
Learning Logic Constraints from Demonstration
Mattijs Baert1,∗, Sam Leroux1 and Pieter Simoens1

1IDLab, Department of Information Technology at Ghent University - imec, Technologiepark 126, Ghent, B-9052, Belgium

Abstract
Autonomous agents operating in real-world settings are often required to efficiently accomplish a task
while adhering to certain environmental constraints. For instance, a self-driving car must transport its
passengers to their intended destination as fast as possible while complying with traffic regulations.
Inverse Constrained Reinforcement Learning (ICRL) is a technique that enables the learning of a policy
from demonstrations of expert agents. When these expert agents adhere to the environmental constraints,
ICRL thus allows for compliant policies to be learned without the need to define constraints beforehand.
However, this approach provides no insight into the constraints themselves although this is desired for
safety-critical applications such as autonomous driving. In such settings, it is important to verify what is
learned from the given demonstrations. In this work, we propose a novel approach for learning logic
rules that represent the environmental constraints given demonstrations of agents that comply with
them, thus providing an interpretable representation of the environmental constraints.

Keywords
Constraint Inference, Learning from Demonstrations, Rule Induction

1. Introduction

Social norms play a crucial role in shaping individual behavior in modern society, promoting
safety and efficiency in human interactions. Artificial agents seeking to integrate into the real
world must also adhere to these norms in order to achieve success [1]. These norms can be
viewed as constraints on an agent’s behavior, and in the framework of reinforcement learning
(RL), a constraint-abiding agent can be trained by solving a min-max problem [2], maximizing
the reward function (reflecting the goal) while minimizing the cost function (capturing constraint
violations). However, in complex environments where constraints are implicit or unknown,
it may be necessary to use Inverse Constrained Reinforcement Learning (ICRL) methods to
learn these constraints from expert demonstrations. Current ICRL methods iterate over the
complete state-action space to determine the most likely constraints [3] or parameterize the cost
function using a neural network [4, 5]. The first group of methods offers explainability as the
constraints are represented by a set of states (or state-action pairs) [6, 7] or logic rules extracted
from this set [8]. The second group of techniques offers scalability to complex problems but has
to concede in terms of interpretability although this is crucial for safety-critical applications.
In this work, we present a novel approach for obtaining an interpretable description of con-
straints in environments with a high-dimensional state space. First, we generate states that

NeSy 2023: 17th International Workshop on Neural-Symbolic Learning and Reasoning
∗Corresponding author.
Envelope-Open mattijs.baert@ugent.be (M. Baert); sam.leroux@ugent.be (S. Leroux); pieter.simoens@ugent.be (P. Simoens)
Orcid 0000-0002-2413-5298 (M. Baert); 0000-0003-3792-5026 (S. Leroux); 0000-0002-9569-9373 (P. Simoens)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mattijs.baert@ugent.be
mailto:sam.leroux@ugent.be
mailto:pieter.simoens@ugent.be
https://orcid.org/0000-0002-2413-5298
https://orcid.org/0000-0003-3792-5026
https://orcid.org/0000-0002-9569-9373
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


1

2 3
4

Figure 1: Generation of negative examples from expert trajectories given a model of the nominal
environment

are likely to be constrained from trajectories of agents that adhere to the constraints (i.e. ex-
pert agents). Next, we utilize a rule induction method to learn a set of rules that capture
the constraints in the environment from a set of positive examples (states visited by expert
agents) and negative examples (states generated in the previous step). The final outcome is
a set of logic rules in disjunctive normal form that represent the environmental constraints.
An additional advantage of our method is that it is robust against constraint violations in the
expert demonstrations. This is important when learning from human demonstrations because
it is possible that some human demonstrations are non-compliant with the constraints.

2. Method

The aim of this study is to learn logical rules that describe the constraints in a specific environ-
ment by utilizing trajectories of constraint-abiding agents (i.e., experts) within that environment.
Anomalous behavior is rare in real-world scenarios, leading to a limited number of constraint
violations in the set of expert trajectories. Therefore, we regard the expert trajectories as a
dataset containing only positive examples. However, many current classification and rule
induction techniques necessitate both positive and negative examples for training. Therefore,
we propose a method for generating negative examples (possible constrained states) given a
model of the unconstrained environment (see Sec. 2.1). We acknowledge it is possible that the
expert dataset also comprises negative examples, which we will address later in the paper. Once
we obtain a dataset comprising both positive and negative labels, rules are learned that can
differentiate between the positive and negative examples, i.e. it is possible to determine if an
example is positive or negative by evaluating the example on the learned rules (see Sec. 2.2).

2.1. Generating Negative Examples

Figure 1 depicts the procedure for generating negative examples, the different steps are numbered
and referred to from the text. In a first step, (1) we model the distribution of the states visited
by the expert agents 𝑃𝐸. Since calculating 𝑃𝐸 is intractable for all but very simple environments,
a Variational AutoEncoder (VAE) is trained on the states visited during the expert trajectories
𝐷𝐸 optimizing the evidence lower bound objective. The VAE consists of an encoder network
modelling the posterior distribution 𝑞(𝑧|𝑠) of a latent variable 𝑧 given the observed state 𝑠.
The decoder network maps 𝑧 back to the state space using the likelihood distribution 𝑝(𝑠|𝑧).



Literal layer Conjunction
layer

Disjunction
layer

Figure 2: Neural-symbolic rule induction network

The reconstruction error can then be used as a measure of how likely the input originates
from a distribution similar to 𝑃𝐸. We assume that a Markov Decision Process (MDP) ℳ of
the unconstrained environment is available, we refer to this as the nominal MDP. Given ℳ,
the optimal nominal policy 𝜋𝑁 is obtained using reinforcement learning (RL) (2). Next, a set
of nominal trajectories 𝐷𝑁 is sampled from the nominal policy 𝜋𝑁 (3). States occurring in
trajectories sampled from 𝜋𝑁 are high-value states since 𝜋𝑁 is optimal. When such a state results
in a high reconstruction error when passed through the trained VAE, this means this state is
not very likely to be visited by the expert. We reason there should be some constraints which
prevents the expert from visiting this high-value state. Following this rationale, we identify
possible constraints as high-value states which are not likely to be visited by the expert thus
resulting in a high reconstruction error. At last, a labeled dataset is build by calculating the
normalized reconstruction error for all states visited during trajectories sampled from both the
nominal policy 𝐷𝑁 and the expert trajectories 𝐷𝐸 (4). Until now, our assumption was that the
expert trajectories do not include any constraint violations. However, when gathering human
trajectories, it is plausible that some constrained states are present in the obtained trajectories.
In cases where the number of constraint violations are minimal, the impact on the learned
distributions by the VAE is insignificant. Consequently, constrained states will still cause a
substantial reconstruction error.

2.2. Rule Induction

In this study, we utilize a neural-symbolic architecture that is based on relational rule networks,
as proposed by Kusters et al. [9]. This fully differentiable neural network can, after convergence,
be interpreted as a logical formula in disjunctive normal form. An overview of the architecture
is presented in Figure 2. The input of the network is a k-dimensional real-valued vector
representation of the state, denoted as 𝜙(𝑠). The first layer, known as the literal layer, learns
literals as hyperplanes dividing the feature space. The output of this layer is an L-dimensional
vector, denoted as 𝜙 𝑙(𝑠) ∈ [0, 1]𝐿, where each dimension corresponds to the evaluation of one of
the L literals. The conjunction layer produces a C-dimensional vector, denoted as 𝜙𝑐(𝑠) ∈ [0, 1]𝐶,
where each dimension is the result of a weighted conjunction of 𝜙 𝑙(𝑠). Finally, the last layer
takes a weighted disjunction of all values of 𝜙𝑐(𝑠) resulting in a value 𝑐(𝑠) ∈ [0, 1] indicating if
𝑠 is constrained. The use of this architecture allows us to learn using gradient descent while
also having the ability to interpret the rules in a human-understandable format. We refer to
appendix A for details on the implementation and values of hyperparameters.



0 10
x

0

5

10

15
y

(a) Expert

0 10
x

0

5

10

15

y

(b) Nominal

Figure 3: State visitation frequencies

0 10
x

0

5

10

15

y

(a) Ground truth

0 10
x

0

5

10

15

y

(b) Rule network

Figure 4: Constrained states

3. Preliminary Results

We perform a preliminary experiment on a simple navigation task in a continuous environment.
The agent’s goal is to navigate from the bottom left corner to the top right corner in as few
steps as possible, but some part of the environment is inaccessible, e.g. reflecting a newly laid
lane. The environment is depicted in figure 4a with the ground truth constraints (in yellow).
The nominal policy reflects the desire line that an agent takes which does not adhere to the
constraints. The nominal policy is learned using Proximal Policy Optimization (PPO) [10]. To
obtain expert trajectories, we learn the true expert policy using Reward Constrained Policy
Optimization (RCPO) [2] given the ground truth constraints. The expert and the nominal
trajectories are depicted in figure 3a and 3b respectively. The state’s vector representation 𝜙(𝑠)
is a two dimensional vector which contains the x- and y-coordinates. Because of the simplicity
of the environment we could iterate over the complete state space and visualize the classification
boundary of the learned classifier (see fig 4b). The following rule is extracted from the network,
defining constrained states:

𝑥 < 10.9 ∧ 𝑦 > 7.6. (1)

This corresponds with an intersection over union (IoU) of 0.86 with the ground truth constraints.
We conclude that the learned rule is a good estimate of the ground truth constraints presented
in figure 4a. Section B in the appendix provides additional results on the robustness against
constraints violations by the expert agents.

4. Conclusion

In this work we outlined a novel method for learning behavioral constraints from expert
demonstrations represented as a logical formula. This is the first method which is able to
learn constraints in environments with a continuous state space while representing the learned
constraints in an interpretable fashion. We presented preliminary results on a simple navigation
task. In future work, we will validate our method on more complex environments with intricate
constraints. This includes real-world traffic scenarios where demonstrations are obtained from
human agents [11, 12, 13]. These datasets interface with CommonRoadRL [14] which can
provide the nominal MDP (i.e. model of the unconstrained environment). We could extend this
method to learning constraints in high-order logics by using neural-symbolic classifiers which
can learn first-order logic [15, 16] or signal temporal logic formulae [17]. Another interesting



directive is on how these logic constraints can be transferred to an autonomous agent for
guaranteeing constraints are never violated. One possibility is to augment the learned logic
formulae on the policy network [18]. Another interesting use case is anomaly detection by
validating observations on the learned rules.

Acknowledgments

This research was partially funded by the Flemish Government (Flanders AI Research Program).

References

[1] S. Russell, Human compatible: Artificial intelligence and the problem of control, Penguin,
2019.

[2] C. Tessler, D. J. Mankowitz, S. Mannor, Reward constrained policy optimization, in:
International Conference on Learning Representations, 2019. URL: https://openreview.net/
forum?id=SkfrvsA9FX.

[3] D. R. Scobee, S. S. Sastry, Maximum likelihood constraint inference for inverse reinforce-
ment learning, in: International Conference on Learning Representations, 2020. URL:
https://openreview.net/forum?id=BJliakStvH.

[4] S. Malik, U. Anwar, A. Aghasi, A. Ahmed, Inverse constrained reinforcement learning, in:
International Conference on Machine Learning, PMLR, 2021, pp. 7390–7399.

[5] G. Liu, Y. Luo, A. Gaurav, K. Rezaee, P. Poupart, Benchmarking constraint inference in
inverse reinforcement learning, in: The Eleventh International Conference on Learning
Representations, 2023. URL: https://openreview.net/forum?id=vINj_Hv9szL.

[6] A. Gaurav, K. Rezaee, G. Liu, P. Poupart, Learning soft constraints from constrained expert
demonstrations, in: The Eleventh International Conference on Learning Representations,
2023. URL: https://openreview.net/forum?id=8sSnD78NqTN.

[7] A. Glazier, A. Loreggia, N. Mattei, T. Rahgooy, F. Rossi, B. Venable, Learning behavioral soft
constraints from demonstrations, in: Workshop on Safe and Robust Control of Uncertain
Systems at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021),
2021.

[8] M. Baert, S. Leroux, P. Simoens, Inverse reinforcement learning through logic constraint
inference, Machine Learning (2023) 1–26.

[9] R. Kusters, Y. Kim, M. Collery, C. d. S. Marie, S. Gupta, Differentiable rule induction with
learned relational features, in: NeSy 22: 16th International Workshop on Neural-Symbolic
Learning and Reasoning, 2022.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization
algorithms., CoRR abs/1707.06347 (2017). URL: http://dblp.uni-trier.de/db/journals/corr/
corr1707.html#SchulmanWDRK17.

[11] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kümmerle, H. Königshof,
C. Stiller, A. de La Fortelle, M. Tomizuka, INTERACTION Dataset: An INTERnational, Ad-
versarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic
Maps, arXiv:1910.03088 [cs, eess] (2019).

https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=BJliakStvH
https://openreview.net/forum?id=vINj_Hv9szL
https://openreview.net/forum?id=8sSnD78NqTN
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17


[12] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, L. Eckstein, The ind dataset: A
drone dataset of naturalistic road user trajectories at german intersections, in: 2020 IEEE
Intelligent Vehicles Symposium (IV), 2020, pp. 1929–1934. doi:10.1109/IV47402.2020.
9304839.

[13] R. Krajewski, J. Bock, L. Kloeker, L. Eckstein, The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems, in: 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), 2018, pp. 2118–2125. doi:10.1109/ITSC.2018.8569552.

[14] X. Wang, H. Krasowski, M. Althoff, Commonroad-rl: A configurable reinforcement
learning environment for motion planning of autonomous vehicles, in: IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2021. doi:10.1109/ITSC48978.
2021.9564898.

[15] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, D. Zhou, Neural logic machines, in: International
Conference on Learning Representations, 2019. URL: https://openreview.net/forum?id=
B1xY-hRctX.

[16] R. Riegel, A. Gray, F. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin,
F. Barahona, U. Sharma, et al., Logical neural networks, arXiv preprint arXiv:2006.13155
(2020).

[17] R. Yan, A. Julius, Neural network for weighted signal temporal logic, arXiv preprint
arXiv:2104.05435 (2021).

[18] K. Ahmed, S. Teso, K.-W. Chang, G. V. den Broeck, A. Vergari, Semantic probabilistic
layers for neuro-symbolic learning, in: A. H. Oh, A. Agarwal, D. Belgrave, K. Cho (Eds.),
Advances in Neural Information Processing Systems, 2022. URL: https://openreview.net/
forum?id=o-mxIWAY1T8.

[19] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

A. Implementation Details

In this section, we elaborate on the implementation for the experiment presented in section 3.
The VAE is configured with three linear layers each with a ReLU activation function. We train
the VAE for 500 epochs using Adam optimizer [19] with a learning rate of 0.01 and a batch size
of 64. For the relational rule net, we configure 𝐿 = 10 (number of literal layers) and 𝐶 = 25
(number of conjunctions). We train this network for 1500 epochs, using Adam optimizer with a
learning rate of 0.001 and a batch size of 64. Other parameters are set to the values mentioned
in the original paper [9]. A weighted random sampler is used to select training samples to
ensure the network is trained on a balanced dataset because the number of valid states (low
reconstruction error) is almost always larger then the number of constrained states encountered
during the obtained trajectories,

http://dx.doi.org/10.1109/IV47402.2020.9304839
http://dx.doi.org/10.1109/IV47402.2020.9304839
http://dx.doi.org/10.1109/ITSC.2018.8569552
http://dx.doi.org/10.1109/ITSC48978.2021.9564898
http://dx.doi.org/10.1109/ITSC48978.2021.9564898
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=o-mxIWAY1T8
https://openreview.net/forum?id=o-mxIWAY1T8


0 10
x

0

5

10

15

y

0 10
x

0

5

10

15

y

0 10
x

0

5

10

15

y

0 10
x

0

5

10

15

y

0 10
x

0

5

10

15

y

(a) 0%, IoU=0.86

0 10
x

0

5

10

15

y

(b) 10%, IoU=0.81

0 10
x

0

5

10

15

y

(c) 20%, IoU=0.67

0 10
x

0

5

10

15

y

(d) 30%, IoU=0.40

Figure 5: The top panel of the figure shows the state visitation frequency of expert trajectories, where
varying portions of expert agents ignore the constraints and take the desire line. The bottom panel
displays the learned constraints obtained from the corresponding expert trajectories

B. Additional Results

We provide additional results on the robustness of our method against constraint violations
by the expert. Figure 5 illustrates the learned constraints in cases where expert trajectories
include a portion of trajectories from agents that ignore the constraints. The following rules
were extracted from the network.

When 10% of the expert trajectories originate from agents ignoring the constraints:

𝑥 < 11 ∧ 𝑦 > 6.2. (2)

When 20% of the expert trajectories originate from agents ignoring the constraint:

𝑥 < 10 ∧ 𝑦 > 4.4. (3)

When 30% of the expert trajectories originate from agents ignoring the constraint:

𝑥 < 10 ∧ 𝑦 > 13.8. (4)

In conclusion, our method has demonstrated the capability to effectively learn the ap-
propriate constraints from expert trajectories, even when up to 20% of the trajectories violate
these constraints. This finding suggests the robustness of our approach and its potential utility
for learning from human experts.


	1 Introduction
	2 Method
	2.1 Generating Negative Examples
	2.2 Rule Induction

	3 Preliminary Results
	4 Conclusion
	A Implementation Details
	B Additional Results

