasks. Our work, despite being prior
to  the  disruptive  innovation  triggered  by  ChatGPT  [2],  remains  actual,  as  it  stems  from  a
comprehensive analysis of the intrinsic problems that LLMs have in dealing with high-level forms of
inferences requiring spatial, temporal, analogical, causal reasoning. We argue that such problems are
dependent on the inner limitations of the neural architectures behind those models and cannot simply
be solved by increasing the size of the training data, or by further scaling the number of parameters. 

In  our  original  paper  we  claim  that  two  orthogonal  extensions  are  required  for  LLMs:  first,
augmenting them with symbolic knowledge,  which is  available in large amounts thanks to open-
source commonsense KGs; second,  extending the resulting neuro-symbolic language models with
components that can dynamically perform reasoning. We refer to the former direction as horizontal
augmentation, as it focuses on expanding the coverage of the structured knowledge available to LLMs
methods, and to the latter as vertical augmentation, as it explores in depth how specific forms of
reasoning can be enabled. Our paper mostly focuses on horizontal augmentation, but it also lays the
foundations of vertical augmentation. In regards of the former, we study techniques like attention-
based knowledge injection,  and fine-tuning LLMs with synthetic  question-answer pairs  generated
from  KGs:  in  both  techniques,  symbolic  knowledge  is  typically  translated  into  latent  vectorial
representations.  However,  if  sub-symbolic expressions can augment training signals with features
transformed from explicit semantic content, such knowledge infusion process doesn’t mandate how
inferences on the learned knowledge should be performed. Such mechanisms are typically executed
using  logic-based  reasoning,  e.g.,  Region-Connection-Calculus  for  spatial  knowledge  [3],  Allen’s
axioms for temporal (or spatial) knowledge [4], etc. (relevant work exists showing how deep learning
models can replicate logical reasoning, e.g., [5,  6], but it doesn’t follow that any form of reasoning
should be reduced to sub-symbolic learning – or at least this is an assumption only for some closely
paired neuro-symbolic systems).  Implementing inference mechanisms1, and integrating them with
large-scale knowledge infusion methods, is what we advocate for in the future of neuro-symbolic AI
research and development. 
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