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Abstract
In recent years, combining machine learning and knowledge engineering has been gaining significant
attention among researchers in industry and academia. While many classical hybrid architectures fol-
low a unified or transformative approach, modular architectures built from independent yet interacting
modules are becoming more and more popular in practice. State-of-the-art architectures like the IBM
Debater system, for example, are based on distinct modules that implement diverse capabilities, such as
speech recognition, natural language processing, reasoning, and speech synthesis. For designing future
systems of this kind and complexity, we propose to use the so-called AI=MC2 Taxonomy as a systematic
and efficient tool. To this end, we introduce a practical step-by-step procedure for specifying modules
of hybrid architectures based on specific artificial intelligence (AI) methods and capabilities. We explain
this procedure by example and conclude that this approach will be relevant for future AI designs.
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1. Motivation

Modular design is a key principle in modern industrialized development processes. In product
design, for example, applying a modularization strategy will yield modular products, or in
other words, products that “are made of modules, building blocks“[1]. A module or building
block in this sense may be understood as a group of ”functional carriers” like components or
parts [2]. The intention therein is to built a product, process or service from several distinct
functional carriers in order to create a more comprehensive and complex functionality based on
a “construction kit” of well-defined and reusable modules [3]. In architecture and manufacturing,
the manifold advantages of modular design – such as decreased development time, increased
interoperability and better planning – have been recognized widely, from the Roman Empire
[4] to the twentieth century design pioneers of the German Bauhaus arts school [5] all the way
to current megaprojects such as Tesla’s giant factories for electric cars [6].
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In computer science, too, modularization is an influential and widely applied concept, both
in hardware and software development. A prominent example is object-oriented programming
where organizing all structures and processes in so-called objects represents the central design
paradigm [7]. While this may already be viewed as a way of modular design by itself, also
specific modules or combinations of interacting objects have been proposed as so-called design
patterns [8]. In artificial intelligence (AI), however, rather monolithic approaches that aim at
solving even extremely complex tasks, such as generating text [9] or images [10], with a single
technique constitute still the dominating paradigm. An exception is the field of hybrid AI, where
two or more paradigms of AI with complementing strengths are combined in order to optimize
the resulting hybrid AI system [11]. While hybridization within a single system, also termed
either unified or transformative [12], has been of particular interest for many researchers [13],
today practioners face a growing industry demand for modular hybrid AI approaches. The
success of IBM’s Debater system, for example, is based on an efficient combination of a variety of
sophicated existing AI techniques in modules for distinct subtasks, such as speech recognition,
natural language processing, reasoning, and speech synthesis [14].

Modular hybrid AI has been characterized by various criteria. In classical taxonomies, only
loosely and tightly coupled hybrid modular architectures are distinguished [12]. More current
taxonomies, such as van Bekkum’s modular design patterns for hybrid learning and reasoning
systems [15], represent more details and complexity and introduce modules similar to design
patterns in object-oriented programming. Here, however, we generalize such ideas beyond the
relatively narrow field of neuro-symbolic AI and rethink modularization as a comprehensive
concept applicable basically with any type of AI techniques. In particular, we expect more
large-scale modular hybrid AI systems comparable to the IBM Debater system to be developed
in the future and propose a novel strategy to design such systems in a systematic and efficient
fashion using the so-called AI=MC2 Taxonomy [16]

2. Designing Modular Hybrid AI with the AI=MC2 Taxonomy

2.1. Overview of the Taxonomy

Over the last decade, AI-based products and services have become a major technological trend.
The development of such AI applications in large numbers and for a growing number of use
cases has begun to drive a process of standardizing and modularizing AI solutions in industrial
contexts. A prominent exhibit for this the development is the German national roadmap for
standardization of AI [17] and its goals: At the end of this process, modularized components and
cross-industry integration are intended to be a matter of every-day practice. In order to provide
suitable description and design tools for this goal, we have recently established a comprehensive
taxonomy of AI methods and capabilities [18, 16, 19], which in a third dimension also includes
levels of risk or criticality, respectively (cf. Fig. 1). Termed AI=MC2, this taxonomy is not only a
core element of the German national roadmap for standardization of AI [17], but has also been
proposed as basis for planned European AI standards.

The AI=MC2 taxonomy reflects and condenses, in particular, available AI methods and
thereby implementable cognitive capabilities into a unified framework. A unique strength is its
level of granuality: It differentiates not only between top-level capabilities (sense, process, act,



Figure 1: Visual representation of the AI=MC2 Taxonomy in a three-dimensional display. Next to AI
methods and capabilities, risk or criticality of modules may be represented in a third dimension.

communicate) and top-level methods (traditional AI, symbolic AI, machine learning, hybrid
learning), but rather goes into three levels of details on the basis of existing scientific findings
and taxonomies; examplarily named specific algorithms make up even for a fourth level. For
the capability to process, for example, the subcapability to provide cognitive processing abilities
(one among several) is further differentiated into 24 specific and distinct subsubcapabilities.
In fact, this taxonomy is today so comprehensive that its most recent version it now covers
more than 30 pages in the accompanying book [19]. Another central strength is that due to its
systematic and hierarchical nature, the AI=MC2 taxonomy provides an easy and efficient visual
approach to understanding and designing modular systems (cf. Fig. 1).

2.2. Designing Modular Hybrid AI

Designing by means of modularization may be described as carrying out one or more of the
following and potentially complementary tasks [20]: identifying modules, design of modules
and design with modules. While designing with predefined modules is a relatively straight
forward process, identifying and designing modules typically is not. The underlying challenge
in this is to consider a given set of design goals first, and then identify the relevant criteria for
clustering components and functions into modules [2]. For both, identifying and designing
modules for hybrid AI systems, the AI=MC2 Taxonomy represents an ideal toolkit.

The identification of modules is supported by the taxonomy’s dimension of AI capabilities,
which allows to differentiate overall goals in functionality and specify subfunctionalities to be
implemented in individual modules. The actual design of such modules on the other hand is
supported by the dimension of AI methods, which allows an intuitive review and selection from
a large variety of techniques available for implementation. In the next section, we will outline
how to use the the AI=MC2 Taxonomy efficiently along the entire process from identifying
modules to designing modules and finally to designing with specified modules.



3. A Step-by-Step Procedure for Designing Modular Hybrid AI

In order to achieve a structured approach, we propose a three-steps procedure for the develop-
ment process. Initially, a detailed capabilities analysis is performed. In a second step, a methods
analysis is to be carried out. Finally, the interconnections between and/or the ordering of the
thereby identified modules is to be determined. This is referred to as the module pathway.
Going through these three steps provides a straight-forward and efficient route from analysis to
implementation. In the following, we illustrate this procedure along an example, in which we
aim to design the modules of an audio chatbot comparable to Apple’s Siri or Amazon’s Alexa.
We start under the assumption that no suitable modules have been designed so far.

3.1. Step 1: Capabilities Analysis

Similar to requirements analyses in software development, a thorough and structured description
of the overall intended functionality is required in order to lay the foundation for an efficient
specification of the building blocks of the system. In particular, this implies to translate general
requirements for the system into the more specific capabilities defined by the AI=MC2 taxonomy.
The outcome of this step is the identification of the required modules.

For our example of designing an audio chatbot, we would in this step start with the rather
general observation that is should be able to sense, process and communicate in order to
provide the intended functionality. From these top-level capabilities, second-level capabilities
are identified. For sense, for example, the second level would make a distinction between
internal and external sensing, where internal comprises self-awareness and balance and external
is further divided into the capabilities to see, hear, small, taste, and touch (Fig. 2). The most
specific capability – here: hearing – then identifies our first module.

Figure 2: Capabilities analysis. Modules are identified along the capabilities dimension (x axis) of the
AI=MC2 taxonomy. For better readability, only top-level methods and capabilities are displayed here.



3.2. Step 2: Methods Analysis

Let us assume that during the capabilities analysis, three distinct modules have been identified.
Module A is identified by sense/external/hear. Module B is identified by process/conceptual/
classify. And module C is identified by communicate/without feedback/unidirectional. During
methods analysis, suitable AI methods for each module will be identified. As a result of this step,
a method is determined for each module that will be used to implememt the related capability.
In particular, this completes the task of designing a module from an architectural perspective.

For each identified module, we would in this step switch the point of view to the methods
dimension, consisting of the top-level methods traditional AI, symbolic AI, machine learning
and hybrid learning. An initial design decision would be whether a data-driven or a knowledge-
based approach is to be chosen. For modules A and C, for example, one would typically
choose a data-driven approach from the area of machine learning (Fig. 3). In order to actually
implement module A (hear) the corrresponding second-level methods (here: reinforcement
learning, supervised learning, semi-supervised learning, unsupervised learning, and adversarial
learning) will be reviewed. Due to many existing references architectures, we might end up
implementing module A by supervised learning and module C by adversarial learning.

Figure 3: Methods analysis. For each identified module, available methods (in grey) are reviewed and
an optimal method (black dots) is selected for each module.

3.3. Step 3: Pathway and Interface Definition

Now we have arrived at a point in the design process where all relevant modules have been
identified and specified. So far undefined, however, is how these modules will interact with
each other in the actual system. Therefore, the ordering, interaction, and related interfaces will
be defined for all modules in this third step of the process. This may be seen as the actual design
with modules and will be guided by the overall intended functionality.



Figure 4: Pathway and interface definition. Connections between all specified modules are reviewed
and appropriate interfaces between connected modules are defined.

In our example of designing an audio chatbot, for example, we could end up defining a
connection sequence of module A → module B → module C. More specifically, we would
further define the corresponding interfaces AB and BC in a way that module A expects an audio
input (speech) and delivers written text (derived from audio input) as input for module B, which
in turn will provide written text as input for module C, which will then generate speech (audio)
from this text. All together, our toy audio chatbot specified by these three modules will then be
able to accept audio input, proceed it according to the intended functionality, and finally return
an audio message as answer to the user. Based on this architecural specification, development
teams can take up the actual implementation process – or reuse existing modules.

4. Conclusions

We have introduced the AI=MC2 taxonomy with a focus on its use for designing modular
hybrid AI systems in a structured, systematic and efficient way. We have demonstrated that
the multi-level granularity of this taxonomy regarding both methods and capabilities of AI
systems provides an ideal basis for the design of modular AI systems. Moreover, we have defined
and exercised a three-step design procedure based on this taxonomy. In conclusion, we have
introduced a novel and efficient design strategy for modular hybrid AI.Given that this is only
an initial overview of the concept, more practical specifications of the design procedure will, of
course, be necessary. In future work, we will therefore further elaborate the described procedure
into more detailed guidelines and practices for the design of AI systems.
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