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Abstract
In this paper, we propose a novel approach to unsupervised detection of abnormal records in tabular
data. We first characterize records in a tabular dataset using a set of features and then employ a
one-class support vector machine classifier to characterize records as either normal or abnormal. We
select the features that are most relevant in characterizing normal and abnormal records and apply
clustering to identify groups of records that have similar characteristics according to these features.
Using information-based measures, in the final step we identify the purest abnormal clusters to provide
a descriptive representation that allows a user to better understand and identify abnormal records in the
dataset. We evaluate our approach on datasets from three different domains, historical birth certificates,
social network posts, and COVID-19 data. This evaluation demonstrates that our approach is well suited
to identify anomalies in tabular data in an unsupervised manner while outperforming the baseline.
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1. Introduction

The tabular representation of data is intuitive and aids in representing large amounts of data
in an engaging, easy-to-read, and structured manner. Even to date, tabular data are one of the
most popular forms of data representation in businesses and even among researchers, as data
tables are simple to prepare, understand, and analyze [1]. Heterogeneous tabular data, often
constructed by integrating data collected from multiple sources, can contain both textual and
numerical attributes. When data collection and recording are based on manual data entry or
automated means of data collection, such as with sensors, data anomalies due to mistyping
or misinterpretation of values, or due to a device malfunction, are not uncommon [2]. That
is, we can consider the origin of data quality problems to be the structural heterogeneity of
sources, human mistakes, or failing extractors. These data quality problems can range from
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contradicting values to inconsistent entries, and outliers creating abnormalities in data. It is
vital to detect such abnormalities as they are a valuable source of knowledge, which can either
be corrected or passed on for manual investigations by human experts. While an abnormality
may not necessarily be erroneous, we consider a data error as an abnormality in data [3].

For example, consider a dataset of birth certificates, where each row corresponds to the
birth-related information of a person. In such a dataset, it is common to observe missing and
invalid values which possibly arose during data entry, or the data may not have been purposely
recorded in the birth certificates due to stillbirths, unknown parents, and so on. While it is
easy for error detection approaches to identify such data quality errors, a solution beyond
mere error detection is required to identify unusual occurrences in a dataset. For example,
identifying prenuptial pregnancy, babies with adopted parents, or unmarried parents require
inter-attribute assessment, which is not a capability of many existing error detection techniques.
While these scenarios are not errors in data, their identification can reflect on the lifestyle and
social conditions of the people who lived during the period covered by a dataset.

Over the past decades, research in data quality enhancement has resulted in several error
detection and data cleaning approaches. Each of the developed algorithms usually addresses
the detection and repair of only a specific error type without giving consideration to complex
cross-attribute correlations for the detection of unusual occurrences. Hence, assessing data
quality and identifying anomalous occurrences in real-world data are merely treated as two
different problems. These problems require the application of multiple error detection algo-
rithms based on pre-defined rules or statistical analysis to cover all anticipated data errors,
and separate deployment of outlier detection techniques to identify unusual records that are
worth investigating. However, running multiple such algorithms in parallel is challenging.
Also, not all error detection and outlier detection strategies will be equally suitable for every
dataset. Consequently, there arises the need for a holistic approach that can detect abnormal
data, while also performing error detection. Anomaly detection is a data analysis task that
detects anomalous data from a given dataset [4]. It is an evolving area of research as it involves
discovering interesting and rare patterns in data [5].

In this paper, we propose RULEAD (RULE-based knowledge discovery via Anomaly Detection
in tabular data), an unsupervised anomaly detection approach to detect abnormal records in
tabular data. RULEAD performs data profiling to extract binary features, after which this feature
matrix is learned to produce a set of rules describing anomalies such that it aids the reasoning
process of domain experts. The ultimate goal of this research is to identify anomalies in data to
generate new knowledge while also uncovering data quality issues. We evaluate our approach
on datasets from three different domains: historic vital records, the COVID-19 dataset, and
Reddit social network posts.

Our contributions are as follows: (1) We propose the RULEAD method for anomaly detection
in tabular data with capabilities for data profiling; (2) RULEAD is unsupervised, domain-
independent, and it detects abnormal records while also detecting erroneous data in tabular data,
without human involvement; and (3) RULEAD produces a set of rules describing anomalies such
that the output is understandable by non-technical domain experts; (4) We experimentally show
how well our proposed approach performs anomaly detection on the experimental datasets,
and how it outperforms the baseline, a meta data driven error detection method [1], in terms of
the quality of the results and run time.



2. Related Work

While anomaly detection in tabular data is less popular compared to error detection in the
literature, there are various works on data-cleaning approaches which utilize a combination
of statistical, logical, or probabilistic methods. DBoost [6] is a user-guided outlier detection
framework that relies on inference and statistical modeling of heterogeneous data to flag
suspicious fields in database tuples. A major obstacle in data analysis is dirty data in the form of
missing, duplicate, incorrect, or inconsistent values. Hence, SampleClean [7] combines statistical
estimation theory, approximate query processing, and data cleaning to propose algorithms for
estimating query results when only a sample of data is cleaned. Similarly, Scare [8] is a data
repairing approach that is based on maximizing the likelihood of replacement data given a
data distribution, which can be modeled using statistical machine learning techniques. This
is a novel approach combining machine learning and likelihood methods for cleaning dirty
databases by value modification. The authors have developed a quality measure of the repairing
updates based on the likelihood of benefit and the number of changes applied to the database.
Following the same research direction, TABBIE [9] is a table embedding model trained to detect
corrupted cells.

The problem of holistic data cleaning is further addressed by Bohannon et al. in [10], where
they define a database repair as a set of value modifications to repair constraints in an attempt to
find low-cost changes that, when applied, will cause the constraints to be satisfied. The approach
proposed in [11] is another method for the automatic repair of dirty data based on a set of user
defined quality rules. Similarly, NADEEF [12] is a data cleaning platform based on user-specified
data quality rules, BigDansing [13] is a big data cleaning system where users express data quality
rules both declaratively and procedurally, and HoloClean [14] is a framework for holistic data
repairing driven by probabilistic inference.

These repairing methods leverage various denial constraints, such as functional dependencies,
matching dependencies, and inclusion constraints, to detect and repair erroneous records [1].
There are techniques proposed to automatically discover the constraints and formulae held in
spreadsheets, as automatic constraint discovery can enable auto-completion, error checking,
formula suggestion, rich import, and data compression. The work by Kolb et al. [15] is an
attempt to investigate whether machine learning and knowledge discovery techniques can be
used to learn constraints (formulae and other relations) in spreadsheet data in an unsupervised
way. TaCLe [16] is a similar tabular constraint learner that aims to reconstruct the spreadsheet
formulae held in the tables. However, all these techniques mainly focus on qualitative cleaning
strategies. To the best of our knowledge, there is no other work in the literature that aims to
detect anomalies in tabular data.

3. Proposed Approach

Our aim is to discover otherwise unidentified abnormal and erroneous records in tabular data,
on the basis that they are rare occurrences in the context of a given dataset. For example, an
abnormal first name might be one that is made of several long words and contains hyphens,
while an abnormal telephone number would be one with numbers, special characters, and



RID
First

Name

Last

Name
DoB ...

001 John John 1/32/1965 ...

002 Mary Harton 6/1/1970 ...

... ... ... ... ...

RID
Rare

First Name

Rare

Last Name

Valid

DoB

First Name

Present

Last Name

Present

DoB

Present
...

001 0 1 0 1 1 1 ...

002 0 0 1 1 1 1 ...

.... .... .... .... .... .... ...

Abnormal Normal

T F

Rare First Name

Abnormal Normal

F T

Valid DoB

....

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+

++

-
-

-
-

--
-

-

-
-

-
-

-

-

-

(a) Feature extraction

(b) Learn one-class SVM (c) Select most distinguishing features

(d) Clustering using top
ranked features

(e) Build decision trees for the
most abnormal clusters

Figure 1: Overview of RULEAD, as detailed in Section 3.

letters. In this section, we describe in detail the steps of RULEAD as visualized in Figure 1.
Consider a tabular dataset 𝐷 with a schema 𝑆. Let 𝒜 be the set of attributes in 𝑆. Each tuple

or record 𝑡 ∈ 𝐷 consists of cells. We specify a cell of the tuple 𝑡 of the attribute 𝑎 ∈ 𝒜 as 𝑡[𝑎].
The value of each cell is represented by 𝑣𝑡,𝑎. A record 𝑡 in 𝐷 is considered abnormal, if at least
one 𝑣𝑡,𝑎 ∈ 𝑡 shows a significant deviation from the rest of the data in 𝑡 or 𝑎.

3.1. Feature Extraction

Based on a set of feature generation functions ℱ , we automatically generate a set of binary
features from the attribute values 𝒜 of a single record 𝑡 or by comparing values across multiple
attributes (inter-attributes) of 𝑡 in 𝐷. For example, in vital records such as birth, marriage,
and death certificates, the frequency of occurrence of a name or occupation, the rareness of
co-occurrence of the occupations of the parents of a baby, or the age of a mother at birth,
are all possible features. The essence of generating binary features is for explainability of the
final output, and ease of processing in a one-class SVM. Following is a list of feature types we
generate:

1. Frequency-based features determine how frequent or rare 𝑣𝑡,𝑎 is in 𝑎. These features
primarily aim to determine any outliers in attributes.

2. Presence check features check for the presence or absence of the attribute values.
3. Meta data-based features perform data profiling [17] to determine the validity/invalidity

of the attribute values after learning 𝑆 of 𝐷 via inferencing. RULEAD infers the widely
used data type of an attribute by learning the values in it. This learning will then be used
to identify wrong semantic data type affiliations such as misfielded values. For example,
consider abnormal values such "g", "femalemale" in the Gender column, and partial dates
such as "06/07/xxx", "Aug" in the Date of Birth (DoB) column. These are a few of the
anomalies aimed to be detected by the features under this category.

4. Multi-attribute features are constructed considering multiple attributes together to
capture inter-attribute inconsistencies. For example, the functional dependency 𝑋 → 𝑌
denotes that values in the attribute 𝑌 are functionally dependent on value combinations



in the attribute combination 𝑋 . We construct a multitude of features under this category
considering the correlations among attributes such as Weight, Height and BMI attributes,
ability to derive one attribute from another stored attribute such as DoB and Age attributes,
related attributes such as Postcode and State where one attribute implies the value of
another, and comparison attributes such as DoB and Date of Marriage (DoM).

By deploying the feature generation functions ℱ to automatically generate each feature type
described above, we generate a feature matrix F, where we have one feature vector, f , per
record 𝑡 (the number of rows of F is |𝐷| and the number of columns is |ℱ|). To prune the
feature space, we remove features with a single value. The step of feature extraction is shown
as step (a) in Figure 1.

3.2. Learning Normality

While binary classification problems require training data with examples from both classes,
a variation of the popular Support Vector Machine (SVM) classifier can be used to learn the
decision boundary based only on a set of data points and their distribution [18], without the
requirement of ground truth data for training. The one-class SVM was originally developed
to identify dense areas of high-dimensional distributions. Data points are mapped into a
feature space such that a given set of data points is separated from the origin with a maximum
margin [19]. A one-class SVM learns a non-linear decision function where that data points that
have a non-negative distance, 0 ≤ 𝑑, from the decision boundary are in the region capturing the
majority of data points. This is considered as the normal class. The negative distances, 𝑑 < 0,
identify data points outside this region and are considered to be the abnormal class.

A one-class SVM achieves this separation by using a kernel function [20] (for example, a
linear function, a Radial Basis Function (RBF), a polynomial, or a sigmoid), where the selection
of that function depends on the nature of the data. The choice of kernel function also impacts
the computational complexity in training a SVM [18]. In our approach, the input to the one-class
SVM is a feature matrix, F, as generated in the previous step. For each feature vector f ∈ F, the
SVM returns the numerical distance f .𝑑 from the decision boundary. We then classify feature
vectors as normal if their distance is f .𝑑 ≥ 0 or abnormal if their distance is f .𝑑 < 0. Specifically,
we generate the set of normal feature vectors, N = {f ∈ F : 0 ≤ f .𝑑} and abnormal feature
vectors, A = {f ∈ F : 0 > f .𝑑}, where F = N∪A. In Figure 1, learning of the one-class SVM
is shown as step (b).

3.3. Feature Selection and Ranking

This step finds the features 𝑓 ∈ ℱ that best distinguish the normal from the abnormal feature
vectors as identified by the one-class SVM. We employ two attribute selection methods that are
commonly used in the decision tree induction algorithms [21].

As we do not have training data (ground truth) in the form of known normal and abnormal
records, we employ an approach inspired by ensemble classification methods [22], where we
select two sub-sets of feature vectors to be used to calculate the ability of features to distinguish
normal from abnormal feature vectors. For a given ratio 𝑟, with 0 < 𝑟 < 1, we select a set of
normal and a set of abnormal feature vectors, N𝑟 and A𝑟. Assuming the one-class SVM has



classified less feature vectors in F as abnormal than normal (|A| < |N|), and the number of
abnormal feature vectors, 𝑎 = |A|, then we select 𝑟 · 𝑎 normal feature vectors into N𝑟 and the
same number of abnormal feature vectors into A𝑟 .

These feature vectors are selected to have the largest absolute distances, |f .𝑑|, from the SVM
decision boundary. As the feature vectors closer to the decision boundary are less normal or less
abnormal compared to the feature vectors further away from the boundary, we select several
such sub-sets of feature vectors with different ratio values, 𝑟, to be combined in a weighted
fashion.

Each pair of sub-sets of selected feature vectors, N𝑟 and A𝑟, with N𝑟 ⊂ N and A𝑟 ⊂ A,
for different values of 𝑟, is then used to identify the features that are best suited to distinguish
normal from abnormal feature vectors in N𝑟 and A𝑟 . We employ the two attribute selection
measures, also known as impurity measures, Gini and entropy [21]. These measures provide a
score for each feature indicating how much information is gained by separating normal from
abnormal feature vectors. A higher information gain score means a feature is better able to
distinguish between normal and abnormal feature vectors. For each pair of subsets N𝑟 and A𝑟 ,
we will therefore obtain a list g𝑟 , containing pairs of features and their information gain scores,
or entropy (𝑓𝑟,𝑖, 𝑔𝑟,𝑖).

With different sized subsets N𝑟 and A𝑟 of selected normal and abnormal feature vectors,
potentially different features will have the highest information gain scores. To obtain a robust
set of features that are useful to distinguish normal from abnormal records, we calculate a
weighted sum for each feature which indicates how well it distinguishes normal from abnormal.
We specifically give higher weights to features that have been selected based on smaller training
sets (that consist of the more normal and abnormal feature vectors), where 𝑟 is set to a small
value. Lower weights are used for features that have been selected based on larger training sets
(with less separation), where 𝑟 is set to a larger value. For each feature 𝑓𝑖 ∈ ℱ we calculate an
overall weight as:

𝑤𝑖 =
∑︁

𝑚𝑟 · 𝑔𝑟,𝑖, (1)

where 𝑚𝑟 is the weight assigned to features identified using the subsets N𝑟 and A𝑟 , and 𝑔𝑟,𝑖
is the information gain score or entropy of feature 𝑓𝑖 as calculated based on the subsets N𝑟

and A𝑟 . The features 𝑓𝑖 with the highest weights 𝑤𝑖 are best suited to distinguish normal from
abnormal feature vectors. In Section 4, we present the features ranked using this method for all
experimental datasets.

The output of this third step of RULEAD, step (c) in Figure 1, is a ranked list of features that
are best suited to distinguish the normal and abnormal feature vectors in F. In the following
step, we apply clustering on the feature vectors in F to identify groups of similar feature vectors.

3.4. Clustering Feature Vectors

Given the objective of our approach is to automatically identify abnormal records in tabular
data, our next task is to identify groups of records that are similar to each other based on the
most discriminating feature vectors, and then identify the groups that are most abnormal. We
accomplish this using clustering of feature vectors using the identified subset of features that
are best able to distinguish normal from abnormal feature vectors.



We first select a subset of features for clustering, ℱ𝑐 ⊂ ℱ based on their weights 𝑤𝑖 as
calculated in the previous step using Equation 1. This selection can either be based on a certain
threshold 𝑡 (select all features with a weight 𝑤𝑖 ≥ 𝑡), or a certain number of the features with
the highest weights 𝑤𝑖. An important aspect is that if too many features are selected then the
clustering process described next might suffer from the curse of dimensionality [23] where no
clear distinction between normal and abnormal feature vectors can be identified.

We generate the feature matrix F𝑐, where each feature vector f ∈ F𝑐 only contains the
features in ℱ𝑐 selected based on their weights. Each feature vector in the original feature matrix
F will be represented in F𝑐 by a lower dimensional feature vector, i.e. |f𝑐| < |f |. We then apply
k-means clustering [24] on the feature matrix F𝑐, where we use different values of 𝑘, obtaining
a set of clusters C𝑘 = {c1, c2, . . . , c𝑘}.

From the one-class SVM, we know for each feature vector f ∈ F𝑐 whether it has been classified
as normal or abnormal. We can therefore calculate the quality of each cluster as its purity with
regards to the abnormal class of the feature vectors allocated to that cluster, 𝑝𝑎(c𝑖) = 𝑐𝐴/|c𝑖|,
where 𝑐𝐴 is the number of abnormal feature vectors in cluster c𝑖. As illustrated in step (d)
in Figure 1, the output of this step is a clustering C𝑘 containing 𝑘 clusters, each consisting
of feature vectors from F𝑐, where for each cluster we have also calculated its abnormality
purity measure, 𝑝𝑎. In the final step of our approach, described next, we generate descriptive
representations of the clusters in C𝑘 with highest values of 𝑝𝑎.

3.5. Describing Abnormal Clusters

The final step of our approach aims to create a descriptive representation of the feature vectors
in the clusters c𝑖 ∈ C𝑘 generated in the previous step that contain mostly abnormal feature
vectors. We first identify those clusters 𝑐𝑖 ∈ C𝑘 that have a high abnormal purity, 𝑝𝑎(c𝑖). The
original feature matrix, F, is then augmented with a target feature that identifies a feature
vector as being in cluster c𝑖 or not. This provides a two-class training dataset (for each cluster)
for a decision tree classifier from which we can generate rules to describe the cluster [25]. The
resulting trained tree is converted into a rule set that describes the feature vectors within the
abnormal cluster c𝑖. These are the paths (rules) in the tree from the root node to the leaf nodes
that correspond to the abnormal class.

The aim is to obtain a descriptive representation of the abnormal cluster rather than an
accurate classification model. The descriptions explain, in language easily accessible to domain
experts, why a cluster of abnormal feature vectors is different from all other feature vectors
generated from the records in the dataset. Furthermore, the training of the decision tree is
specifically not based on the normal and abnormal labels generated by the one-class SVM, but
on the feature vectors within a selected abnormal cluster c𝑖 (the positive class) against all other
feature vectors (the negative class).

The final output of this step (step (e) in Figure 1) is a collection of rules that describe groups
of abnormal records in a tabular dataset. The intent is that these can be reviewed by the domain
experts in order to determine whether they represent aberrant data or otherwise interesting
and unexpected cases.



4. Experimental Evaluation

We evaluate our approach using two different categories of datasets. The first contains three
datasets where one is from the domain of historical vital records, the second is a Reddit dataset,
and the third dataset is a COVID-19 dataset. For these three datasets, we provide the results
obtained using our approach followed by a discussion of the results in Section 4.2. The second
category contains the three datasets named salaries, flights, and hospital that we obtained from
the baseline approach [1]. We use these three datasets for a comparative evaluation of our
approach with the baseline in Section 4.3.

We implemented our approach using Python 3.0 and the machine learning package Scikit-
learn [26]. We ran all experiments on a 64-bit MacBook Pro with an Apple M1 processor, 8 GB
of memory, and MacOS Ventura v13.0. The source code is available online for reproducibility1.

4.1. Parameter Settings

We used various parameter settings to investigate the behavior of our approach. We trained
the one-class SVM using a RBF kernel due to the non-linearity of data and efficiency of RBF in
comparison to other kernels such as polynomial. We set the parameters 𝛾 (kernel coefficient)
and 𝜈 (the upper bound on the fraction of training errors and a lower bound on the fraction of
support vectors) of RBF to 𝛾 = 0.1 and 𝜈 = 0.1 [18], respectively.

As discussed in Section 3.3, we then selected several subsets of the most normal and most
abnormal feature vectors, based on the one-class SVM classification. We set the ratio parameter
0 < 𝑟 < 1 to select subsets of sizes 250, 500, 1,000, 2,000, and 3,000 feature vectors each into N𝑟

and A𝑟 , respectively. We then used the Gini and entropy attribute selection measures [21] to
calculate scores for each feature using different sized subsets. The weights we assigned to feature
scores from the different sized subsets are 𝑤250 = 3, 𝑤500 = 2, 𝑤1,000 = 1, 𝑤2,000 = 0.75,
𝑤3,000 = 0.5. We assigned these weights in such a way that we can obtain a robust set of
features that are useful to distinguish abnormal from normal records. Finally, we conducted
k-means clustering with the number of clusters set to 𝑘 = [10, 20, 30, 40, 50].

4.2. Experimental Datasets

We evaluate our abnormality detection approach using datasets from the domains of historical
vital records, social networks, and COVID-19. The first is a Scottish dataset [27] containing
17,614 birth records covering the population of the Isle of Skye (IoS) over the period from 1861
to 1901. Each record is a birth certificate and contains personal information about the baby
and its parents, such as their names, address, and so on. The Reddit dataset2 represents the
directed links of a Reddit post to a Reddit community (known as sub-reddits) [28]. This dataset
was extracted from publicly available Reddit posts between January 2014 to April 2017. The
third dataset3 (named ‘Israel’) is a publicly available dataset from the Israeli Ministry of Health.
It contains data about individuals who have got tested for COVID-19 [29]. As none of these

1https://github.com/AsaraSenaratne/RULEAD
2https://snap.stanford.edu/data/soc-RedditHyperlinks.html
3https://data.gov.il/dataset/covid-19

https://github.com/AsaraSenaratne/RULEAD
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://data.gov.il/dataset/covid-19


Table 1
Dataset summaries.

Isle of Skye births Reddit posts COVID-19 data

Number of records 17,614 35,776 278,849
Number of attributes 37 18 10
Number of features extracted 104 86 52

datasets have labelled data, we assess the ability of RULEAD in detecting anomalies by manually
evaluating the output.

Table 1 summarizes the sizes and the numbers of features we extracted from the three datasets,
and Table 2 provides a summary of the dataset attributes. RULEAD automatically generated
104, 86, and 52 binary features for Isle of Skye, Reddit, and COVID-19 datasets, respectively.
The constructed features contain a combination of data quality and semantic features that aim
to identify anomalous records whilst also detecting any erroneous data. We show the top most
weighted features that we selected from our feature selection method for the Isle of Skye dataset
in Table 3, for the Reddit dataset in Table 4, and for the COVID-19 dataset in Table 5.

Table 2
Attribute summaries of the datasets.

Isle of Skye births

- Information about the baby: First and last name, DoB, address.
- Information about the parents: Father’s first and last name, occupation; mother’s first, last,
and maiden name, occupation; DoM and place of marriage.

Reddit posts

- Source and target sub-reddits: Link starting and ending points.
- Post identifier (ID): The post in the source sub-reddit that starts the link.
- Post Label: Binary value noting if the source post is negative towards the target.
- Post Properties: A vector of 86 numerical features.

COVID-19 data

- Personal information: gender (male or female), age information (age above 60 or not).
- Test result: whether the person has a negative or positive test result for COVID-19.
- Source of infection: if positive, did the patient contract it overseas or from a known contact.
- Presence of five initial clinical symptoms: cough, cold, shortness of breath, sore throat, and fever.

Based on the feature importance obtained from the feature selection and ranking, we selected
the top ranked features for each of the datasets. Table 3 lists the top ranked Isle of Skye features
and their weights. The top ranked features determine whether the child’s last name matches
the last name of the father and maiden name of the mother, whether the child has a first name
recorded, how common the last name is within the population of data it occurs, whether the
child was born before the marriage of the parents, and the commonality of the child’s date of
birth. Upon inspection, rareness and commonality appear to be a better source of detecting



data quality errors. Reviewing the availability of names and the match between them pinpoint
to family conditions whilst also highlighting data entry errors. If a child was stillborn, it may
not have been given a first name (the feature first name present will be 0). If at birth the child’s
parents were not married, the child may not have a father mentioned in the birth certificate. A
child’s date of birth can be before parents’ marriage date in the case of prenuptial pregnancy.

Table 3
Top ranked Isle of Skye features.

Features Weight

Child’s last name matches father’s last name 33
First name present 27.25
Child’s last name matches mother’s maiden name 27
Mother’s last name present 23.5
Common father’s last name in population 21.75
Common last name in population 20
Child’s DoB before parent’s DoM 14.25
Common DoB in population 12

The Reddit features reflect characteristics of posts written within a sub-reddit. The top ranked
features listed in Table 4 mostly resemble the characteristics of a written post, such as word
length, number of words, characters, white spaces, stop words, unique words, special characters
and the number of words occurring in a sentence.

Table 4
Top ranked Reddit features.

Features Weight

Average word length 72.5
Number of words 60
Fraction of white spaces 58
Number of unique works 37.5
Fraction of special characters 27.25
Number of unique stop words 23.75
Number of sentences 16
Average number of words per sentence 12.5

The top ranked features of the COVID-19 dataset mostly aid in determining patterns involved
with the spread of the disease, over reflection of data quality. As listed in Table 5, these features
determine whether a person is above 60 years or not, whether the person is a male or female,
whether the person has both cough and sore throat as symptoms, does the person have fever,
and whether a person tests positive even without any symptoms.

Table 6 provides a summary of the output of the one-class SVM, including a summary of the
count of feature vectors provided as input to the SVM, and the counts of vectors classified as
normal and abnormal, and the range within which these records lay within the hyper plane.

Using these identified top ranked features, we then clustered the entire feature matrix (as



Table 5
Top ranked COVID-19 features.

Features Weight

Is age above 60 41
Is male 40.75
Having cough and sore throat 40
Has fever 39
No symptoms but positive to COVID 38

Table 6
Output summary of the one-class SVM classifier model.

Dataset
Total number
of records

Number of normal
vectors

Number of abnormal
vectors

Range of anomaly
scores

Isle of Skye 17,614 14,084 3,530 -55.04 to 30.79

Reddit 46,718 37,374 9,344 -3439.15 to 732.8

COVID-19 278,849 273,823 5,026 -8005.02 to 888

described in Section 3.4). The purpose of applying clustering is to identify the most unusual
clusters that are purely abnormal or nearly pure. For the next step of building decision rules, we
selected clusters with an abnormal purity of 𝑝𝐴() ≥ 0.8. We selected 0.8 as the threshold with
the intention of selecting only highly pure clusters. As described in Section 3.5, the abnormal
feature vectors selected from each pure to near pure clusters were further classified against all
the other feature vectors to obtain the rules that make them more abnormal. We show the rules
we obtained for Isle of Skye, Reddit, and COVID-19 datasets in Table 7, Table 8, and Table 9,
respectively.

Table 7
Abnormal decision rules generated from the Isle of Skye dataset features.

1. (first name missing) AND (child’s last name matches mother’s maiden name)
2. (child’s last name matches mother’s maiden name) AND (father’s last name is rare

in population)
3. (rare first name in parish) AND (rare mother’s maiden name in parish) AND (rare gender in

population)
4. (child’s last name does not match father’s last name) AND (child’s last name does not match

mother’s maiden name) AND (child’s last name does not match mother’s last name)
5. (rare parish in population)

It is plausible to categorize a birth record as anomalous if it has no first name. This can
either mean there is a data entry error or the birth was a stillborn. These explanations are what
we hope to extract from domain experts. Also, the rare occurrence of a parish, date of birth,
and gender means they can actually be outliers in the data or be data entry errors. The first
rule in Table 7 defines those groups of records with a missing first name and the child’s last



name matching mother’s maiden name possibly referring to those children with a stillbirth and
without father’s identity, which can also be the case of the second rule. As for the third rule,
this could refer to records with data entry errors as they have a rare gender. The fourth rule
represents the group of children without a surname which can be the case of adopted children.
The last rule highlights the group of records with births that have happened in a less populated
parish, thus making the parish rare within the dataset.

Table 8
Abnormal decision rules generated from Reddit dataset features.

1. (high no. of words) AND (low average word length) AND (high no. of stop words)
2. (high no. of words) AND (low no. of characters)
3. (low no. of stop words) AND (low no. of unique stop word)
4. (high no. of words) AND (high fraction of stop words)
5. (low no. of characters)
6. (high no. of characters without counting white space) AND (low no. of unique stop words)

As the decision rules for the Reddit feature vectors in Table 8 show, too many occurrences
of a particular word or words, and stop words are considered abnormal. A post with a high
number of words that are short is considered abnormal, and at the same time posts with high
word counts but with less stop words are considered anomalous too. The rules obtained are
agreeable as any sentiment analysis process would first rely on these features to determine the
nature of a post. Because any junk post doesn’t really convey a message and hence, the usage
of vocabulary can be unsettling. For example, the reddit post "Even tho i read the new karma,
im not sure how to get it.... i never needed it since i just scroll witht mkn maslf visible but now i
wanna hv 10 karma points.... cn sm1 gv me lyk 5?" is considered abnormal and reflected by rule
number 2 in Table 8.

Table 9
Abnormal decision rules generated from COVID-19 dataset features.

1. (age above 60) AND (is male)
2. (no symptoms) AND (positive result)
3. (missing source of infection)
4. (has sore throat) AND (has fever) AND (negative result)

While there are not many clusters of abnormal records identified in the COVID-19 dataset,
the clusters reflected by the four rules in Table 9 very well define those records exhibiting
abnormal properties. The first rule highlights the group of abnormal records representing
older males. From the population statistics of the COVID-19 dataset, 82% of the people who
have come forward for testing are females. In the remaining 18%, 3% are older males. While
the number of older males who have been tested for COVID-19 is comparatively less, we can
assume that this rareness is either because they have not come forward for testing, or they are
less susceptible to COVID-19, or there is a higher mortality rate among this group of people.
The second and fourth rules represent those obvious anomalous scenarios of being positive to
COVID-19 without any symptoms, or obtaining a negative result despite being sick. It is also



rare to find records without the source of infection in the dataset, which either represent those
who have not reported their source of infection, or those unaware of it.

4.3. Benchmark Comparison

We compare RULEAD with the meta-data driven error detection approach proposed by Visen-
geriyeva et al. [1] using the three datasets provided by its authors. These datasets are available
online4 together with the corrupted versions. The baseline work adopts ensemble learning and
incorporates metadata extracted from a dataset for error detection. This work is capable of
detecting outliers, inconsistencies, conflicting records, duplicates, and violations of syntactic
and semantic patterns. While there is limited work in the domain of unsupervised anomaly
detection in tabular data, due to the diversity in the types of errors this approach can consider,
and due to adoption of ensemble learning, we find this work the most suitable to be considered
as the baseline of RULEAD.

The hospital dataset is available on the US Department of Health and Human Services. This
data set comprises 10,000 records with 18 attributes of mainly textual and categorical data
types, such as addresses, ZIP codes, state codes, and hospital names. This dataset is supposedly
error-free. The authors of [1] have generated a dirty version of this dataset using the BART
system [30]. They have configured BART to insert denial constraints violations by changing
values in data fields. The inserted error percentage is 9.2%.

The salaries dataset5 is another real-world dataset that contains the names, job titles, and
salaries of San Francisco city employees on an annual basis from 2011 to 2014. This dataset
consists of 75,000 different data points. The biggest fraction of this dataset are numerical values.
The dirty variant of SALARIES is again produced by introducing 2.33% errors with the BART
system [30]. The authors of [1] have configured BART to produce numerical outliers spread on
six payment attributes: basepay, overtime pay, other pay, benefits, total pay, total pay benefits.

The flights dataset represents a fusioned dataset from 38 deep web sources related to the flights
domain. The collected information of over 1,200 flights over a one month period (December
2011) is accompanied by the gold standard, created by the authors of [31]. The resulting dataset
comprises 74,000 records with an error percentage of 61.85%.

Table 10
Summary of the benchmark datasets.

Particulars Hospital Salaries Flights

Number of attributes 18 13 9
Number of records 10,000 75,000 74,000
Percentage of errors generated 9.2% 2.3% 61.85%
Number of features extracted by RULEAD 30 22 15

We compare our approach with the baseline in terms of precision, recall, and run time. While
we ran the source code of the baseline work as provided by the authors6, we also ran our
4https://github.com/visenger/clean-and-dirty-data
5https://www.kaggle.com/datasets/kaggle/sf-salaries
6https://github.com/visenger/DetectEr

https://github.com/visenger/clean-and-dirty-data
https://www.kaggle.com/datasets/kaggle/sf-salaries
https://github.com/visenger/DetectEr


approach on the above three datasets and evaluated against the ground truth available. Table 11
provides a comparative evaluation of the results obtained by our approach and the baseline.

Table 11
Comparative evaluation of the baseline. The abbreviation R.T indicates the run time in seconds.

Approach
Hospital Salaries Flights

Precision Recall R.T. Precision Recall R.T. Precision Recall R.T.
Baseline 87.02 87.00 1,506 77.68 77.60 2,410 74.29 73.73 2,431
RULEAD 90.12 89.11 1,220 78.21 78.00 911 77.55 76.09 900

As per Table 11, RULEAD performs better in identifying the anomalies at a lower run time in
comparison to the baseline under consideration. As feature generation is the step taking the
highest amount of time in our proposed approach, the hospital dataset has the longest run time
due to high number of attributes in comparison to the other two datasets, despite their numbers
of records. In contrast, the baseline approach [1] has a long run time as the number of records
increases. As BART is used to synthetically generate errors in the three benchmark datasets,
we manually evaluated a few of the errors that RULEAD failed to identify. A summary of the
analysis is provided below:

1. While RULEAD can detect duplicate entries in a dataset, it cannot identify records be-
longing to the same entity with contradicting data.

2. In a categorical variable where the number of categories is small (such as for a Gender
attribute), if an error is introduced in such a way that the new value becomes an outlier,
RULEAD can identify such records. However, a change in a value of a field such as First
Name, where there are many unique values, will not be triggered as anomalous by our
approach.

3. RULEAD identifies abnormal records, not individual cells. Hence, minor changes intro-
duced to a cell which does not make the change apparent will not be detected by RULEAD.
For example, changing a salary value from 100,000 to 110,000, where the range of the
salary column is 90,000 to 150,000, will not be identified as an anomaly.

5. Conclusion and Future Work

We presented RULEAD, an unsupervised anomaly detection approach to detect abnormal records
in datasets. Unlike other work in this domain, we do not perform error detection, but anomaly
detection considering the attributes and their inter-dependencies. Our approach can provide
users with a view on the anomalous nature of their data including reasons for such a decision
in an efficient and unsupervised manner.

Our algorithm consists of the following steps: feature extraction from attributes, learning
normality to determine normal and abnormal feature vectors, ranking and selection of the most
distinguishing features, clustering using the selected features, and finally providing a symbolic
representation of the decision rules behind the anomalies detected. These rules can be used by
domain experts to gain further insights into the records in a graph. A record becomes abnormal



when the data associated with it is unusual (does not comply with what is expected in the
attribute), missing, contradicting, or invalid. While it is easier to detect missing and erroneous
data, much focus should be given to the detection of anomalous records that look normal in
nature.

As our experiments using the three experimental datasets showed, the top ranked most
distinguishing features from the three scenarios have helped to extract the most abnormal
clusters with high abnormal purity and meaningful decision rules which can be presented to a
domain expert for further analysis. The rules identified from these abnormal clusters explain
the reasons why records are abnormal. One important aspect of our approach is that, rather
than treating attributes in isolation, RULEAD can consider multiple attributes together to make
connections and comparisons among them. Thus, making hidden scenarios discoverable.

As for future work, we aim to develop approaches to determine the most effective set of
features from a group of features created to train the one-class SVM, such that curse of dimen-
sionality is eliminated. Finally, we also aim to propose an approach for automatic correction of
the identified errors based on the rules discovered.

References

[1] L. Visengeriyeva, Z. Abedjan, Metadata-driven error detection, in: ICSSDM, 2018, pp.
1–12.

[2] P. Christen, R. Schnell, Thirty-three myths and misconceptions about population data:
from data capture and processing to linkage, IJPDS 8 (2023).

[3] A. Senaratne, P. Christen, G. Williams, P. G. Omran, Unsupervised identification of
abnormal nodes and edges in graphs, JDIQ 15 (2022) 1–37.

[4] L. Akoglu, H. Tong, J. Vreeken, C. Faloutsos, Fast and reliable anomaly detection in
categorical data, in: CIKM, ACM, Maui, 2012, p. 415–424.

[5] M. Ahmed, A. N. Mahmood, J. Hu, A survey of network anomaly detection techniques,
JNCA 60 (2016) 19–31.

[6] C. Pit-Claudel, Z. Mariet, R. Harding, S. Madden, Outlier detection in heterogeneous
datasets using automatic tuple expansion (2016).

[7] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, T. Kraska, T. Milo, E. Wu, Sampleclean:
Fast and reliable analytics on dirty data., IEEE Data Eng. Bull. 38 (2015) 59–75.

[8] M. Yakout, L. Berti-Équille, A. K. Elmagarmid, Don’t be scared: use scalable automatic
repairing with maximal likelihood and bounded changes, in: SIGMOD, ACM, 2013, pp.
553–564.

[9] H. Iida, D. Thai, V. Manjunatha, M. Iyyer, Tabbie: Pretrained representations of tabular
data, arXiv preprint arXiv:2105.02584 (2021).

[10] P. Bohannon, W. Fan, M. Flaster, R. Rastogi, A cost-based model and effective heuristic for
repairing constraints by value modification, in: SIGMOD, 2005, pp. 143–154.

[11] X. Chu, I. F. Ilyas, P. Papotti, Holistic data cleaning: Putting violations into context, in:
ICDE, IEEE, 2013, pp. 458–469.

[12] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, N. Tang,
Nadeef: a commodity data cleaning system, in: SIGMOD, ACM, 2013, pp. 541–552.



[13] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz,
N. Tang, S. Yin, Bigdansing: A system for big data cleansing, in: SIGMOD, ACM, 2015, pp.
1215–1230.

[14] T. Rekatsinas, X. Chu, I. F. Ilyas, C. Ré, Holoclean: Holistic data repairs with probabilistic
inference, Proc. VLDB Endow. 10 (2017) 1190–1201.

[15] S. Kolb, S. Paramonov, T. Guns, L. De Raedt, Learning constraints in spreadsheets and
tabular data, Machine Learning 106 (2017) 1441–1468.

[16] S. Paramonov, S. Kolb, T. Guns, L. De Raedt, Tacle: Learning constraints in tabular data,
in: CIKM, ACM, 2017, pp. 2511–2514.

[17] Z. Abedjan, L. Golab, F. Naumann, T. Papenbrock, Data profiling, Synthesis Lectures on
Data Management 10 (2018) 1–154.

[18] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, R. C. Williamson, Estimating the
support of a high-dimensional distribution, Neural Computation 13 (2001) 1443–1471.

[19] H. Yang, I. King, M. R. Lyu, Multi-task learning for one-class classification, in: IJCNN,
IEEE, 2010, pp. 1–8.

[20] V. Vapnik, The nature of statistical learning theory, Springer, 2000.
[21] J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann, San Mateo, 1993.
[22] Y. Ren, L. Zhang, P. N. Suganthan, Ensemble classification and regression-recent develop-

ments, applications and future directions, IEEE Computational Intelligence Magazine 11
(2016) 41–53.

[23] R. Bellman, A new type of approximation leading to reduction of dimensionality in control
processes, Journal of Mathematical Analysis and Applications 27 (1969) 454–459.

[24] J. MacQueen, Some methods for classification and analysis of multivariate observations,
in: Symposium on mathematical statistics and probability, volume 1, Oakland, 1967, pp.
281–297.

[25] G. Williams, Evolutionary hot spots data mining, in: PAKDD, Springer, Beijing, 1999, pp.
184–193.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: Machine learning in python, Journal
of Machine Learning Research 12 (2011) 2825–2830.

[27] A. Reid, R. Davies, E. Garrett, Nineteenth-century scottish demography from linked cen-
suses and civil registers: A ‘sets of related individuals’ approach, History and Computing
14 (2006) 61–86.

[28] S. Kumar, W. L. Hamilton, J. Leskovec, D. Jurafsky, Community interaction and conflict on
the web, in: WWW, Lyon, 2018, pp. 933–943.

[29] Y. Zoabi, S. Deri-Rozov, N. Shomron, Machine learning-based prediction of covid-19
diagnosis based on symptoms, npj Digital Medicine 4 (2021) 1–5.

[30] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, D. Santoro, Messing up with
bart: error generation for evaluating data-cleaning algorithms, VLDB Endowment 9 (2015)
36–47.

[31] X. Li, X. L. Dong, K. Lyons, W. Meng, D. Srivastava, Truth finding on the deep web: Is the
problem solved?, arXiv preprint arXiv:1503.00303 (2015).


	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Feature Extraction
	3.2 Learning Normality
	3.3 Feature Selection and Ranking
	3.4 Clustering Feature Vectors
	3.5 Describing Abnormal Clusters

	4 Experimental Evaluation
	4.1 Parameter Settings
	4.2 Experimental Datasets
	4.3 Benchmark Comparison

	5 Conclusion and Future Work

